JPH04102094A - Emergency condenser for reactor - Google Patents

Emergency condenser for reactor

Info

Publication number
JPH04102094A
JPH04102094A JP2218202A JP21820290A JPH04102094A JP H04102094 A JPH04102094 A JP H04102094A JP 2218202 A JP2218202 A JP 2218202A JP 21820290 A JP21820290 A JP 21820290A JP H04102094 A JPH04102094 A JP H04102094A
Authority
JP
Japan
Prior art keywords
tube
reactor
pool
steam
emergency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2218202A
Other languages
Japanese (ja)
Other versions
JP2899384B2 (en
Inventor
Akio Shioiri
章夫 塩入
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2218202A priority Critical patent/JP2899384B2/en
Publication of JPH04102094A publication Critical patent/JPH04102094A/en
Application granted granted Critical
Publication of JP2899384B2 publication Critical patent/JP2899384B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To thin the liquid film of the surface of a heat-transfer tube to contrive the improvement of condensation performance by providing a plurality of vertical heat-transfer tubes opened to connect to a pair of tube plates connected to the lower and upper ends of a vertical cylindrical drum set in a pool so as to quickly drop and remove condensed water. CONSTITUTION:A plurality of vertical heat-transfer tubes 24 are connected to a pair of tube plates connected to the lower and upper ends of a vertical cylindrical drum 23 set in a pool 12 and a plurality of legs so as to form a space among inlet tubing 3 connected to the upper part of the drum 23 or an upper tube plate 21, outlet tubing 7 connected to the lower part of the drum 23 or a lower tube plate 22, the bottom face of the pool 12 connected to the drum 23 and the tube plate 22. When a main steam tube connected to a reactor pressure vessel 2 is isolated, steam is allowed to flow through a tube 3 of a reactor emergency condenser 6a from the vessel 2 to introduce into the drum 23 to heat-exchange with the outside of a tube 24, to condense so as to return to the vessel 2 from a tube 7. At this time, because the tube 24 is vertically set, condensed water falls by gravity most quickly and has a shape to be removed therefrom, the liquid film formed on the surface of the tube 24 is thinned to obtain high condensation ability.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は非常時に原子炉内の蒸気を凝縮し、原子炉を冷
却するための原子炉非常用炉心冷却装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a nuclear reactor emergency core cooling system for condensing steam within a nuclear reactor and cooling the reactor in an emergency.

(従来の技術) 従来の原子炉非常用凝縮装置を第8図および第9図に従
って説明する。第8図は原子炉格納容器1に従来の原子
炉非常用凝縮装置6を組み込んだ配管流路系統を示す図
である。第8図において、原子炉格納容器1内に原子炉
圧力容器2が配置され、この原子炉圧力容器2に接続さ
れた入口配管3が第1人口弁4および第2人口弁5を介
して原子炉非常用凝縮装置6に接続されている。この原
子炉非常用凝縮装置6に接続された出し]配管7の他方
は第1出目弁8および第2出目弁9を介して原子炉圧力
容器2に接続されている。
(Prior Art) A conventional nuclear reactor emergency condensation device will be described with reference to FIGS. 8 and 9. FIG. 8 is a diagram showing a piping flow path system in which a conventional reactor emergency condensation device 6 is incorporated into the reactor containment vessel 1. In FIG. 8, a reactor pressure vessel 2 is arranged in a reactor containment vessel 1, and an inlet pipe 3 connected to the reactor pressure vessel 2 is connected to a reactor via a first population valve 4 and a second population valve 5. It is connected to the furnace emergency condensation device 6. The other end of the outlet pipe 7 connected to the reactor emergency condensing device 6 is connected to the reactor pressure vessel 2 via a first outlet valve 8 and a second outlet valve 9.

第9図は従来の横型U字管式の原子炉非常用凝縮装置6
を一部側面で示す縦断面図である。従来の原子炉非常用
凝縮袋@6は鋼製タンク15の下部に外部に突き出した
円筒状蒸気室17および水室18と、蒸気室17および
水室18とタンク15内を仕切る管板19と、管板19
に接続され、蒸気室17と水室18を連通する複数のU
字状伝熱管24と、蒸気室17および水室18に取り付
けられた蓋20と、タンク15の上部に取り付けられた
蒸気ベント管16と、蒸気室17に接続された入口配管
3と、水室18に接続された出口配管7とから構成され
ている。
Figure 9 shows a conventional horizontal U-tube type nuclear reactor emergency condensing device 6.
FIG. The conventional reactor emergency condensation bag@6 has a cylindrical steam chamber 17 and a water chamber 18 that protrude to the outside at the bottom of a steel tank 15, and a tube plate 19 that partitions the steam chamber 17 and water chamber 18 from the inside of the tank 15. , tube plate 19
A plurality of U connected to the steam chamber 17 and the water chamber 18 communicate with each other.
The heat exchanger tube 24, the lid 20 attached to the steam chamber 17 and the water chamber 18, the steam vent pipe 16 attached to the upper part of the tank 15, the inlet pipe 3 connected to the steam chamber 17, and the water chamber The outlet pipe 7 is connected to the outlet pipe 18.

原子炉通常運転中は第1出口弁8を閉とし、第1人口弁
4、第2人口弁5および第2人口弁9を開けた状態であ
る。
During normal reactor operation, the first outlet valve 8 is closed, and the first population valve 4, second population valve 5, and second population valve 9 are open.

原子炉圧力容器2に接続された主蒸気管(図示せず)が
隔離された原子炉隔離時には第1出目弁8を開けること
により原子炉圧力容器2から入口配管3、原子炉非常用
凝縮装置6、出口配管7を経て原子炉圧力容器2に戻る
流路が形成される。
When the main steam pipe (not shown) connected to the reactor pressure vessel 2 is isolated and the reactor is isolated, the first outlet valve 8 is opened and the main steam pipe (not shown) connected to the reactor pressure vessel 2 is connected to the inlet pipe 3 and the reactor emergency condensate is opened. A flow path returning to the reactor pressure vessel 2 via the device 6 and the outlet pipe 7 is formed.

原子炉圧力容器2内の蒸気は入口配管3から蒸気室17
に流入し、さらに伝熱管24内に流入し、タンク15内
の水と熱交換して凝縮される。凝縮水は水室18に流入
し、出口配管7を経由して原子炉圧力容器2へ戻る。タ
ンク15内の水は伝熱管24の表面で加熱され沸騰する
。発生した蒸気は蒸気放出管16から外部へ放出される
The steam inside the reactor pressure vessel 2 is transferred from the inlet pipe 3 to the steam chamber 17.
The water flows into the heat exchanger tube 24, exchanges heat with the water in the tank 15, and is condensed. The condensed water flows into the water chamber 18 and returns to the reactor pressure vessel 2 via the outlet pipe 7. The water in the tank 15 is heated on the surface of the heat transfer tube 24 and boils. The generated steam is released from the steam release pipe 16 to the outside.

保守点検時の伝熱管検査は蒸気室17および水室18に
取り付けられた蓋20を取り外し、管板19に接続され
たU字状の伝熱管24の内側から渦流深傷試験等を行う
To inspect the heat exchanger tubes during maintenance and inspection, remove the lids 20 attached to the steam chamber 17 and water chamber 18, and perform an eddy current deep damage test or the like from the inside of the U-shaped heat exchanger tubes 24 connected to the tube plate 19.

(発明が解決しようとする課題) 現在、原子炉発電所においては、ポンプ等の動力的機器
を削減し、単純な構造でかつ信頼性の向上した機器が要
望されている。そこでポンプ等を用いないで原子炉の冷
却を行うことができる前述の原子炉非常用冷却装置は重
要性が増大している。
(Problems to be Solved by the Invention) Currently, in nuclear power plants, there is a demand for equipment that reduces the number of power equipment such as pumps, has a simple structure, and has improved reliability. Therefore, the above-mentioned emergency reactor cooling system, which can cool a nuclear reactor without using a pump or the like, is becoming increasingly important.

このため、より長時間の除熱を行うことができるよう大
型のコンクリート製プール内に複数の非常用凝縮装置を
設置することが考えられている。
For this reason, it is being considered to install multiple emergency condensation devices within large concrete pools so that heat removal can be carried out for a longer period of time.

従来の横型U字管式の非常用凝縮装置では設置に必要な
面積が大きく、プール内への複数基の設置に対し、レイ
アウト上の制約が大きくなること、水平管では凝縮水の
排出性が悪く、凝縮性能が垂直管に比較して低下するこ
と等の課題がある。このため、垂直の伝熱管群を有し、
その上部に蒸気室、下部に氷室を設け、伝熱管内で凝縮
を行う方式の小型の原子炉非常用凝縮装置が考えられて
いる。しかしながら、この方式の原子炉非常用凝縮装置
では管外側で沸騰したプール水が上4すると蒸気室下面
に妨げられ、上昇流が弱まること、および蒸気室の重量
が重くなり、耐震上好ましくない課題がある。また、伝
熱管の渦流深傷試験等に際しては蒸気室の蓋を取り外す
等の作業が必要であること。さらに、蒸気室の外側が常
に水で満たされているため、通常運転中に凝縮が生じ不
必要な放熱が生じる等の課題がある。
Conventional horizontal U-tube type emergency condensation devices require a large area for installation, and when multiple units are installed in a pool, layout constraints become large, and horizontal pipes are difficult to drain condensate. However, there are problems such as the condensation performance is lower than that of vertical pipes. For this reason, it has a vertical heat exchanger tube group,
A small emergency condensation system for a nuclear reactor is being considered, which has a steam chamber at the top and an ice chamber at the bottom, and condenses inside the heat transfer tube. However, in this type of reactor emergency condensation system, when the pool water that boils on the outside of the tube rises, it is blocked by the bottom surface of the steam chamber, weakening the upward flow and increasing the weight of the steam chamber, which is an unfavorable problem from an earthquake resistance perspective. There is. In addition, when performing eddy current deep damage tests on heat transfer tubes, it is necessary to remove the lid of the steam chamber. Furthermore, since the outside of the steam chamber is always filled with water, there are problems such as condensation occurring during normal operation and unnecessary heat radiation.

本発明は上記課題を解決するためになされたもので、高
い凝縮性能を有し、放熱等の問題もなく、保守性に優れ
た原子炉非常用凝縮装置を提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a nuclear reactor emergency condensing device that has high condensing performance, has no problems such as heat radiation, and is easy to maintain.

[発明の構成] (課題を解決するための手段) 本発明はプール内に設置された垂直筒状胴と、この胴の
上下両端に接続された一対の管板と、この一対の管板に
開口して接続された複数の垂直伝熱管と、前記胴の上部
または上側管板に接続された第1の配管と、前記胴の下
部または下側管板に接続された第2の配管と、前記胴に
接続され前記プールの底面と前記下側管板との間に空間
が形成されるよう下方に伸びた複数の脚とを具備したこ
とを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) The present invention includes a vertical cylindrical shell installed in a pool, a pair of tube plates connected to both upper and lower ends of the shell, and a pair of tube plates connected to the pair of tube plates. a plurality of open and connected vertical heat transfer tubes, a first pipe connected to the upper part or upper tube sheet of the shell, and a second pipe connected to the lower part or lower tube sheet of the shell; The swimming pool is characterized by comprising a plurality of legs connected to the body and extending downward so as to form a space between the bottom surface of the pool and the lower tube plate.

(作 用) 原子炉圧力容器に接続した主蒸気管が隔離された場合、
原子炉圧力容器から原子炉非常用凝縮装置の第1の配管
を通り円筒状胴内に蒸気が導かれ、多数の伝熱管の外側
で熱交換し凝縮され、第2の配管により原子炉圧力容器
に戻される。非常用凝縮装置の周辺部のプール水は下側
管板から伝熱管内に導かれ、加熱され沸騰して上側管板
から上方に流出する。これによって原子炉の蒸気は凝縮
することにより熱をプール水に伝え、原子炉は安全に冷
却される (実施例) 第1図から第4図を参照しながら本発明に係る原子炉非
常用凝縮装置の第1の実施例について説明する。
(Function) If the main steam pipe connected to the reactor pressure vessel is isolated,
Steam is led from the reactor pressure vessel into the cylindrical shell through the first pipe of the reactor emergency condensation device, where it is condensed through heat exchange on the outside of a number of heat transfer tubes, and then transferred to the reactor pressure vessel through the second pipe. will be returned to. Pool water around the emergency condensing device is guided from the lower tube sheet into the heat transfer tubes, heated and boiled, and flows upward from the upper tube sheet. As a result, the steam in the reactor is condensed to transfer heat to the pool water, and the reactor is safely cooled (Example) Referring to FIGS. A first example of the device will be described.

第1図は第1の実施例で、原子炉格納容器1に原子炉非
常用凝縮装置6aを組み込んだ配管流路系統を示す。原
子炉格納容器1内に設置された原子炉圧力容器2の蒸気
相部2aは入口配管3を介して原子炉非常用凝縮装置6
aに接続され、原子炉非常用冷却装置6aは出口配管7
を介して原子炉圧力容器2の液相部2bに、また、ベン
ト配管10を介して圧力抑制プール27にそれぞれ接続
される。
FIG. 1 shows a first embodiment, showing a piping and flow path system in which a reactor emergency condensation device 6a is installed in a reactor containment vessel 1. The vapor phase part 2a of the reactor pressure vessel 2 installed in the reactor containment vessel 1 is connected to the reactor emergency condensing device 6 via the inlet pipe 3.
a, and the reactor emergency cooling device 6a is connected to the outlet pipe 7.
It is connected to the liquid phase part 2b of the reactor pressure vessel 2 via the vent pipe 10, and to the pressure suppression pool 27 via the vent pipe 10.

原子炉圧力容器2の蒸気相部2aには減圧配管13が接
続され、その配管の他方には減圧弁14が接続され、減
圧弁14の吐出側減圧配管13は原子炉格納容器1内の
空間部に開口している。
A pressure reducing pipe 13 is connected to the vapor phase portion 2a of the reactor pressure vessel 2, and a pressure reducing valve 14 is connected to the other end of the pipe. It is open in the middle.

第2図は第1の実施例における原子炉非常用凝縮装置6
aの全体概要を示す外形図である。この原子炉非常用凝
縮装置6aは円形で水平な上側管板21と、円形で水平
な下側管板22と、上側管板21と下側管板22の全周
に接続され、垂直な円筒形をなす胴23と、上側管板2
1と下側管板22に接続され両端が開口した垂直の複数
の伝熱管24と、下側管板22と設置床面に間隙をもた
せ得る胴23の外周に互いに間隙をもって取り付けられ
た脚25と、上側管板21に接続された入口配管3と、
胴23に接続された出口配管7と、ベント配管10と、
入口配管3の外周に取り付けられた断熱材26とから構
成される。出口配管7は胴23の最も下部に接続され、
ベント配管10は出口配管7より高い位置で胴23の円
筒の中心線に対し入口配管3と対称な位置に接続される
Figure 2 shows the reactor emergency condensing device 6 in the first embodiment.
FIG. This reactor emergency condensing device 6a has a circular and horizontal upper tube sheet 21, a circular and horizontal lower tube sheet 22, and is connected to the entire circumference of the upper tube sheet 21 and the lower tube sheet 22, and is connected to a vertical cylinder. A shaped body 23 and an upper tube plate 2
1 and a plurality of vertical heat transfer tubes 24 connected to the lower tube plate 22 and open at both ends, and legs 25 attached to the outer periphery of the body 23 with a gap between them so as to provide a gap between the lower tube plate 22 and the installation floor. and an inlet pipe 3 connected to the upper tube plate 21,
An outlet pipe 7 connected to the shell 23, a vent pipe 10,
It is composed of a heat insulating material 26 attached to the outer periphery of the inlet pipe 3. The outlet pipe 7 is connected to the lowest part of the shell 23,
The vent pipe 10 is connected at a position higher than the outlet pipe 7 and symmetrically to the inlet pipe 3 with respect to the center line of the cylinder of the shell 23.

第3図は第2図に示す第1の実施例における原子炉非常
用凝縮装置6aの垂直断面を示す図である。伝熱管24
は上側管板21および下側管板22を貫通して開口する
よう接続されている。入口配管3はU字管を形成する。
FIG. 3 is a diagram showing a vertical cross section of the reactor emergency condensing device 6a in the first embodiment shown in FIG. Heat exchanger tube 24
are connected to open through the upper tube sheet 21 and the lower tube sheet 22. The inlet pipe 3 forms a U-shaped pipe.

第4図は第2図および第3図における第1の実施例の原
子炉非常用凝縮装置6aの設置状態を示す縦断面図であ
る。
FIG. 4 is a longitudinal sectional view showing the installed state of the reactor emergency condensing device 6a of the first embodiment in FIGS. 2 and 3. FIG.

原子炉非常用凝縮袋ff16aは水で満たされた凝縮装
置プール30の底を形成するコンクリートスラブ31の
一部に円形状銅製底板32を設置し、この底板32上に
原子炉非常用凝縮袋R6aを設置する。
The reactor emergency condensation bag R6a is constructed by installing a circular copper bottom plate 32 on a part of the concrete slab 31 that forms the bottom of the condensing device pool 30 filled with water, and placing the reactor emergency condensation bag R6a on this bottom plate 32. Set up.

原子炉非常用凝縮装置6aの周囲に円筒形で凝縮装置プ
ール30の水面より低い位置に上端をもつ円筒形状の外
部シュラウド33を設置する。プール水入口弁34をプ
ール水入口配管35を介して外部シュラウド33のコン
クリートスラブ31の上面に近い高さに接続する。また
、スカート36を外部シュラウド33の内面でプール水
入口配管35の開口部より高い位置に接続し、スカート
36の下端は原子炉非常用凝縮装置6の下面近傍の高さ
までとする。底板32にはドレン配管37を介してドレ
ン弁38を接続する。外部シュラウド33の上端には外
部シュラウド33と円心円筒状の堰39を取り外し可能
なように設置する。
A cylindrical external shroud 33 having an upper end at a position lower than the water surface of the condensing device pool 30 is installed around the reactor emergency condensing device 6a. A pool water inlet valve 34 is connected to the outer shroud 33 at a level close to the top surface of the concrete slab 31 via a pool water inlet piping 35. Further, the skirt 36 is connected to the inner surface of the external shroud 33 at a position higher than the opening of the pool water inlet pipe 35, and the lower end of the skirt 36 is set to a height near the lower surface of the reactor emergency condensing device 6. A drain valve 38 is connected to the bottom plate 32 via a drain pipe 37. The outer shroud 33 and a cylindrical weir 39 are removably installed at the upper end of the outer shroud 33.

次に上記のように構成された原子炉非常用凝縮装置6a
の作用について説明する。
Next, the reactor emergency condensing device 6a configured as described above
The effect of this will be explained.

本実施例における原子炉非常用凝縮袋ff16aは原子
炉圧力容器に接続された主蒸気管が隔離した場合、原子
炉圧力容器内で発生する蒸気を凝縮し、原子炉圧力容器
内の冷却を行う。また、万一、原子炉格納容器1内で配
管が破断するような事故が発生した場合、原子炉格納容
器1内の蒸気を凝縮し、原子炉格納容器1を冷却する。
The reactor emergency condensation bag ff16a in this embodiment condenses steam generated within the reactor pressure vessel and cools the reactor pressure vessel when the main steam pipe connected to the reactor pressure vessel is isolated. . Furthermore, in the event that an accident occurs in which a pipe breaks within the reactor containment vessel 1, the steam within the reactor containment vessel 1 is condensed to cool the reactor containment vessel 1.

原子炉の通常運転中、第1人口弁4、第2人[1弁5、
および第1出目弁8は開状態に、第2出L1弁9および
ベント弁11は閉状態に維持される。
During normal operation of the reactor, the first population valve 4, the second [1 valve 5,
The first outlet valve 8 is kept open, and the second outlet L1 valve 9 and vent valve 11 are kept closed.

原子炉非常用凝縮装置6aの内部、出口配管7、ベント
配管10の内部ばあらかしめ水で満たし、伝熱管24お
よび胴23上側管板21は蒸気に接しないようにしてお
く。
The inside of the reactor emergency condensing device 6a, the outlet piping 7, and the vent piping 10 are filled with caulking water so that the heat transfer tubes 24 and the upper tube plate 21 of the shell 23 are not exposed to steam.

入口配管3の逆U字状の配管部から原子炉圧力容器2ま
での配管部は蒸気で充満しているが周囲の断熱材26に
よりプール水との熱交換は極力押さえられる。外部シュ
ラウド33の上部の堰39は取り外された状態とし、プ
ール水入[J弁34は閉状態となっている。
Although the piping section from the inverted U-shaped piping section of the inlet piping 3 to the reactor pressure vessel 2 is filled with steam, heat exchange with the pool water is suppressed as much as possible by the surrounding heat insulating material 26. The weir 39 on the upper part of the external shroud 33 is in a removed state, and the pool water inlet [J valve 34 is in a closed state.

原子炉の主蒸気管(図示せず)が隔離された場合、直ち
に第2出口弁を開くことにより、原子炉非常用凝縮装置
6a内の凝縮水が重力により出口配管7を通じて原子炉
は流入する。これにより原子炉圧力容器2から入口配管
3を通じて蒸気が原子炉非常用凝縮装置6aに流入し始
める。原子炉非常用凝縮装置6aに流入した蒸気は伝熱
管24を開してプール水と熱交換を行い、伝熱管24の
外周面で凝縮し、凝縮水は原子炉非常用凝縮装置6aの
底部に落下し、出口配管7を通じて連続的に原子炉圧力
容器2へ戻される。原子炉非常用凝縮装置6aは原子炉
圧力容器2より高い位置に設置しているため、入口配管
3内の蒸気と出口配管7内の凝縮水の密度差により重力
の作用による自然循環力が生じ、連続的に原子炉非常用
凝縮装置6a内に蒸気が流入され、凝縮が行われる。
When the main steam pipe (not shown) of the reactor is isolated, by immediately opening the second outlet valve, the condensed water in the reactor emergency condensing device 6a flows into the reactor through the outlet pipe 7 due to gravity. . As a result, steam begins to flow from the reactor pressure vessel 2 through the inlet pipe 3 into the reactor emergency condensation device 6a. The steam flowing into the reactor emergency condensing device 6a opens the heat transfer tube 24 to exchange heat with the pool water, condenses on the outer peripheral surface of the heat transfer tube 24, and the condensed water flows to the bottom of the reactor emergency condensation device 6a. It falls and is continuously returned to the reactor pressure vessel 2 through the outlet pipe 7. Since the reactor emergency condensing device 6a is installed at a higher position than the reactor pressure vessel 2, the density difference between the steam in the inlet pipe 3 and the condensed water in the outlet pipe 7 causes a natural circulation force due to the action of gravity. , steam is continuously flowed into the reactor emergency condensation device 6a and condensed.

一方、伝熱管24の内側表面で加熱されたプール水は沸
騰が生じ、二相流状態となるため、原子炉非常用凝縮装
置6aの周辺のプール水と伝熱管24内側の水の密度差
が生じ、上昇流が生じる。
On the other hand, the pool water heated on the inner surface of the heat transfer tube 24 boils and enters a two-phase flow state, so the density difference between the pool water around the reactor emergency condensing device 6a and the water inside the heat transfer tube 24 increases. and an upward flow occurs.

これによりプール水はプール水大口弁34から流入し、
スカート36に添って原子炉非常用凝縮袋R6aの下部
に導かれ、伝熱管24に流入し、加熱され沸騰し、伝熱
管24から上方に流出する。
As a result, pool water flows in from the pool water outlet valve 34,
It is guided along the skirt 36 to the lower part of the reactor emergency condensation bag R6a, flows into the heat transfer tube 24, is heated and boils, and flows upward from the heat transfer tube 24.

次に事故時の作用について説明する。万一、原子炉格納
容器1内で配管破断の事故が生じた場合、減圧弁14が
開放されて原子炉圧力容器2内の蒸気が放出され、減圧
され、重力落下式非常用炉心冷却装置(図示せず)によ
り、炉心の冷却が行われる。原子炉圧力容器2が充分減
圧された後、第2出目弁9を開くことにより、上述の原
子炉主蒸気管の隔離時の冷却と同様に、蒸気が入口配管
3を通じて原子炉非常用凝縮装置6aに流入し凝縮され
、出口配管7を通じて凝縮水が原子炉に戻される。
Next, we will explain the effects in the event of an accident. In the unlikely event that a piping rupture accident occurs in the reactor containment vessel 1, the pressure reducing valve 14 is opened and the steam in the reactor pressure vessel 2 is released, the pressure is reduced, and the gravity drop type emergency core cooling system ( (not shown) cools the core. After the reactor pressure vessel 2 has been sufficiently depressurized, by opening the second outlet valve 9, steam is transferred to the reactor emergency condensation via the inlet pipe 3, similar to the cooling during isolation of the reactor main steam pipe described above. The condensed water flows into the device 6a and is condensed, and the condensed water is returned to the reactor through the outlet pipe 7.

原子炉圧力容器2内の蒸気が凝縮されるにつれて圧力が
低下し、初期に原子炉格納容器1内に放出された蒸気が
、減圧弁14を通じて逆流し、原子炉格納容器1内の蒸
気も凝縮される。原子炉格納容器1内の非凝縮性ガスが
伝熱管24の周辺に集まり、伝熱性能が低下すると、−
次的に原子炉圧力容器2の圧力は上昇する。そこで、ベ
ント弁11を開けることにより圧力抑制プール内に非凝
縮性ガスが押し出され再び凝縮が開始される。ベント弁
11は開状態のままでもベント配管11の原子炉非常用
凝縮装置6a内の開[」部より出口配管7の開口部が低
い位置にあるため、凝縮には優先的に出「]配管7から
原子炉へ戻される。
As the steam in the reactor pressure vessel 2 condenses, the pressure decreases, and the steam that was initially released into the reactor containment vessel 1 flows back through the pressure reducing valve 14, and the steam in the reactor containment vessel 1 also condenses. be done. When non-condensable gas in the reactor containment vessel 1 gathers around the heat transfer tubes 24 and heat transfer performance deteriorates, -
Next, the pressure in the reactor pressure vessel 2 increases. Therefore, by opening the vent valve 11, the non-condensable gas is pushed out into the pressure suppression pool and condensation is started again. Even if the vent valve 11 remains open, the opening of the outlet pipe 7 is located lower than the open part of the reactor emergency condensing device 6a of the vent pipe 11, so the outlet pipe is preferentially used for condensation. 7 and returned to the reactor.

次に保守点検時について説明する。定期検査においては
外部シュラウド33の上部に堰39を取り付け、プール
水大口弁34を閉め、ドレン弁38を開け、ドレン配管
37から外部シュラウド33内のプール水をドレンする
。これにより作業員か原子炉非常用凝縮袋fiEt6a
へ接近し検査を行うことが可能である。また、この状態
で管内に素子を挿入し過流探傷試験を実施できる。
Next, the time of maintenance and inspection will be explained. In periodic inspections, a weir 39 is attached to the upper part of the external shroud 33, the pool water large mouth valve 34 is closed, the drain valve 38 is opened, and the pool water in the external shroud 33 is drained from the drain pipe 37. This allows workers to use the reactor emergency condensation bag fiEt6a.
It is possible to approach and conduct an inspection. In addition, in this state, the element can be inserted into the pipe and a current flaw detection test can be performed.

さらに万一、補修が必要になった場合には、脚25の固
定を外し、接続配管のフランジを外すことによりプール
外へ搬出することが可能である。
Furthermore, in the event that repairs become necessary, it is possible to take the pool out of the pool by unfixing the legs 25 and removing the flanges of the connecting pipes.

本実施例による原子炉非常用凝縮装置は次に示す効果か
ある。
The reactor emergency condensation device according to this embodiment has the following effects.

■伝熱管か垂直に設けられており、凝縮水が重力によっ
て最も早く落下し、排除される形状であるため、伝熱管
表面に形成される液膜が薄くなり、高い凝縮能力が得ら
れる。
■The heat exchanger tubes are installed vertically, and the shape allows condensed water to fall and be removed by gravity the fastest, making the liquid film formed on the surface of the heat exchanger tubes thinner, resulting in high condensation capacity.

■垂直管であるため、プール水の上昇に妨げになるもの
がなく、プール水の高い循環流量が得られ、高い伝熱性
能が得られる。
■Since it is a vertical pipe, there is no obstacle to the rise of the pool water, allowing for a high circulation flow rate of the pool water and high heat transfer performance.

■起動時に急激な凝縮を防止するため、入口弁は通常運
転中も常に開けておく必要があるが、本実施例では入口
管を上面に接続しているため、通常運転時には内部を水
で満たし、伝熱管等が蒸気に接しない構造となっている
■In order to prevent rapid condensation during startup, the inlet valve must be kept open during normal operation, but in this example, the inlet pipe is connected to the top, so the interior is filled with water during normal operation. The structure is such that heat transfer tubes, etc. do not come into contact with steam.

■入【」配管は保温材で覆われているため、通常運転中
に不用な凝縮により放熱することを防止できる。従って
、原子炉の効率の定価、プール水の不用な温度上昇とい
った問題が生じない。
■The inlet piping is covered with heat insulating material, which prevents unnecessary condensation from radiating heat during normal operation. Therefore, problems such as the list price of reactor efficiency and unnecessary temperature rise of pool water do not occur.

■検査においては通常の熱交換器と異なり、氷室を持た
ない構造のため、伝熱管の濁流探傷試験等においても氷
室の蓋等を取り外すといった作業を必要とせず、直接伝
熱管内に素子を挿し込みできる。このため、非常に大き
な保守作業の軽減が可能となり、作業員の被曝低減の上
でさらに大きな効果が生じる。
■Unlike regular heat exchangers, the structure does not have an ice chamber, so there is no need to remove the lid of the ice chamber during turbid flow flaw detection tests on heat exchanger tubes, and the element can be directly inserted into the heat exchanger tube. Can be included. Therefore, it becomes possible to significantly reduce maintenance work, which results in an even greater effect in reducing the radiation exposure of workers.

■原子炉蒸気が胴側に流入する構造のため、管側から検
査を行う上述のような作業においては作業員が放射能の
高い胴側に直接面することなく、作業員の被曝低減の上
でさらに大きな効果が期待できる。
■Because of the structure in which reactor steam flows into the shell side, workers do not have to directly face the highly radioactive shell side when performing inspections from the pipe side, which reduces worker exposure. An even greater effect can be expected.

■プール水に外部シュラウドを設置して、プール水全景
を抜くこと無く外部シュラウド内の水のみ排出すること
ができるため、検査、保守に要する時間が短縮される。
■By installing an external shroud over the pool water, only the water inside the external shroud can be discharged without removing the entire view of the pool water, reducing the time required for inspection and maintenance.

■上部に重量の大きい蒸気室を設ける必要もないため、
耐震上も非常に有利である。
■There is no need to install a heavy steam chamber at the top,
It is also very advantageous in terms of earthquake resistance.

■伝熱管および胴が常に同じ条件にあるため、熱膨張差
が生じ難く、過大な応力の発生およびそれを防止するた
めの特殊な設計の必要がない。
■Since the heat exchanger tube and shell are always under the same conditions, differences in thermal expansion are unlikely to occur, and there is no need for excessive stress or special design to prevent it.

第5図および第6図を用いて本発明に係る原子炉非常用
凝縮装置の第2の実施例を説明する。
A second embodiment of the nuclear reactor emergency condensation device according to the present invention will be described with reference to FIGS. 5 and 6.

第5図は本発明の第2の実施例の原子炉非常用凝縮装置
6bを組み込んだ配管流路系統を示す図である。原子炉
格納容器1内に開放した入口配管3を大口弁4を介して
原子炉非常用冷却装置6に接続する。さらに、原子炉非
常用凝縮装置6bから出目弁8を介して出口配管7を圧
力抑制プール13内に開放するよう接続する。
FIG. 5 is a diagram showing a piping flow path system incorporating a reactor emergency condensing device 6b according to a second embodiment of the present invention. An inlet pipe 3 opened into the reactor containment vessel 1 is connected to a reactor emergency cooling device 6 via a large mouth valve 4. Furthermore, the outlet pipe 7 is connected from the reactor emergency condensing device 6b via the outlet valve 8 so as to be open into the pressure suppression pool 13.

第6図は本発明の第2の実施例の縦断面図である。上側
管板21.下側管板22.胴23.伝熱管249脚25
の構成は上述の第1の実施例と同様である。入口配管3
は胴23の上部に取り付けられ接続される。出口配管7
は胴23の円筒の中心線に対し入口配管3と対称な位置
で最下部に接続される。その他外部シュラウド等の構成
は前記第1の実施例と同様である。
FIG. 6 is a longitudinal sectional view of a second embodiment of the invention. Upper tube plate 21. Lower tube plate 22. Torso 23. Heat exchanger tube 249 legs 25
The configuration is similar to that of the first embodiment described above. Inlet piping 3
is attached to and connected to the upper part of the body 23. Outlet piping 7
is connected to the lowermost portion of the body 23 at a position symmetrical to the inlet pipe 3 with respect to the center line of the cylinder. Other structures such as the external shroud are the same as in the first embodiment.

次に第2の実施例の作用を説明する。本実施例における
原子炉非常用凝縮装置6bは、万一原子炉格納容器1内
で配管が破断するような事故が生じた場合、原子炉格納
容器1内の蒸気を凝縮し、原子炉格納容器1を冷却する
Next, the operation of the second embodiment will be explained. The reactor emergency condensation device 6b in this embodiment condenses steam in the reactor containment vessel 1 and Cool 1.

原子炉の通常運転中は入口便4を開け、出目弁8を閉め
た状態に維持される。万一事故が発生した場合、減圧弁
14が開放され、減圧され、重力落下式非常用炉心冷却
装置(図示せず)により炉心の冷却が行われる。この後
、出目弁8を開けることにより原子炉格納容器1内に放
出された蒸気が原子炉非常用凝縮装置6bを通じて圧力
抑制プール13に放出される。この時、伝熱管24を介
してプール水と熱交換を行い蒸気が凝縮される。
During normal operation of the reactor, the inlet valve 4 is kept open and the outlet valve 8 is kept closed. In the unlikely event that an accident occurs, the pressure reducing valve 14 is opened, the pressure is reduced, and the core is cooled by a gravity drop type emergency core cooling system (not shown). Thereafter, the steam released into the reactor containment vessel 1 by opening the outlet valve 8 is released into the pressure suppression pool 13 through the reactor emergency condensation device 6b. At this time, heat is exchanged with the pool water through the heat transfer tube 24, and the steam is condensed.

凝縮水は出口配管7を通じて圧力抑制プールに排出され
る。この場合、プール水側の作用は第1の実施例と同様
である。
The condensed water is discharged through outlet pipe 7 into a pressure suppression pool. In this case, the action on the pool water side is the same as in the first embodiment.

また、保守点検時についても第1の実施例と同様である
Furthermore, the same applies to the first embodiment at the time of maintenance and inspection.

本実施例における原子炉非常用凝縮装置6bは高い凝縮
性能、優れた保守点検性の点て第1の実施例と全く同様
な効果をもっている。また、本実施例は原子炉格納容器
の冷却に使用のため、原子炉の隔離時、冷却にも使用す
る第1の実施例に比較して設計圧力が約20分の1程度
に低減され、機器配管の肉厚が大幅に低減される。実際
の設計においては原子炉隔離時の冷却に必要な伝熱面積
に比較して事故時の格納容器冷却に必要となる伝熱面積
の方が大きくなる。このため、第1の実施例の原子炉非
常用冷却装置を原子炉隔離時冷却に必要な基数設置し、
第2の実施例の原子炉非常用冷却装置を原子炉格納容器
の冷却のために不足する基数設置するという組み合わせ
により、より経済性の向上した設置が可能となる。
The reactor emergency condensation device 6b in this embodiment has exactly the same effects as the first embodiment in terms of high condensation performance and excellent maintenance and inspection properties. In addition, since this embodiment is used for cooling the reactor containment vessel, the design pressure is reduced to about one-twentieth compared to the first embodiment, which is also used for cooling when the reactor is isolated. The wall thickness of equipment piping is significantly reduced. In actual design, the heat transfer area required for cooling the containment vessel in the event of an accident is larger than the heat transfer area required for cooling during reactor isolation. For this reason, the reactor emergency cooling system of the first embodiment is installed in the number necessary for cooling the reactor during isolation,
The combination of installing the reactor emergency cooling system of the second embodiment in an insufficient number to cool the reactor containment vessel allows for more economical installation.

尚、第2の実施例において、第1の実施例と同様に出[
1配管を原子炉圧力容器に接続し、ベント配管を圧力抑
制プールに接続する構成も考えられる。
Note that in the second embodiment, the output [
A configuration in which one pipe is connected to the reactor pressure vessel and the vent pipe is connected to the pressure suppression pool is also considered.

次に第7図を参照しながら本発明に係る原子炉非常用凝
縮装M6cの第3の実施例について説明する。第7図は
第3の実施例を示す縦断面図である。胴23は円筒形を
なし、上端に外側に張り出した同心円形の上部フランジ
23aを有し、下端に内側に張り出した同心円形の下部
フランジ23bを有する。上側管板21は胴23の上部
フランジ23aと整合する寸法の円形状をなし、下側管
板は胴23の内径より小さい直径で、かつ、胴23下部
フランジ23bに整合する寸法の円形状を。
Next, a third embodiment of the reactor emergency condensation system M6c according to the present invention will be described with reference to FIG. FIG. 7 is a longitudinal sectional view showing the third embodiment. The shell 23 has a cylindrical shape, has a concentric circular upper flange 23a projecting outward at its upper end, and a concentric circular lower flange 23b projecting inward at its lower end. The upper tube plate 21 has a circular shape with dimensions that match the upper flange 23a of the shell 23, and the lower tube plate has a circular shape with a diameter smaller than the inner diameter of the shell 23 and dimensions that match the lower flange 23b of the shell 23. .

有している。胴23の上端のフランジと上側管板および
胴23の下端のフランジと下側管板はボルト(図示せず
)で接合する。その他、脚25.伝熱管24.入ロ配管
3.出口配管7.ベント配管10、断熱材26の構成お
よび配管流路系統の構成は第1の実施例と同様である。
have. The flange at the upper end of the shell 23 and the upper tube sheet, and the flange at the lower end of the shell 23 and the lower tube sheet are joined with bolts (not shown). Others, legs 25. Heat exchanger tube 24. Inlet piping 3. Outlet piping7. The configurations of the vent piping 10, the heat insulating material 26, and the piping flow path system are the same as in the first embodiment.

次に、本実施例による原子炉非常用凝縮装置6Cの作用
を説明する。原子炉通常運転中、原子炉隔離時、事故時
における作用は第1の実施例と同様である。
Next, the operation of the reactor emergency condensing device 6C according to this embodiment will be explained. The operation during normal operation of the reactor, during reactor isolation, and during an accident is the same as in the first embodiment.

本実施例においては、保守点検時に胴23内側の保守が
必要となった場合、上側管板21と胴23の上部フラン
ジ23aのボルトおよび下側管板22と胴23の下部フ
ランジ23bのボルトを外すことによって上側管板21
.下側管板22および伝熱管24を一体に引き抜くこと
ができる。
In this embodiment, when maintenance is required inside the shell 23 during maintenance inspection, the bolts between the upper tube plate 21 and the upper flange 23a of the shell 23 and the bolts between the lower tube plate 22 and the lower flange 23b of the shell 23 are removed. By removing the upper tube plate 21
.. The lower tube sheet 22 and the heat exchanger tubes 24 can be pulled out together.

本実施例における原子炉非常用冷却装置6Cは高い凝縮
性能および優れた保守点検性の点で第1の実施例と同様
な効果をもっている。さらに、4内および管外面の保守
点検も可能なため、より高い保守点検性が得られる。
The reactor emergency cooling system 6C in this embodiment has the same effects as the first embodiment in terms of high condensing performance and excellent maintenance and inspection performance. Furthermore, since maintenance and inspection of the inside of the pipe and the outer surface of the pipe can be performed, higher maintenance and inspection efficiency can be obtained.

尚、本実施例によるフランジ接続を特徴とする原子炉非
常用凝縮装置を第2の実施例に適用することも可能であ
る。
Incidentally, it is also possible to apply the reactor emergency condensing device characterized by the flange connection according to this embodiment to the second embodiment.

[発明の効果] 本発明によれば次に述べる効果がある。[Effect of the invention] According to the present invention, the following effects can be achieved.

■脚によりプール底面に自立し、周囲のプール水の自然
環境により冷却可能な構造であること、プールからの取
り出しも容易な形状であることから、大容量のプール内
に設置する場合、適した形状を有しており、より長時間
の除熱能力を得る上で非常に有効である。
■It has a structure that stands on its own on the bottom of the pool with its legs and can be cooled by the natural environment of the surrounding pool water, and its shape makes it easy to take out from the pool, making it suitable for installation in large-capacity pools. It has a unique shape and is very effective in obtaining heat removal capability for a longer period of time.

■伝熱管を垂直に設置しているため、伝熱管表面の凝縮
水が自重により下降し、最も排除されやすい構造であり
、伝熱管表面に形成される凝縮水の液膜を薄くすること
が可能である。液膜は熱抵抗が大きいため、凝縮熱伝達
では液膜が薄いほど高い熱伝達率が得られるが、本発明
による原子炉非常用冷却装置は液膜が最も薄い構造のた
め高い凝縮性能が得られる。
■Since the heat exchanger tubes are installed vertically, the condensed water on the surface of the heat exchanger tubes descends due to its own weight, making it the structure where it is most likely to be removed, making it possible to thin the liquid film of condensed water that forms on the surface of the heat exchanger tubes. It is. Since a liquid film has a large thermal resistance, the thinner the liquid film is, the higher the heat transfer coefficient can be obtained in condensation heat transfer.However, the reactor emergency cooling system according to the present invention has a structure with the thinnest liquid film, so that high condensation performance can be obtained. It will be done.

■プール水は伝熱管内部で加熱され沸騰し上昇するが、
伝熱管が垂直であり、また上部に上昇流を妨げるような
構造物かないため、伝熱管内側の二相流と、周辺部のプ
ール水の密度差による衝突と同様の作用により、強い上
昇流が生じ、伝熱管内の高い流量が得られ、高い熱伝達
率が得られる。
■Pool water is heated inside the heat transfer tube, boils and rises,
Because the heat exchanger tubes are vertical and there is no structure above them that would impede the upward flow, a strong upward flow occurs due to a collision between the two-phase flow inside the heat exchanger tubes and the density difference of pool water in the surrounding area. This results in a high flow rate in the heat transfer tube and a high heat transfer coefficient.

したがって、より小型化した高性能の原子炉非常用冷却
装置を得ることが可能となる。
Therefore, it becomes possible to obtain a more compact and high-performance nuclear reactor emergency cooling system.

■通常の熱交換器または凝縮器では伝熱管側に氷室また
は蒸気室が有り、伝熱管の渦流探傷試験等においては氷
室または蒸気室の蓋を開ける作業が必要であった。これ
に対して、本発明ではプール内に水没させる構造で、さ
らに伝熱管内側をプール水が流動する構造であるため、
蒸気室および氷室が存在せず、保守点検時には氷室およ
び蒸気室の蓋のボルトを外し、これを除去するといった
作業を一切行うことなく、伝熱管内の点検作業が可能で
あり、保守点検作業か大幅に軽減される。
■A normal heat exchanger or condenser has an ice chamber or a steam chamber on the heat transfer tube side, and it is necessary to open the lid of the ice chamber or steam chamber for eddy current testing of heat transfer tubes. In contrast, in the present invention, the structure is such that the water is submerged in the pool, and the pool water flows inside the heat transfer tube.
Since there are no steam and ice compartments, inspection work inside the heat transfer tubes is possible without having to unbolt and remove the lids of the ice and steam compartments during maintenance inspections. significantly reduced.

■上部に重量の大きい蒸気室を必要とせず耐震上も非常
に有効である。
■It does not require a heavy steam room at the top and is very effective in terms of earthquake resistance.

また、伝熱管と胴が常に同一の温度条件に有るため、熱
膨張差による過大な応力の発生およびそれを防止するた
めの特殊な設計の必要がなく単純な構造が実現できる。
Furthermore, since the heat exchanger tube and the shell are always under the same temperature conditions, a simple structure can be realized without the need for generation of excessive stress due to differences in thermal expansion and special design to prevent this.

■放射能を含んだ炉蒸気は胴側を通る構造のため、伝熱
管内側から行う渦流探傷試験において、作業員が胴側内
面に対向することなく、被曝低減の上で非常に有効であ
る。
■Since the furnace steam containing radioactivity passes through the shell side, workers do not have to face the inner surface of the shell side during eddy current testing conducted from the inside of the heat transfer tube, which is very effective in reducing radiation exposure.

以上述べたように、本発明によれば据付レイアウト上の
自由度、伝熱性能、保守点検性、耐震性等において大き
な効果があり、今後単純化した原子力発電所の建設の上
で大きな効果が期待できる。
As described above, the present invention has significant effects on the degree of freedom in installation layout, heat transfer performance, ease of maintenance and inspection, seismic resistance, etc., and will have great effects on the construction of simplified nuclear power plants in the future. You can expect it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る原子炉非常用凝縮装置の第1の実
施例を組み込んだ配管流路系統図、第2図は本発明に係
る原子炉非常用凝縮装置の第1の実施例を示す斜視図、
第3図は第2図の縦断面図、第4図は第2図の装置の設
置状態を示す縦断面図、第5図は本発明に係る原子炉非
常用凝縮装置の第2の実施例を組み込んだ配管流路系統
図、第6図は本発明に係る原子炉非常用凝縮装置の第2
の実施例を示す縦断面図、第7図は本発明に係る原子炉
非常用凝縮装置の第3の実施例を示す縦断面図、第8図
は従来の原子炉非常用凝縮装置を組み込んだ配管流路系
統図、第9図は従来の原子炉非常用凝縮装置を示す縦断
面図である。 1・・・原子炉格納容器 3・・・入口配管 5・・・第2人口弁 6、6a、 6b、 6c・・・原子炉非常用冷却装置
7・・・出口配管     8・・・第1出目弁9・・
・第2出目弁    10・・・ベント配管1・・・ベ
ント弁     12・・・プール3・・・減圧配管 
    j4・・・減圧弁5・・・タンク      
16・・・蒸気放出管7・・・蒸気室      18
・・・氷室9・・・管板       20・・・蓋2
1・・・上側管板     22・・・下側管板23・
・・胴        24・・・伝熱管25・・・脚
        26・・・断熱材2・・・原子炉圧力
容器 4・・・第1人口弁 27・・・圧力抑制プール 30・・・凝縮装置プール 32・・・底板 34・・・プール水大口弁 36・・・スカート 38・・・ドレン弁 28.29・・・プール水 31・・・コンクリートスラブ 33・・・外部シュラウド 35・・・プール水入口配管 37・・・ドレン配管 39・・・堰 (8733)代理人 弁理士 猪 股 祥 晃(ほか 
1名) 弗 /I!] 亭 肥 l虹 草 菌 第 凹 亭 圀 第 乙 図 第 艮 第8 凹 第9 回
Fig. 1 is a piping flow path system diagram incorporating a first embodiment of the reactor emergency condensation device according to the present invention, and Fig. 2 shows the first embodiment of the reactor emergency condensation device according to the present invention. A perspective view showing,
FIG. 3 is a longitudinal sectional view of FIG. 2, FIG. 4 is a longitudinal sectional view showing the installed state of the device in FIG. 2, and FIG. 5 is a second embodiment of the reactor emergency condensation device according to the present invention. FIG. 6 is a piping flow path system diagram incorporating the
7 is a vertical sectional view showing a third embodiment of the reactor emergency condensation device according to the present invention, and FIG. 8 is a vertical sectional view showing a third embodiment of the reactor emergency condensation device according to the present invention. The piping flow path system diagram, FIG. 9, is a vertical cross-sectional view showing a conventional nuclear reactor emergency condensation device. 1... Reactor containment vessel 3... Inlet piping 5... Second population valve 6, 6a, 6b, 6c... Reactor emergency cooling device 7... Outlet piping 8... First Deme valve 9...
・Second outlet valve 10...Vent pipe 1...Vent valve 12...Pool 3...Pressure reduction pipe
j4... pressure reducing valve 5... tank
16...Steam release pipe 7...Steam room 18
...Ice chamber 9...Tube plate 20...Lid 2
1... Upper tube sheet 22... Lower tube sheet 23.
... Shell 24 ... Heat exchanger tube 25 ... Leg 26 ... Insulation material 2 ... Reactor pressure vessel 4 ... First population valve 27 ... Pressure suppression pool 30 ... Condensing device pool 32...Bottom plate 34...Pool water large mouth valve 36...Skirt 38...Drain valve 28.29...Pool water 31...Concrete slab 33...External shroud 35...Pool water Inlet piping 37...Drain piping 39...Weir (8733) Agent: Patent attorney Yoshiaki Inomata (and others)
1 person) 弗 /I! 】 Teihi l Rainbow grass fungus No. 8, No. 9

Claims (1)

【特許請求の範囲】[Claims] プール内に設置された垂直筒状胴と、この胴の上下両端
に接続された一対の管板と、この一対の管板に開口して
接続された複数の垂直伝熱管と、前記胴の上部または上
側管板に接続された第1の配管と、前記胴の下部または
下側管板に接続された第2の配管と、前記胴に接続され
前記プールの底面と前記下側管板との間に空間が形成さ
れるよう下方に伸びた複数の脚とを具備したことを特徴
とする原子炉非常用凝縮装置。
A vertical cylindrical shell installed in a pool, a pair of tube plates connected to both upper and lower ends of the shell, a plurality of vertical heat transfer tubes connected to the pair of tube plates through openings, and an upper part of the shell. or a first pipe connected to the upper tube sheet, a second pipe connected to the lower part of the body or the lower tube sheet, and a second pipe connected to the body and connected to the bottom of the pool and the lower tube sheet. A nuclear reactor emergency condensing device characterized by comprising a plurality of legs extending downward so as to form a space between the legs.
JP2218202A 1990-08-21 1990-08-21 Reactor emergency condensing device and its installation device Expired - Lifetime JP2899384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2218202A JP2899384B2 (en) 1990-08-21 1990-08-21 Reactor emergency condensing device and its installation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2218202A JP2899384B2 (en) 1990-08-21 1990-08-21 Reactor emergency condensing device and its installation device

Publications (2)

Publication Number Publication Date
JPH04102094A true JPH04102094A (en) 1992-04-03
JP2899384B2 JP2899384B2 (en) 1999-06-02

Family

ID=16716223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2218202A Expired - Lifetime JP2899384B2 (en) 1990-08-21 1990-08-21 Reactor emergency condensing device and its installation device

Country Status (1)

Country Link
JP (1) JP2899384B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122949A (en) * 2009-12-11 2011-06-23 Hitachi-Ge Nuclear Energy Ltd Emergency condensate system
JP2013228281A (en) * 2012-04-26 2013-11-07 Toshiba Corp Emergency reactor core cooling system and nuclear reactor facilities provided with the same
JP2014010080A (en) * 2012-06-29 2014-01-20 Toshiba Corp Nuclear power plant and static containment vessel cooling system
JP2021085716A (en) * 2019-11-26 2021-06-03 日立Geニュークリア・エナジー株式会社 Hydrogen processing system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122949A (en) * 2009-12-11 2011-06-23 Hitachi-Ge Nuclear Energy Ltd Emergency condensate system
JP2013228281A (en) * 2012-04-26 2013-11-07 Toshiba Corp Emergency reactor core cooling system and nuclear reactor facilities provided with the same
JP2014010080A (en) * 2012-06-29 2014-01-20 Toshiba Corp Nuclear power plant and static containment vessel cooling system
JP2021085716A (en) * 2019-11-26 2021-06-03 日立Geニュークリア・エナジー株式会社 Hydrogen processing system

Also Published As

Publication number Publication date
JP2899384B2 (en) 1999-06-02

Similar Documents

Publication Publication Date Title
US11393598B2 (en) Nuclear reactor vessel support system
US5612982A (en) Nuclear power plant with containment cooling
US10854344B2 (en) Air-cooled heat exchanger and system and method of using the same to remove waste thermal energy from radioactive materials
JP6442489B2 (en) Passive reactor cooling system and method
US5158742A (en) Reactor steam isolation cooling system
EP0462810A1 (en) Passive cooling safety system for liquid metal cooled nuclear reactors
US11901088B2 (en) Method of heating primary coolant outside of primary coolant loop during a reactor startup operation
US4487742A (en) Fast neutron nuclear reactor with internal capillary structure piping
JP6454692B2 (en) Reactor cooling system for loss of coolant accident
JP2015529820A (en) Auxiliary cooling water system for nuclear power plant
JP3139856B2 (en) Tube heat exchanger
EP0397162B1 (en) Primary containment vessel with outer pool
JPH04102094A (en) Emergency condenser for reactor
US10672523B2 (en) Component cooling water system for nuclear power plant
JPS60244891A (en) Fast neutron reactor
US4324617A (en) Intermediate heat exchanger for a liquid metal cooled nuclear reactor and method
JPH0531750B2 (en)
CN110400644B (en) Passive containment heat discharge structure
RU2806815C1 (en) System of passive heat removal from the inner volume of the containment shell of water-water energy reactor
JPH0476494A (en) Emergency condenser for nuclear reactor
JPH04290993A (en) Emergency condenser for boiling water reactor
JPH0580181A (en) Light water type nuclear reactor
KR100282371B1 (en) heat transmitter
JP2019045433A (en) Nuclear reactor container
JPH02251794A (en) Cooling system for naturally heat releasing containment vessel