JPH0399193A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH0399193A
JPH0399193A JP23342489A JP23342489A JPH0399193A JP H0399193 A JPH0399193 A JP H0399193A JP 23342489 A JP23342489 A JP 23342489A JP 23342489 A JP23342489 A JP 23342489A JP H0399193 A JPH0399193 A JP H0399193A
Authority
JP
Japan
Prior art keywords
heat exchanger
flow path
header
heat transfer
flow passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23342489A
Other languages
Japanese (ja)
Inventor
Tatsuo Tanaka
達夫 田中
Jitsuo Iketani
池谷 實男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23342489A priority Critical patent/JPH0399193A/en
Publication of JPH0399193A publication Critical patent/JPH0399193A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0475Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend
    • F28D1/0476Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To provide a small-sized and light weight heat exchanger showing a high efficient operation by a method wherein a partition plate is arranged within a header, one end of a thermal transmitting pipe is connected to a first flow passage, the other end of the thermal transmitting pipe is connected to a second flow passage and further a flow passage partition plate is arranged at the midway part of the first and second flow passage within the header. CONSTITUTION:A heat exchanger 5 is provided with flat thermal transmitting pipes 6 arranged in a layer form, respectively. The pipes 6 are bent in U-form at their central portions. Their ends are positioned at one side and communicated with a closed cylindrical header 9. The header 9 has a partition plate 10 inserted therein and is divided into a first flow passage 11 and a second flow passage 12. The pipes 6 are connected under a condition in which they are bridged over the flow passage 11 and the flow passage 12. Each of the flow passages 11 and 12 is provided with the flow passage partition plates 14 and 15. Accordingly, refrigerant from a connection pipe 16 may reciprocate between the pipes 6 and the heater 9 by three times and is discharged from a connection pipe 17, so that a heat exchanging area of the heat exchanger can be increased and then a small-sized and light weight heat exchanger showing a high efficiency can be attained.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、例えば家庭用エアコンに使用される熱交換器
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a heat exchanger used, for example, in a domestic air conditioner.

(従来の技術) 一般に家庭用エアコンに用いられる熱交換器はフィンに
円形断面のパイプを貫通したものが用いられていたが、
このような構造の熱交換器は熱交換性能が低く、効率の
高い運転ができなかった。
(Prior Art) Generally, heat exchangers used in home air conditioners have fins with circular cross-section pipes passing through them.
A heat exchanger with such a structure has low heat exchange performance and cannot be operated with high efficiency.

このため、熱交換部分の大形化が必要であり、高効率と
小形軽量化を同時に実現することができなかった。
For this reason, it was necessary to increase the size of the heat exchange part, and it was not possible to achieve high efficiency and reduction in size and weight at the same time.

このため、カーエアコンに近年使用され始めた偏平形の
伝熱管を使用する熱交換器を利用することで家庭用エア
コンの高効率と小型軽量化を実現することが考えられて
いる。このカーエアコンの熱交換器は例えば第8図およ
び第9図に示されるものであり、上記偏平形の伝熱管1
は内部に幅方向に沿って複数の管路2が形成されている
。そして、この熱交換器3はサーペンタイン方式と称さ
れる構造で、通常は別部品で構成される接続部分が不要
であり、製造作業の簡略化とガスリーク防止等に有効で
ある。ところが、偏平形の伝熱管1の厚さ寸法を減少さ
せた場合に管内冷媒圧損増加の問題があった。
For this reason, it is being considered that home air conditioners can be made more efficient, smaller and lighter by using heat exchangers that use flat heat transfer tubes, which have recently begun to be used in car air conditioners. The heat exchanger for this car air conditioner is shown in FIGS. 8 and 9, for example, and the flat heat exchanger tube 1 is
A plurality of conduits 2 are formed inside along the width direction. This heat exchanger 3 has a structure called a serpentine type, which eliminates the need for connection parts that are usually separate parts, and is effective in simplifying manufacturing operations and preventing gas leaks. However, when the thickness of the flat heat transfer tube 1 is reduced, there is a problem in that the refrigerant pressure loss within the tube increases.

さらに、上記偏平形の伝熱管1は熱交換器3が冷却器と
して使用された場合にフィン4に凝縮ドレン水が付着す
る。カーエアコンの場合には前面風速が3 m / s
以上あるため、このドレン水は吹き飛ばされるが、家庭
用エアコンの場合、騒音の面から1 m / s以下に
押さえられる。このためドレン水が偏平形の伝熱管1の
上に滞留し、これにより通風抵抗が増大して熱交換の性
能を低下してしまうという欠点があった。
Furthermore, condensed drain water adheres to the fins 4 of the flat heat exchanger tube 1 when the heat exchanger 3 is used as a cooler. In the case of a car air conditioner, the front wind speed is 3 m/s.
Due to the above, this drain water is blown away, but in the case of a household air conditioner, the noise level is kept below 1 m/s. As a result, drain water remains on the flat heat exchanger tube 1, which increases ventilation resistance and deteriorates heat exchange performance.

(発明が解決しようとする課8) 高効率と小型軽量化を図るために、従来カーエアコンの
熱交換器に使用されていた偏平形かつ多孔形の伝熱管を
家庭用エアコンの熱交換器に使用することが考えられる
が、実際にはカーエアコンの構造そのままに適用するこ
とが不可能であった。具体的には管内冷媒圧損増加や伝
熱管の上面でのドレン水の滞留等の問題により、小型で
軽量かつ高効率の熱交換器を得ることができなかった。
(Issue 8 to be solved by the invention) In order to achieve high efficiency, miniaturization, and weight reduction, the flat and porous heat exchanger tubes conventionally used in the heat exchanger of car air conditioners have been replaced with the heat exchangers of home air conditioners. Although it is possible to use this method, it is actually impossible to apply it to the structure of a car air conditioner. Specifically, it has not been possible to obtain a small, lightweight, and highly efficient heat exchanger due to problems such as increased refrigerant pressure drop within the tubes and retention of drain water on the upper surface of the heat transfer tubes.

本発明は上記課題に着目してなされたものであり、従来
においてカーエアコンに採用されているものの家庭用エ
アコンには採用できなかった偏平形の多孔型の伝熱管の
使用を実現し高効率で小型軽量な熱交換器を提供するこ
とを目的とする。
The present invention has been made with attention to the above-mentioned problems, and it realizes the use of flat, porous heat exchanger tubes, which have been conventionally used in car air conditioners but could not be used in home air conditioners, and achieves high efficiency. The purpose is to provide a small and lightweight heat exchanger.

[発明の構成コ (課題を解決するための手段) (1)冷媒が通過する複数の管路を幅方向に沿って形或
した偏平形の伝熱管を複数本設け、これらの伝熱管をU
字形に折曲し、それぞれの端部を一方側に向けて層状に
配列し、これら伝熱管の一方側の端部の配列に沿って筒
状のヘッダを連通結合し、このヘッダの内部にヘッダ仕
切板を設け軸心方向に沿って第1流路および第2流路を
併設し、第1流路に上記U字形の伝熱管の一方の端部を
接続し、第2流路に上記伝熱管の他方の端部を接続し、
上記第2流路の軸心方向の中途部にあって冷媒を上記ヘ
ッダの一端から他端に向けて各伝熱管を通過しながら流
れる状態に流路仕切板を設けた熱交換器。
[Structure of the Invention (Means for Solving the Problems) (1) A plurality of flat heat exchanger tubes each having a plurality of conduits through which a refrigerant passes along the width direction are provided, and these heat exchanger tubes are arranged in a U shape.
These heat transfer tubes are bent into a shape, arranged in a layer with each end facing one side, and a cylindrical header is connected in communication along the arrangement of one end of these heat transfer tubes, and the header is placed inside this header. A partition plate is provided, and a first flow path and a second flow path are provided along the axial direction, one end of the U-shaped heat transfer tube is connected to the first flow path, and the above-mentioned heat transfer tube is connected to the second flow path. Connect the other end of the heat tube,
A heat exchanger that is provided with a flow path partition plate located midway in the axial direction of the second flow path so that the refrigerant flows from one end of the header to the other end while passing through each heat transfer tube.

(2)冷媒が通過する複数の管路を幅方向に沿って形或
した偏平形の伝熱管を設け、この伝熱管に伝熱性のフィ
ンを設け、上記伝熱管の少なくとも上面の幅方向中途部
に長手方向に沿って溝を形成し、この溝の底部の一部に
上下方向に貫通する排水孔を穿設した熱交換器。
(2) A flat heat exchanger tube having a plurality of pipes through which a refrigerant passes along the width direction is provided, heat conductive fins are provided on the heat exchanger tube, and at least the middle part of the upper surface of the heat exchanger tube in the width direction is provided. A heat exchanger in which a groove is formed along the longitudinal direction, and a drainage hole is drilled in a part of the bottom of the groove in the vertical direction.

(作 用) (1)U字形に折曲された複数本の伝熱管の端部をそれ
ぞれ、ヘッダの第1流路と第2流路とに接続した構成に
より、従来問題となっていた管内冷媒圧損増加等の問題
を解消できる。また、ヘッダを伝熱管の一方側に1つ設
けたことにより、小型化できる。
(Function) (1) With a configuration in which the ends of multiple heat transfer tubes bent into a U-shape are connected to the first flow path and the second flow path of the header, the problem of Problems such as increased refrigerant pressure loss can be resolved. Further, by providing one header on one side of the heat exchanger tube, the size can be reduced.

(2)偏平形の伝熱管の幅方向の中央部上面にドレン溝
を形成し、このドレン溝の底部の一部に排水孔を穿設し
たことにより、フィンに凝縮したドレン水を上記ドレン
溝に導き、排水孔から下方へ排水できる。
(2) A drain groove is formed on the upper surface of the center part in the width direction of the flat heat transfer tube, and a drainage hole is formed in a part of the bottom of this drain groove, so that the drain water condensed on the fins is drained from the drain groove. can be guided downwards through the drainage hole.

(実施例) 本発明における第1実施例を第1図乃至第4図を参照し
て説明する。図中に示される熱交換器5は偏平形の伝熱
管6を備えている。この伝熱管6は幅方向に沿って複数
の管路7が形成されており、個々の管路7が平行かつ端
部間で連通した状態に形成されている。そして、これら
複数の伝熱管7はほぼ中央部でU字形に折曲され、平行
に延長された2方向の端部は、その一方が他方よりも長
く形成されている。
(Embodiment) A first embodiment of the present invention will be described with reference to FIGS. 1 to 4. The heat exchanger 5 shown in the figure includes flat heat exchanger tubes 6. This heat exchanger tube 6 has a plurality of pipe lines 7 formed along the width direction, and the individual pipe lines 7 are formed in parallel and in communication between their ends. The plurality of heat exchanger tubes 7 are bent into a U-shape approximately at the center, and one of the ends extending in two directions in parallel is formed longer than the other.

そして、これら伝熱管6はそれぞれが層状態に例えば上
下方向に配列され、かつ、伝熱管6の端部は一方側に位
置されている。そして、これらの伝熱管6の中途部には
幅方向から複数のフィン8が嵌合されており、これらの
フィン8を介して熱交換を効果的に行うようになってい
る。
These heat exchanger tubes 6 are arranged in layers, for example, in the vertical direction, and the ends of the heat exchanger tubes 6 are located on one side. A plurality of fins 8 are fitted in the middle portions of these heat transfer tubes 6 from the width direction, so that heat exchange is effectively performed via these fins 8.

そして、上記伝熱管6の端部が位置する側部には両端が
閉鎖形の筒状のヘッダ9が設けられている。このヘッダ
9は上下方向に軸心をもって形成されており、上記伝熱
管7の配列方向に沿って設けられている。このヘッダ9
は内部にヘッダ仕切板10が挿入されている。このヘッ
ダ仕切板10は上記ヘッダ9内を上記伝熱管6に近い第
1流路11と上記伝熱管6から遠い第2流路12とに分
割するように液密に仕切るように接合されている。
A cylindrical header 9 with closed ends is provided on the side where the ends of the heat transfer tubes 6 are located. This header 9 is formed with its axis in the vertical direction, and is provided along the direction in which the heat exchanger tubes 7 are arranged. This header 9
A header partition plate 10 is inserted inside. This header partition plate 10 is joined to liquid-tightly partition the inside of the header 9 into a first flow path 11 close to the heat transfer tube 6 and a second flow path 12 far from the heat transfer tube 6. .

この接合は例えばブレージング方式によるガス溶接によ
り行い、グラッド材を使用して接合する。
This joining is performed, for example, by gas welding using a brazing method, and the joining is performed using a grid material.

ここで、上記ヘッダ仕切板10の挿入構造は上記ヘッダ
9の側面からスリット状に形成された貫通部13から挿
入して結合したものである。
Here, the insertion structure of the header partition plate 10 is such that the header partition plate 10 is inserted from the side surface of the header 9 through a through portion 13 formed in the shape of a slit, and then connected.

そして、このヘッダ仕切板10は上記伝熱管6側に近接
して設けられており、ヘッダ仕切板10の伝熱管6に近
接する第1流路11は、これと対面して位置する第2流
路12よりも流路容積が小さく形成されている。こうし
て設けられたヘッダ仕切板11には、上記複数の伝熱管
6のそれぞれの一方の端部が貫通して接合されており、
上記第2流路l2に開口されている。また、伝熱管6の
それぞれの他方の端部は上記第1流路11に開口されて
いる。そして、全ての伝熱管6は上記第1流路11と第
2流路12とにまたがる状態で接続されている。さらに
、上記第1流路11には上下方向のほぼ中間部に第1流
路仕切板14が設けられている。この第1流路仕切板1
4は円盤体を板厚方向に切断した状態に形成され、外周
縁部を第1流路11の内周面に沿って結合されており、
上記第1流路11を上下に2分割している。また、上記
第2流路12には第2流路仕切板15が設けられている
。この第2流路仕切板15は円盤体を板厚方向に切断し
た状態に形成され、外周縁部が第2流路12の内周面に
沿って結合されており、上記第2流路12を上下に2分
割している。
The header partition plate 10 is provided close to the heat transfer tube 6 side, and the first flow path 11 of the header partition plate 10 close to the heat transfer tube 6 is connected to the second flow path located facing thereto. The flow passage volume is formed smaller than that of the passage 12. One end of each of the plurality of heat exchanger tubes 6 passes through and is joined to the header partition plate 11 provided in this way,
It is opened to the second flow path l2. Further, the other end of each of the heat exchanger tubes 6 is opened to the first flow path 11 . All of the heat exchanger tubes 6 are connected so as to straddle the first flow path 11 and the second flow path 12. Further, the first flow path 11 is provided with a first flow path partition plate 14 approximately in the middle in the vertical direction. This first flow path partition plate 1
4 is formed by cutting a disc body in the thickness direction, and its outer peripheral edge is joined along the inner peripheral surface of the first flow path 11,
The first flow path 11 is divided into upper and lower halves. Further, the second flow path 12 is provided with a second flow path partition plate 15 . The second flow path partition plate 15 is formed by cutting a disc body in the thickness direction, and its outer peripheral edge is joined along the inner peripheral surface of the second flow path 12. is divided into two parts, top and bottom.

また、上記ヘッダ9には下側部に第1接続管16が接続
されている。この第1接続管16は上記ヘッダ9内に形
成された第2流路12の下側部に接合されている。また
、上記ヘッダ9には上側部に第2接続管17が接続され
ている。この第2接続管17は上記ヘツダ9内に形成さ
れた第1流路11の上側部に接合されている。なお、上
述した接合部分は例えばブレージング方式により溶接さ
れている。
Further, a first connecting pipe 16 is connected to the lower side of the header 9. This first connecting pipe 16 is joined to the lower part of the second flow path 12 formed in the header 9. Further, a second connecting pipe 17 is connected to the upper side of the header 9. This second connecting pipe 17 is joined to the upper side of the first flow path 11 formed in the header 9. Note that the above-mentioned joint portions are welded by, for example, a brazing method.

このように構成された熱交換器5は図示しない冷凍サイ
クル中に挿入接続されている。
The heat exchanger 5 configured in this manner is inserted and connected into a refrigeration cycle (not shown).

そして、上記ヘッダ9を設けたことにより、冷房時にお
いては以下に説明するように冷媒が流れる。まず、上記
第1接続管16から流入した冷媒は、第2の流路12の
下側に流れ込む。この流れ込んだ冷媒は、上記第2流路
仕切板15の下側面によって閉鎖されているので、下側
の2本の伝熱管6a,6bのそれぞれの他方の端部に流
入する。
By providing the header 9, the refrigerant flows during cooling as described below. First, the refrigerant flowing from the first connecting pipe 16 flows into the lower side of the second flow path 12 . Since the refrigerant that has flowed in is closed by the lower surface of the second flow path partition plate 15, it flows into the other end of each of the lower two heat exchanger tubes 6a, 6b.

これらの伝熱管6a,6bを通過した冷媒は一方の端部
から上記第2流路12の下側に流入する。
The refrigerant that has passed through these heat transfer tubes 6a and 6b flows into the lower side of the second flow path 12 from one end.

この第2流路12の下側に流入した冷媒は上記第1流路
仕切板14によって閉鎖されているため、さらに上部に
位置する伝熱管6c,6dの一方の端部から流入する。
Since the refrigerant that has flowed into the lower side of the second flow path 12 is closed by the first flow path partition plate 14, it flows further through one end of the heat exchanger tubes 6c and 6d located at the upper part.

そして、これらの伝熱管5c,6dを通過して他方の端
部から流出した冷媒は上記第2流路12の上部に流入す
る。この第2流路12に流入した冷媒は、さらに上方に
位置する伝熱管6e,6f,6gの一方の端部に流入す
る。
The refrigerant that has passed through these heat transfer tubes 5c and 6d and flowed out from the other end flows into the upper part of the second flow path 12. The refrigerant that has flowed into the second flow path 12 flows into one end of the heat exchanger tubes 6e, 6f, and 6g located further above.

そして、これら伝熱管5e,6f,6gを通過した冷媒
は他方の端部から上記第1流路11の上部に流出する。
The refrigerant that has passed through these heat transfer tubes 5e, 6f, and 6g flows out to the upper part of the first flow path 11 from the other end.

そして、最後に上記第2接続管17を通って熱交換器5
から吐出されるようになっている。
Finally, it passes through the second connecting pipe 17 to the heat exchanger 5.
It is designed to be discharged from

このように複数本の伝熱管6をU字形に折曲し、両端部
を1つのヘッダ9に接続して成立した熱交換器5とする
ことで、従来構造の特にサーペンタイン方式の熱交換器
に比較して、管内冷媒圧力損増加等の問題を低減して、
効率の高い熱交換器とすることができる。また、1つの
ヘッダ9の内部を第1流路11と第2流路12とに分割
することで、小型軽量化を実現できる。
By bending a plurality of heat transfer tubes 6 into a U-shape and connecting both ends to one header 9 to create a heat exchanger 5, it is possible to replace the conventional structure, especially a serpentine type heat exchanger. In comparison, problems such as increased refrigerant pressure drop in the pipes are reduced,
A highly efficient heat exchanger can be obtained. Further, by dividing the inside of one header 9 into the first flow path 11 and the second flow path 12, it is possible to realize a reduction in size and weight.

また、従来構造に見られる伝熱管端部を接続するベンド
が不要なので、製造工数を減少し、上記ブレージング方
式による溶接作業を低減し、溶接に使用するクラッドの
使用量を減少できる。この溶接箇所の減少により冷媒の
リークの発生危険性を極めて低いものにできる。さらに
、ヘツダ9を片側のみに設けることにより、伝熱管6の
熱交換面積を大きくとれるので、小型化を図ることがで
きる。
Furthermore, since there is no need for a bend to connect the ends of the heat exchanger tubes, which is seen in conventional structures, the number of manufacturing steps can be reduced, the welding work by the above-mentioned brazing method can be reduced, and the amount of cladding used for welding can be reduced. By reducing the number of welding points, the risk of refrigerant leakage can be extremely reduced. Furthermore, by providing the header 9 only on one side, the heat exchange area of the heat exchanger tube 6 can be increased, so that the size can be reduced.

以下、本発明における第2実施例を第5図乃至第7図を
参照して説明する。この第2実施例における熱交換器1
8の基本構成は、上記第1実施例で説明したものと同様
なので、要部についてのみ説明する。上記熱交換器18
に使用される伝熱管19は偏平形に形成されており、こ
の伝熱管1つの幅方向には中央付近を除く部分に複数の
管路20が形成されている。この管路20は伝熱管1つ
の長手方向に沿って形成されており、上記中央部付近に
は上下方向から凹部形状をなしてドレン構21が形戊さ
れている。このドレン溝21は上記伝熱管1つの長手方
向に沿って例えば連続的に形成されている。なお、この
ドレン溝21は長手方向に沿って形成されていれば所定
の効果を得ることができるので連続、不連続は何等限定
されない。
A second embodiment of the present invention will be described below with reference to FIGS. 5 to 7. Heat exchanger 1 in this second embodiment
The basic configuration of 8 is the same as that explained in the first embodiment, so only the main parts will be explained. The heat exchanger 18
The heat exchanger tube 19 used in the above is formed in a flat shape, and a plurality of conduits 20 are formed in the width direction of each heat exchanger tube except for the vicinity of the center. This conduit 20 is formed along the longitudinal direction of one heat transfer tube, and a drain structure 21 is formed in the vicinity of the central portion in the shape of a concave portion from above and below. This drain groove 21 is formed, for example, continuously along the longitudinal direction of one of the heat exchanger tubes. Note that the drain groove 21 is not limited to whether it is continuous or discontinuous since a predetermined effect can be obtained as long as it is formed along the longitudinal direction.

こうして、上下面にそれぞれ形成されたドレン満21の
ほぼ中央部に対応する底部には長手方向に延長された長
孔状の排水孔22が穿設されている。この排水孔22は
上記ドレン溝21の長手方向に沿って例えば複数穿設さ
れている。
In this way, an elongated drain hole 22 extending in the longitudinal direction is bored at the bottom corresponding to approximately the center of each drain hole 21 formed on the upper and lower surfaces. For example, a plurality of drainage holes 22 are formed along the longitudinal direction of the drain groove 21.

上述のように、ドレン溝21を形成し、このドレン溝2
1に排水孔22を穿設することで、熱交換に際してフィ
ン8等に凝縮し付着した水滴が流れ落ちた場合にドレン
溝21に流れ込み、排水孔22を通って落下する。これ
により従来構造では伝熱管19上に付着した水滴が通風
抵抗を低下させ、熱交換の効率を著しく低減し、実用化
できなかったが、このような問題を解決し、偏平形かつ
多孔形の伝熱管1つを使用した家庭用エアコン用の熱交
換器18を提供できる。なお、上記伝熱管]9の上下面
にそれぞれドレン溝21が形成されているが、これは製
造時に上下面の確認を不要とし作業効率を向上するため
である。
As described above, the drain groove 21 is formed, and this drain groove 2
1 is provided with a drain hole 22, so that when water droplets that condense and adhere to the fins 8 and the like during heat exchange flow down, they flow into the drain groove 21 and fall through the drain hole 22. As a result, in the conventional structure, water droplets adhering to the heat transfer tube 19 lowered the ventilation resistance, significantly reducing the efficiency of heat exchange, and making it impossible to put it into practical use. It is possible to provide a heat exchanger 18 for home air conditioners using one heat transfer tube. Note that drain grooves 21 are formed on the upper and lower surfaces of the heat exchanger tube] 9, respectively, in order to eliminate the need to check the upper and lower surfaces during manufacturing and improve work efficiency.

ここで、第2実施例に示した伝熱管19の構造は他の形
式の熱交換器に応用しても上述と同様の効果を得ること
ができる。
Here, even if the structure of the heat exchanger tube 19 shown in the second embodiment is applied to other types of heat exchangers, the same effects as described above can be obtained.

[発明の効果コ (1) Ijt数の伝熱管をU字形に折曲し、その両端
部を一方側に設けられたヘッダに接続した構造なので、
管内冷媒圧損増加等の問題を解決できる。
[Effects of the invention (1) The structure is such that the heat exchanger tube of Ijt number is bent into a U shape and both ends are connected to the header provided on one side.
This can solve problems such as increased refrigerant pressure loss within the pipes.

また、ヘッダを1つにしたことにより、伝熱管の熱交換
面積を大きくでき、小型軽量で、高効率を得ることがで
きる。上述のことから、偏平形かつ多孔形の伝熱管を用
いた熱交換器を家庭用エアコンに対して実用化できる。
Moreover, by using only one header, the heat exchange area of the heat exchanger tube can be increased, and the heat exchanger can be made small and lightweight, and high efficiency can be obtained. From the above, a heat exchanger using flat and porous heat transfer tubes can be put to practical use in home air conditioners.

(2〉偏平形かつ多孔形の伝熱管の少なくとも上面にド
レン溝を形成し、このドレン溝の底部に上下に貫通する
排水孔を穿設したことにより、運転時に凝縮した水滴が
上記ドレン溝に流れ込み排水孔を通して落下する。これ
により、水滴の付着による通風抵抗の増大を減少して、
偏平形かつ多孔形の伝熱管を使用した家庭用エアコン用
の熱交換器を実用化できる。また、通風抵抗の増大防止
により、小型軽量で高効率の熱交換器を提供できる。
(2) By forming a drain groove on at least the upper surface of the flat and porous heat exchanger tube, and by drilling a drainage hole that penetrates vertically at the bottom of this drain groove, water droplets condensed during operation can flow into the drain groove. The water flows down through the drainage holes.This reduces the increase in ventilation resistance caused by water droplets adhering to the water.
A heat exchanger for home air conditioners using flat and porous heat exchanger tubes can be put to practical use. Furthermore, by preventing an increase in ventilation resistance, a small, lightweight, and highly efficient heat exchanger can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は本発明における第1実施例であり、
第1図は熱交換器のヘッダのみを断面にして示す正断面
図、第2図は第1図中に示す■−■線部分の断面図、第
3図は熱交換器を破断面を存して示す斜視図、第4図は
伝熱管の構造を示す斜視図、第5図乃至第7図は本発明
における第2実施例であり、第5図は伝熱管の挿着状態
を断面を有して示す斜視図、第6図は伝熱管の平面図、
第7図は伝熱管の管路方向の断面図、第8図および第9
図は従来例であり、第8図は熱交換器の斜視図、第9図
は伝熱管の取り付け状態を断面を有して示す斜視図であ
る。 5・・・熱交換器、6・・・伝熱管、7・・・管路、8
・・・フィン、9・・・ヘッダ、10・・・ヘッダ仕切
板、11・・・第1流路、12・・・第2流路、14・
・・第1流路仕切板、15・・・第2流路仕切板、18
・・・熱交換器、1つ・・・伝熱管、20・・・管路、
21・・・ドレン溝、22・・・排水孔。
1 to 4 show a first embodiment of the present invention,
Figure 1 is a front cross-sectional view showing only the header of the heat exchanger, Figure 2 is a cross-sectional view of the section taken along the line ■-■ shown in Figure 1, and Figure 3 shows the fractured surface of the heat exchanger. 4 is a perspective view showing the structure of the heat exchanger tube, FIGS. 5 to 7 are a second embodiment of the present invention, and FIG. 5 is a cross-sectional view showing the inserted state of the heat exchanger tube. FIG. 6 is a plan view of the heat exchanger tube,
Figure 7 is a sectional view of the heat transfer tube in the pipe direction, Figures 8 and 9.
The figures show a conventional example; FIG. 8 is a perspective view of a heat exchanger, and FIG. 9 is a cross-sectional perspective view showing how heat exchanger tubes are attached. 5... Heat exchanger, 6... Heat exchanger tube, 7... Pipe line, 8
...Fin, 9...Header, 10...Header partition plate, 11...First flow path, 12...Second flow path, 14.
...First flow path partition plate, 15...Second flow path partition plate, 18
... Heat exchanger, 1 ... Heat exchanger tube, 20 ... Pipe line,
21...Drain groove, 22...Drain hole.

Claims (2)

【特許請求の範囲】[Claims] (1)冷媒が通過する複数の管路が幅方向に沿って形成
された偏平形の伝熱管と、この伝熱管に熱的に接するフ
ィンとを具備してなる熱交換器において、上記伝熱管を
複数本設け、これら伝熱管をそれぞれU字形に折曲し、
かつ、端部を一方側に向けて層状に配列し、これら伝熱
管の端部が配列された上記一方側に筒状のヘッダを設け
、このヘッダの内部にヘッダ仕切板を設け軸心方向に沿
って第1流路および第2流路を併設し、上記伝熱管の一
方の端部を第1流路に接続し、また、伝熱管の他方の端
部を第2流路に接続し、上記第1流路と第2流路のそれ
ぞれの軸心方向の中途部にあって冷媒を上記ヘッダの一
端から他端に向けて各伝熱管を通過しながら流れる状態
に仕切る流路仕切板を設けたことを特徴とする熱交換器
(1) In a heat exchanger comprising a flat heat transfer tube in which a plurality of conduits through which a refrigerant passes are formed along the width direction, and fins that are in thermal contact with the heat transfer tube, the heat transfer tube A plurality of heat transfer tubes are provided, each of which is bent into a U-shape,
The heat transfer tubes are arranged in a layered manner with their ends facing one side, a cylindrical header is provided on the one side where the ends of the heat transfer tubes are arranged, and a header partition plate is provided inside this header so that the ends thereof are arranged in a layered manner. A first flow path and a second flow path are provided along the line, one end of the heat transfer tube is connected to the first flow path, and the other end of the heat transfer tube is connected to the second flow path, A flow path partition plate is provided in the middle of each of the first flow path and the second flow path in the axial direction and partitions the refrigerant so that it flows from one end of the header to the other end while passing through each heat transfer tube. A heat exchanger characterized by:
(2)冷媒が通過する複数の管路が幅方向に沿って形成
された偏平形の伝熱管と、この伝熱管に熱的に接するフ
ィンとを具備してなる熱交換器において、上記伝熱管の
少なくとも上面の幅方向中途部に長手方向に沿って形成
されたドレン溝を形成し、このドレン溝の底部の一部に
は上下、方向に貫通する排水孔を穿設したことを特徴と
する熱交換器。
(2) In a heat exchanger comprising a flat heat transfer tube in which a plurality of pipes through which a refrigerant passes are formed along the width direction, and fins that are in thermal contact with the heat transfer tube, the heat transfer tube A drain groove is formed along the longitudinal direction at least halfway in the width direction of the upper surface of the drain groove, and a drainage hole is formed in a part of the bottom of the drain groove to penetrate vertically and in the direction. Heat exchanger.
JP23342489A 1989-09-08 1989-09-08 Heat exchanger Pending JPH0399193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23342489A JPH0399193A (en) 1989-09-08 1989-09-08 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23342489A JPH0399193A (en) 1989-09-08 1989-09-08 Heat exchanger

Publications (1)

Publication Number Publication Date
JPH0399193A true JPH0399193A (en) 1991-04-24

Family

ID=16954841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23342489A Pending JPH0399193A (en) 1989-09-08 1989-09-08 Heat exchanger

Country Status (1)

Country Link
JP (1) JPH0399193A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5299635A (en) * 1993-03-05 1994-04-05 Wynn's Climate Systems, Inc. Parallel flow condenser baffle
FR2754886A1 (en) * 1996-10-23 1998-04-24 Valeo Thermique Moteur Sa Serpentine tube condenser for motor-vehicle air conditioning system
FR2756370A1 (en) * 1996-11-25 1998-05-29 Valeo Thermique Moteur Sa Condenser for automobile cooling circuit
EP1231448A2 (en) * 2001-02-07 2002-08-14 Modine Manufacturing Company Heat exchanger
WO2010003938A1 (en) * 2008-07-07 2010-01-14 Arcelik Anonim Sirketi An evaporator
WO2016036726A1 (en) * 2014-09-05 2016-03-10 Carrier Corporation Multiport extruded heat exchanger
WO2017130975A1 (en) * 2016-01-29 2017-08-03 ダイキン工業株式会社 Heat exchanger
FR3111417A1 (en) 2020-06-11 2021-12-17 Calopor Refrigeration unit with one-piece static heat removal device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5299635A (en) * 1993-03-05 1994-04-05 Wynn's Climate Systems, Inc. Parallel flow condenser baffle
FR2754886A1 (en) * 1996-10-23 1998-04-24 Valeo Thermique Moteur Sa Serpentine tube condenser for motor-vehicle air conditioning system
FR2756370A1 (en) * 1996-11-25 1998-05-29 Valeo Thermique Moteur Sa Condenser for automobile cooling circuit
US6964296B2 (en) 2001-02-07 2005-11-15 Modine Manufacturing Company Heat exchanger
KR20020065840A (en) * 2001-02-07 2002-08-14 모다인 매뉴팩츄어링 컴파니 Heat exchanger
EP1231448A3 (en) * 2001-02-07 2004-02-11 Modine Manufacturing Company Heat exchanger
EP1231448A2 (en) * 2001-02-07 2002-08-14 Modine Manufacturing Company Heat exchanger
WO2010003938A1 (en) * 2008-07-07 2010-01-14 Arcelik Anonim Sirketi An evaporator
WO2016036726A1 (en) * 2014-09-05 2016-03-10 Carrier Corporation Multiport extruded heat exchanger
US10514204B2 (en) 2014-09-05 2019-12-24 Carrier Corporation Multiport extruded heat exchanger
WO2017130975A1 (en) * 2016-01-29 2017-08-03 ダイキン工業株式会社 Heat exchanger
JP2017133815A (en) * 2016-01-29 2017-08-03 ダイキン工業株式会社 Heat exchanger
CN108603726A (en) * 2016-01-29 2018-09-28 大金工业株式会社 Heat exchanger
FR3111417A1 (en) 2020-06-11 2021-12-17 Calopor Refrigeration unit with one-piece static heat removal device

Similar Documents

Publication Publication Date Title
JP3814917B2 (en) Stacked evaporator
JP3945208B2 (en) Heat exchange tubes and heat exchangers
JP6011009B2 (en) Heat exchanger and air conditioner
JP4122578B2 (en) Heat exchanger
US7044205B2 (en) Layered heat exchangers
CA2334705C (en) Heat exchanger with relatively flat fluid conduits
JP2000154993A (en) Heat exchanger
JP2000346584A (en) Heat exchanger
JPH0399193A (en) Heat exchanger
JPH0814702A (en) Laminate type evaporator
WO2009110663A1 (en) Heat exchanger and method of manufacturing the same
JP7086264B2 (en) Heat exchanger, outdoor unit, and refrigeration cycle device
JP2990947B2 (en) Refrigerant condenser
JPH05322467A (en) Heat exchanger
JPH09189498A (en) Header with thermal medium flow dividing promotion mechanism and its forming method
JP3974406B2 (en) Heat exchanger
JP2006162141A (en) Heat exchanger
JP7485993B1 (en) Heat exchanger
JPH02247498A (en) Heat exchanger
KR101336346B1 (en) Refrigerant system
JPH1082594A (en) Plate type heat exchanger and absorption cooling-heating apparatus using the same
JPH01291098A (en) Mounting device for outlet pipe and inlet pipe in heat exchanger
KR101081968B1 (en) Heat exchanger
KR200359804Y1 (en) Baffle fixing structure of heat exchanger
KR101357938B1 (en) Refrigerant system