JPH0398596A - Monoclonal antibody - Google Patents

Monoclonal antibody

Info

Publication number
JPH0398596A
JPH0398596A JP23508589A JP23508589A JPH0398596A JP H0398596 A JPH0398596 A JP H0398596A JP 23508589 A JP23508589 A JP 23508589A JP 23508589 A JP23508589 A JP 23508589A JP H0398596 A JPH0398596 A JP H0398596A
Authority
JP
Japan
Prior art keywords
strain
iia
ppi
antibody
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23508589A
Other languages
Japanese (ja)
Inventor
Yasuo Aizono
相薗 泰生
Teruo Iwasaki
照雄 岩崎
Hiroaki Wakamoto
裕晶 若本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP23508589A priority Critical patent/JPH0398596A/en
Publication of JPH0398596A publication Critical patent/JPH0398596A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PURPOSE:To make obtain an antibody useful for investigation of inhibitor by culturing strain obtained from specific cell-fused substance with screening hybridoma producing specific antibody against PPI-IIa. CONSTITUTION:A cell-fused substance (A) is obtained by cell fusion of splenic cell of mouse BALB/C immunized with potato serine protease inhibitor IIa (PPI-IIa) having amino acid sequence expressed by the formula and mouse myeloma cell P3U1 with polyethylene glycol 4000. Next, the A-component is subjected to screening and cloning to obtain I-IIA strain (B) and 1-6D strain (C) as hybridomas producing specific antibodies against PPI-IIa. Then, the A and B strains are respectively cultured to produce monoclonal antibody IgM from A strain and monoclonal antibody IgG1 from B strain.

Description

【発明の詳細な説明】 [I1!業上の利用分野〕 本発明は、モノクローナル抗体に関する.更に詳しくは
、ポテトセリンプロテアーゼインヒビターの分子構造と
機能の研究に有用なモノクローナル抗体に関する. [従来の技術とその問題点] 一般に、モノクローナル抗体は、各種の抗原抗体反応の
測定に利用され、特定の蛋白貢等の抗原抗体反応の機構
を検討するために有用であることは周知である. しかし、特定の抗原抗体反応の機構の検討に有用なモノ
クローナル抗体は、該反応に対する抗体として機能しな
ければならないので、かかる抗体は、特定の蛋白質等の
目的とする抗原抗体反応に適合するように遺伝子工学の
方法等を用いて個々に生合戊しなければならない.そし
て該生合成の手段も個々に異る. 本発明者等は、ポテトセリンプロテアーゼインヒビター
(PPI−IIa)の分子構造と機能の研究を行ってい
るが、この研究に抗原抗体反応を利用することが、該イ
ンヒビターの高次構造を解明する上で必要と考えられた
. そこで、体内免疫法で免疫したBALB/CマウスのM
細胞と主エローマ細胞(P3U1)を5:1の比で融合
させて得られたパイプリドーマから、特異抗体産生細胞
をスクリーニングすることにより、2種類の作成抗体1
−80 ( IgG+)と1−11^(IgM)を得た
.そして、該抗体がいづれも, PPT−IIaから調
製された^ctlve Fragmentと抗原抗体反
応をする一方、還元CM化および還元アセトアよド化さ
れたPPI−IIaとは反応しないことを知見して、本
発明を完成した. 抗原抗体反応についての以上の事実は、^etIveF
rag嘗ent内に存在する抗原決定部位にとって鎮内
S−S結合によって保持されている高次構造が11J!
であることを示唆するものである.以上の記述から明ら
かなように、本発明の目的は、ポテトセリンインブロテ
アーゼヒビターの研究に有用なモノクローナル抗体およ
びその製造法を提供することである. [問題点を解決するための手段] 本発明は、下記(1)の構成を有する.(1)ポテトセ
リンプロテアーゼインヒビターII a (PPI− 
II a)で免疫しkマウス8^LB/Cの牌細胞とマ
ウスミローマ細QP3Ulをポリエチレングリコール4
000を用いて細胞融合させ、該融合物をPPI−Ha
に対する特異抗体産生ハイブリドーマでスクリーニング
し、および限界希釈法によるクローニングを行って 1
−11A株および1−8D株を取得し、該1−11^株
に産生せしめてなるモノクローナル抗体LgMおよび該
1−6D株に産生せしめてなるモノクローナル抗体13
G., 本発明の構成と効果につき以下に詳述する.l.モノク
ローナル抗体の作製 ■ポテトセリンプロテアーゼインヒビターII a(P
PI−11 a)によるBALB/Cマウスの免疫:P
PIila抗原溶液(SOOμg/ IJLof Du
lbecco−PBS) 200μllとFreund
’s Complete AJuvant 200μぶ
を混合乳化させ、マウス( BALB/C.雌.8週令
)の腹腔内に注射した. 2週間後、同じ操作で追加免疫を行った.さらに2週間
後に 100μ角の抗原溶液のみを腹腔内に注射した.
その3日後に牌臓を摘出して牌細胞を調製した. ■牌m胞とマウス由来ミエローマm胞とのm胞融合; 対数増殖期にあるマウスミエローマm胞(P3U1)2
 x 10’ cellsと上記調製牌細胞10X 1
0’ cellg−細胞比l/5−を47%Polye
thyler+eglycol 40004.7% 0
1methylsulfoxlde/rscove M
odlfldeDulbecco Medlu+sを用
いて融合させた.■ハイブリドーマの培養と特異抗体産
生ハイブリドーマのクローニング: 融合細胞を}IAT−IMDM (Hypoxanth
Ine−amlmoptarIn−Jhymfdlne
−Iscove  ModlfIed  Dulbec
co  Med1um( amlnopterlnを除
外した培地)で4〜5日間培養した.培養上清について
 ELrSA法により抗体陽性細胞を選択し、限界希釈
法によるクローニングを行った. この結果をまとめて表1、表2に示す.表1 細胞融合
および抗体産生パイブリドーマの培養 −10%FCS)で7日間培養し,さらにHT−IMD
kl表2.抗体産生パイプリドーマのクローニング5−
8A株よりクローニングされた抗体産生株111^5−
IF株よりクローニングされた抗体産生株1−6D( 
)特異抗体産生ウエル数 注)複数コロニー生成ウエルは 存在しなかった. +1 .作製モノクローナル抗体の性質■モノクローナ
ル抗体の調製: ポテトセリンプロテアーゼインヒビターII aに対す
る抗体を産生ずるモノクローンハイブリドーv  (1
−6D株,1−11^株)を!0%FCS−IMDMで
培養して上清を得た.ついで、硫安1/2飽和で抗体を
分別沈殿させ、以下実験に供した. ■モノクローナル抗体のクラス、サブクラスの同定: ウサギー抗マウスIgG+. IgG2a, IgGz
b. IgGs(ZYMED社)およびヤギー抗マウス
IgM CMILES社)を用い、 ELISA法によ
り、上記2株の産生ずるモノクローナル抗体の同定を行
った.その結果第1図に示すように, !−8D株と 
1−11A株の彦生ずる抗体は各々IgG.とIgMと
同定された. ■モノクローナル抗体の抗原特異性: 1−60株と 1−11^株の彦生ずる抗体の力価を評
価したところ、1−60株の抗体は、第2図に示すよう
に約2550倍希釈上清で、抗体飽和率60%を与える
ことが明らかになった.これに対し、1−11A株の抗
体は250倍希釈で同じ60%の値を与えた.従って力
価の高かった1−6D株の産生ずる抗体について、以下
の実験を行うことにした. +11.−E−ノクローナル抗体(1−6D)に対する
PPI−■aの抗原決定部位 ■I−6D株の産生ずるモノクローナル抗体(1−60
−Mab)に対する^ctlve Fragmentの
抗原特異性:PPI−IIaの抗原決定部位に関与する
アミノ酸残基を含むベプチドを分離する前段階として,
 PPI−IIa(構成アミノ酸残基数97)より調製
したインヒビター活性をもつ^ctive Fragm
ent(構成アミノ酸残基数45)の抗原特異性を検討
し、第3図に示す結果を得た. ^ctivs Fragment(ア≧ノ酸配列は後述
)が、PPI−IIaと1−6D−Mabの抗原抗体反
応を完全に阻害したことから、このFrag璽entに
抗原決定部位が存在することが明示された. ■抗原決定部位を構成するアミノ酸残基を含むベブチド
の分離絹製: PPT−Haは分子内に6ヶのジスルフィド結合を有し
ているので、多数のループ断片から構成されていると考
えられる.従って、ループ断片そのものを分子より分割
させ、抗原活性を示すループ断片を分離精製することを
試みた. (a) PPI−Tl aのジスルフィド結合の還元開
裂とこれに次ぐ、2−Nitro−S−thlocya
nobanxoate (NTCB)によるシスティン
残基のアミノ基側ベブチド結合の切断 PPI−IIaを6N塩酸グアニジン−0.2M Tr
is−HCI,pH 8.0中でジチオスレイトール処
理することにより、分子内ジスルフィド結合を還元開裂
させた.次いで、生じたシスティン残基をNTC8で修
飾するとともに、そのアミノ基側のベブチド結合を切断
した.ついで反応混液を50%酢酸を用いたSepha
dex G−1sカラムによるゲル濾過に供し、過剰の
試薬を除去した.ペブチド画分を次の実験に供した. (b)逆相系カラムを用いた高速液体クロマトグラフィ
ー(HPLC)によるベブチドの分離精製上記ベブチド
画分をCla−7−005−}1カラム(4.6x 2
SOIIs)を用いたHPLCに供与し、第4図に示す
溶液パターンを得た. なお、分離されたNTCB−1〜NTCB−7の各ピー
クの抗原活性は、各々のピークに含まれるペプチドを固
相に吸着させたのち、1−60−Mabを結合させEL
ISA法によって測定した.二次抗体に結合させたHo
rseradlsh − Peroxldaseの酵素
活性の測定値を第4図中の各溶出ピーク名の後に記した
.同じ条件で測定したPPI−IIaおよびNTCB処
理PPIila分割混合ペプチドの活性は、それぞれO
、43と0.13であった. ■抗原活性を有すベブチドのアミノ酸組成:抗原活性の
高かったN丁CB−3, NTCB−4, NTCB−
5(いづれも第4図中に陰をほどこしたピーク)につい
て、そのアミノ酸組成分析を行った.その結果を第3表
に、PPIIIaのアくノ酸配列上相同な部位のアミノ
酸組成とともに示す. 第3表 HPLC生成ベブチドのアミノ酸組成注、*(
)内数は理論値を示す. +17CB−3とN丁CB−4のアミノ酸組成はPPI
−IIgのアミノ酸配列(第5図)上の57−97に近
似していた.またNTCB−5は、反応部位Lys”−
Ser”を含む57−87に一致していた. 以上の結果、1−60−Mabによって認識される抗原
決定部位を構成する主要アミノ酸残基は、セリンブロテ
アーゼに対する反応部位(第5図中O印で囲んだ−Ly
s−Ser)を含んだ(ys87〜(ys86の間のル
ープに存在することが明らかになった.■抗原決定部位
構成主要アミノ酸残基がPPI−1faの−(Hys8
7〜Cys■一間のループに存在していることの間接的
証拠: HPLCで分踵されたN丁CB−5ベプチドに抗原活性
が認められたことから、−(ys!7〜Cys68−の
間のループに抗原決定部位を構成する主要なアミノ酸残
基が存在していることが直接証明された.ここでは, 
PPT−■aとアミノ酸配列において相同性の高いPP
I−11bの抗原活性を比較することによって、抗原決
定部位を構成しているアミノ酸残基を明らかにすること
を試みた. その結果第6図に示すように、固相吸着PP■−II 
mと1−60−Mabの抗原抗体反応に対するPPI−
11bによる拮抗阻害は全く認められなかった.このこ
とからアミノ酸配列上相同性が高いにも拘らず、PPI
−11bには、このモノクローナル抗体に対する抗原決
定部位は存在しないことが明らかになった. 1−6D−MabはPPI−IIaの^ctiva F
ragmentを抗原として認識し、また^ctlve
 Fragment分子由来のNTCB−5ベブチドを
も認識することは既に記述したとおりである.いま、ア
ミノ酸配列が決定されているPPI−IIaの^ctl
va Frag+aentとPPI−11bの^ctl
ve Fragm@nt(共に第7図に示す)を比較す
ると、PPI−IIa^.F.に抗原活性があり、PP
I−11b^,F.に抗原活性がなかったことから、0
で囲んだ相同のア暑ノ酸残基は抗原決定部位に関与して
いす、ロで囲んだ相異アミノm残基のみが関与している
ことが推測された.また、一Cyss7〜Cys@B一
のループに限って、その相同性を比較すると下に示すよ
うに、反応部位を含む−Tyr−Lys−Ser−は相
同であることから、PPI−IIa^.F,のアミノ酸
配列のうち、^sp”−Set” (Hexapept
lde)のアミノ酸側鎮が、抗原一抗体反応にとってI
i要であることが示唆された. Reactive site ^ [効果] ・ポテトセリンプロテアーゼインヒビターII a(P
PI−IIa)で免疫したマウスBALB/Cの牌細胞
とマウスミエローマ細胞P3111を Polyeth
yleneglyco1 4000を用いて細胞融合さ
せた.ついで、PPI−IIaに対する特異抗体産生八
イプリドーマのスクリーニングと限界希釈法によるクロ
ーニングを行い、 1−11A株と1−6D株を得た.
1−11A株および1−6D株の産生ずるモノクローナ
ル抗体は、各々 IgMとIgG,であった.また、1
−60株の培養上清の抗体力値は1−11^の約lθ倍
であった. ・1−80株の産生ずるモノクローナル抗体( 1−6
D−Mab)は、PPI−IIa  (構成アミノ酸残
基97)とPPI−IIa由来の^btlve Fra
gment  (構成アミノ残基45)と共に認識し抗
原一抗体反応した.このことから抗原決定部位は^bt
1va Fragment内に存在することが示された
. ・抗原活性を保持するベブイチドを得るため、PPI−
IIaのジスルフィド結合を還元開裂させたのち、2−
nItro−Sthlocyanobenxoate 
(NTII:B)によりシステイン残基のアミノ基側の
ベブチド結合を切断した.ついで、C,,−7−005
−}1カラムを用いた逆相HPLCにより、抗原活性を
保持した3つのべブチド( NTCB−3、NTCB−
4、NTCB−5 )を分離した.・分離したべブチド
のうちNTCB−5は、そのアミノ酸組戒から、^bt
ive Fragment  (Sers4−^r18
)内のCys”−Val”に相当するベブチドであるこ
とが明らかとなった. NTCB−3とNTCB−4は
互にア主ノ酸組成が近似していて、いづれもPPI−I
Ia (^la’−^1a9?)のうち、NTCB−5
ベブチドも含んだベブチドCys”−八1a4?である
ことが推定された.後者の2つのべブチドは、NTCB
による切断が不充分な結果生じたべブチドであることが
推測された.・PPI−11 a由来の^bt1ve 
Fragment  (抗原活性有り)とPPI−11
b由来の^btlve Fragment  (抗原活
性無し)のアミノ酸配列の比較から、−(ySS?〜C
ys11M一間のループを形成しているアミノ酸残基の
うち、特に^ps”−Thr−^sn−IIs−^1a
−Sar”のHexapeptldaの側鏡が抗原決定
部位の構成に主要であることが示唆された.
[Detailed Description of the Invention] [I1! Field of Industrial Use] The present invention relates to monoclonal antibodies. More specifically, it relates to a monoclonal antibody useful for studying the molecular structure and function of potato serine protease inhibitor. [Prior art and its problems] Monoclonal antibodies are generally used to measure various antigen-antibody reactions, and it is well known that they are useful for studying the mechanism of antigen-antibody reactions such as those caused by specific proteins. .. However, monoclonal antibodies useful for studying the mechanism of a specific antigen-antibody reaction must function as antibodies against that reaction, so such antibodies must be compatible with the target antigen-antibody reaction of a specific protein, etc. They must be synthesized individually using methods such as genetic engineering. The means of biosynthesis also differ among individuals. The present inventors are conducting research on the molecular structure and function of potato serine protease inhibitor (PPI-IIa), and the use of antigen-antibody reactions in this research will help elucidate the higher-order structure of the inhibitor. It was considered necessary. Therefore, the M
By screening for specific antibody-producing cells from pipulidoma obtained by fusing cells and main eloma cells (P3U1) at a ratio of 5:1, two types of antibodies 1 were generated.
-80 (IgG+) and 1-11^ (IgM) were obtained. Then, they discovered that while all of these antibodies had an antigen-antibody reaction with the ^ctlve fragment prepared from PPT-IIa, they did not react with PPI-IIa that had been reduced to CM and reduced to acetate. The invention has been completed. The above facts about antigen-antibody reactions are
For the antigen-determining site present in the rag ent, the higher-order structure maintained by the internal S-S bond is 11J!
This suggests that. As is clear from the above description, an object of the present invention is to provide a monoclonal antibody useful for research on potato serine inbrotease inhibitors and a method for producing the same. [Means for solving the problems] The present invention has the following configuration (1). (1) Potato serine protease inhibitor II a (PPI-
II a) immunized with mouse 8^LB/C tile cells and mouse myoma fine QP3U1 in polyethylene glycol 4.
000 for cell fusion, and the fusion was transformed into PPI-Ha
1 by screening with hybridomas producing specific antibodies against the target and cloning by limiting dilution method.
-11A strain and 1-8D strain were obtained, and monoclonal antibody LgM produced by the 1-11^ strain and monoclonal antibody 13 produced by the 1-6D strain
G. The structure and effects of the present invention are detailed below. l. Preparation of monoclonal antibody ■ Potato serine protease inhibitor II a (P
Immunization of BALB/C mice with PI-11 a): P
PIila antigen solution (SOOμg/IJLof Du
lbecco-PBS) 200 μl and Freund
200 μl of ''s Complete AJuvant was mixed and emulsified and injected intraperitoneally into mice (BALB/C, female, 8 weeks old). Two weeks later, a booster immunization was performed using the same procedure. Two weeks later, a 100μ square antigen solution was injected intraperitoneally.
Three days later, the spleen was removed and spleen cells were prepared. ■M-cell fusion of tile M-cell and mouse-derived myeloma M-cell; Mouse myeloma M-cell (P3U1) 2 in logarithmic growth phase
x 10' cells and the above prepared tile cells 10x 1
0' cellg-cell ratio l/5-47%Polye
tyler+eglycol 40004.7% 0
1methylsulfoxlde/rscove M
The fusion was performed using Dulbecco Medlu+s. ■Culture of hybridomas and cloning of specific antibody-producing hybridomas: IAT-IMDM (Hypoxanth
Ine-amlmoptarIn-Jhymfdlne
-Iscove ModlfIed Dulbec
The cells were cultured in coMed1um (medium excluding amlnopterln) for 4 to 5 days. Regarding the culture supernatant, antibody-positive cells were selected by the ELrSA method and cloned by the limiting dilution method. The results are summarized in Tables 1 and 2. Table 1 Culture of cell fusion and antibody-producing hybridomas (10% FCS) for 7 days, and further HT-IMD
kl table 2. Cloning of antibody-producing piglidoma 5-
Antibody-producing strain 111^5- cloned from 8A strain
Antibody-producing strain 1-6D cloned from IF strain (
) Number of wells producing specific antibodies Note) There were no wells producing multiple colonies. +1. Properties of monoclonal antibodies produced ■ Preparation of monoclonal antibodies: Monoclonal hybrid v (1) that produces antibodies against potato serine protease inhibitor II a
-6D stock, 1-11^ stock)! The supernatant was obtained by culturing in 0% FCS-IMDM. The antibody was then precipitated fractionally with 1/2 saturation of ammonium sulfate and used in the following experiments. ■Identification of monoclonal antibody class and subclass: Rabbit anti-mouse IgG+. IgG2a, IgGz
b. The monoclonal antibodies produced by the above two strains were identified by ELISA using IgGs (ZYMED) and goat anti-mouse IgM (CMILES). As shown in Figure 1, the result is ! -8D strain and
The antibodies produced by Hikou 1-11A strain are each IgG. It was identified as IgM. ■Antigen specificity of monoclonal antibodies: When we evaluated the titer of Hiko-generated antibodies for the 1-60 strain and 1-11^ strain, we found that the antibody for the 1-60 strain was diluted approximately 2550-fold as shown in Figure 2. It was revealed that the antibody saturation rate was 60%. In contrast, the antibody of the 1-11A strain gave the same value of 60% at 250-fold dilution. Therefore, we decided to conduct the following experiment using the antibody produced by the 1-6D strain, which had a high titer. +11. -Antigen-determining site of PPI-a against E-noclonal antibody (1-6D) - Monoclonal antibody (1-60 produced by I-6D strain)
Antigen specificity of ^ctlve Fragment for -Mab): As a preliminary step to isolate peptides containing amino acid residues involved in the antigen-determining site of PPI-IIa,
Active Fragm with inhibitor activity prepared from PPI-IIa (number of constituent amino acid residues: 97)
The antigen specificity of ENT (constituting 45 amino acid residues) was investigated, and the results shown in FIG. 3 were obtained. Since the ^ctivs Fragment (the amino acid sequence will be described later) completely inhibited the antigen-antibody reaction between PPI-IIa and 1-6D-Mab, it was clearly demonstrated that an antigen-determining site exists in this Fragent. Ta. ■ Separation of bebutide containing amino acid residues constituting the antigen-determining site made of silk: PPT-Ha has six disulfide bonds in its molecule, so it is thought to be composed of many loop fragments. Therefore, we attempted to separate and purify loop fragments that exhibit antigenic activity by dividing the loop fragments themselves from molecules. (a) Reductive cleavage of the disulfide bond of PPI-Tla followed by 2-Nitro-S-thlocya
Cleavage of the bebutide bond on the amino group side of the cysteine residue using nobanxoate (NTCB)
The intramolecular disulfide bond was reductively cleaved by treatment with dithiothreitol in is-HCI, pH 8.0. Next, the resulting cysteine residue was modified with NTC8, and the bebutide bond on the amino group side was cleaved. The reaction mixture was then purified with Sepha using 50% acetic acid.
The sample was subjected to gel filtration using a dex G-1s column to remove excess reagent. The peptide fraction was used in the following experiment. (b) Separation and purification of bebutide by high performance liquid chromatography (HPLC) using a reverse phase column.
SOIIs) was applied to HPLC to obtain the solution pattern shown in Figure 4. The antigen activity of each peak of separated NTCB-1 to NTCB-7 can be determined by adsorbing the peptides contained in each peak onto a solid phase, then binding 1-60-Mab to EL.
Measured by ISA method. Ho conjugated to secondary antibody
Measured values of the enzymatic activity of rseradlsh-Peroxldase are shown after each elution peak name in FIG. The activities of PPI-IIa and NTCB-treated PPIila split mixed peptides measured under the same conditions were respectively O
, 43 and 0.13. ■Amino acid composition of bebutide with antigenic activity: NchoCB-3, NTCB-4, and NTCB- had high antigenic activity.
5 (all peaks shaded in Figure 4) were analyzed for their amino acid composition. The results are shown in Table 3 along with the amino acid composition of homologous sites in the acetonic acid sequence of PPIIIa. Table 3 Amino acid composition of HPLC-generated bebutide Note, *(
) The numbers in ) indicate theoretical values. The amino acid composition of +17CB-3 and NchoCB-4 is PPI
It was similar to 57-97 in the amino acid sequence of -IIg (Figure 5). In addition, NTCB-5 has a reactive site Lys”-
57-87 containing "Ser". As a result, the main amino acid residues constituting the antigen-determining site recognized by 1-60-Mab are the reactive site for serine protease (O -Ly circled with a mark
It was revealed that the main amino acid residues constituting the antigen-determining site are present in the loop between (ys87 and (ys86) containing -(Hys8) of PPI-1fa.
Indirect evidence that CB-5 peptide exists in the loop between -(ys!7 and Cys68-): Antigenic activity was observed in the HPLC separated N-Cys CB-5 peptide. It was directly demonstrated that the main amino acid residues constituting the antigen-determining site are present in the intervening loop.
PP with high homology in amino acid sequence to PPT-■a
By comparing the antigenic activities of I-11b, we attempted to clarify the amino acid residues that constitute the antigen-determining site. As a result, as shown in Fig. 6, solid phase adsorption PP■-II
PPI- on the antigen-antibody reaction of m and 1-60-Mab
No competitive inhibition by 11b was observed. This shows that despite the high amino acid sequence homology, PPI
It was revealed that -11b does not have an antigen-determining site for this monoclonal antibody. 1-6D-Mab is PPI-IIa ^ctiva F
ragment as an antigen, and also ^ctlve
As already described, it also recognizes NTCB-5 bebutide derived from Fragment molecules. The amino acid sequence of PPI-IIa has now been determined.
va Frag+aent and PPI-11b ^ctl
ve Fragm@nt (both shown in FIG. 7), PPI-IIa^. F. has antigenic activity and PP
I-11b^, F. Since there was no antigenic activity in
It was inferred that the homologous amino acid residues surrounded by squares are involved in the antigen-determining site, and only the different amino acid residues circled in squares are involved. In addition, when comparing the homology of only one Cyss7 to Cys@B loop, as shown below, the -Tyr-Lys-Ser- containing the reaction site is homologous, so PPI-IIa^. Among the amino acid sequences of F, ^sp”-Set” (Hexapept
The amino acid flanker of Ide) is important for the antigen-antibody reaction.
It was suggested that this is important. Reactive site ^ [Effect] ・Potato serine protease inhibitor II a (P
Polyeth
Cell fusion was performed using ylene glycol 4000. Subsequently, eight pridomas producing specific antibodies against PPI-IIa were screened and cloned by limiting dilution method to obtain strains 1-11A and 1-6D.
The monoclonal antibodies produced by the 1-11A strain and 1-6D strain were IgM and IgG, respectively. Also, 1
The antibody titer value of the culture supernatant of strain -60 was approximately lθ times that of 1-11^.・Monoclonal antibody produced by strain 1-80 (1-6
D-Mab) consists of PPI-IIa (constituent amino acid residue 97) and PPI-IIa-derived^btlve Fra
gment (constituent amino acid residue 45) and caused an antigen-antibody reaction. From this, the antigen-determining site is ^bt
1va Fragment.・To obtain Bebuitide that retains antigenic activity, PPI-
After reductive cleavage of the disulfide bond of IIa, 2-
nItro-Sthlocyanobenxoate
(NTII:B) was used to cleave the bebutide bond on the amino group side of the cysteine residue. Then, C,, -7-005
-}1 column, three peptides (NTCB-3, NTCB-
4, NTCB-5) was isolated.・Among the isolated bebutides, NTCB-5 is ^bt due to its amino acid composition.
ive Fragment (Sers4-^r18
) was found to be a bebutide corresponding to Cys"-Val". NTCB-3 and NTCB-4 have similar main amino acid compositions, and both are PPI-I.
Of Ia (^la'-^1a9?), NTCB-5
The latter two bebutides were estimated to be Cys”-81a4?, which also contains bebutide.
It was speculated that the bebutide was generated as a result of insufficient cleavage by・^bt1ve derived from PPI-11a
Fragment (with antigenic activity) and PPI-11
From the comparison of the amino acid sequences of the ^btlve Fragment (no antigenic activity) derived from B, -(ySS?~C
Among the amino acid residues forming the loop between ys11M, especially ^ps”-Thr-^sn-IIs-^1a
It was suggested that the Hexapeptlda side mirror of "-Sar" is important in the configuration of the antigen-determining site.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜7図は、本発明のモノクローナル抗体の調製工程
または物性を説明するための説明図である.
1 to 7 are explanatory diagrams for explaining the preparation process and physical properties of the monoclonal antibody of the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)ポテトセリンプロテアーゼインヒビターIIa(P
P I −IIa)で免疫したマウスBALB/Cの■細胞
とマウスミローマ細胞P3U1をポリエチレングリコー
ル4000を用いて細胞融合させ、該融合物をPP I
−IIaに対する特異抗体産生ハイブリドーマでスクリー
ニングし、および限界希釈法によるクローニングを行っ
て I −11A株および I −6D株を取得し、該 I −
11A株に産生せしめてなるモノクローナル抗体1gM
および該 I −6D株に産生せしめてなるモノクローナ
ル抗体1gG_1。
(1) Potato serine protease inhibitor IIa (P
Cells of mouse BALB/C immunized with PI-IIa) and mouse myoma cells P3U1 were fused using polyethylene glycol 4000, and the fusion product was fused with PP I-IIa).
-I-11A strain and I-6D strain were obtained by screening with hybridomas producing specific antibodies against -IIa and cloning by limiting dilution method.
Monoclonal antibody produced by 11A strain 1gM
and monoclonal antibody 1gG_1 produced by the I-6D strain.
JP23508589A 1989-09-11 1989-09-11 Monoclonal antibody Pending JPH0398596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23508589A JPH0398596A (en) 1989-09-11 1989-09-11 Monoclonal antibody

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23508589A JPH0398596A (en) 1989-09-11 1989-09-11 Monoclonal antibody

Publications (1)

Publication Number Publication Date
JPH0398596A true JPH0398596A (en) 1991-04-24

Family

ID=16980847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23508589A Pending JPH0398596A (en) 1989-09-11 1989-09-11 Monoclonal antibody

Country Status (1)

Country Link
JP (1) JPH0398596A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002515454A (en) * 1998-05-20 2002-05-28 エラスムス ユニフェルシテイト ロッテルダム Method and means for preventing or treating inflammation or pruritus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002515454A (en) * 1998-05-20 2002-05-28 エラスムス ユニフェルシテイト ロッテルダム Method and means for preventing or treating inflammation or pruritus

Similar Documents

Publication Publication Date Title
CN104302665B (en) And the variant Fc polypeptide of the combination enhancing of neonatal Fc receptor
JP2021535743A (en) Anti-CD47 antibody and its applications
US5766946A (en) Monoclonal antibodies to glycoprotein P
EP4141030A1 (en) Anti-cd73 antibody and use thereof
JP2018148915A (en) Anti-vasa antibodies, and methods of production and use thereof
JPH023697A (en) Anti-ras protein antibody
JP5257997B2 (en) Tag peptide and use thereof
KR20170085051A (en) Monoclonal anti-gpc-1 antibodies and uses thereof
Oddou et al. Monoclonal antibodies neutralizing mammalian DNA topoisomerase I activity
JPH0398596A (en) Monoclonal antibody
CN113912728B (en) Affinity purification method for reducing host cell protein content in anti-human interleukin-33 monoclonal antibody production
WO2022166977A1 (en) Anti-human il-36r antibody and application thereof
JPH06261783A (en) Specific monoclonal antibody to thiorefoxin
Araki et al. Activation of smooth muscle myosin light chain kinase activity by a monoclonal antibody which recognizes the calmodulin-binding region
EP0345811B1 (en) Monoclonal abtibodies specific for human fibrinopeptide A
Larsen et al. Purification of Bordetella pertussis antigens using monoclonal antibodies
JP3483556B2 (en) Cell adhesion inhibitory antibody and cell adhesion inhibitor using the same
JP3522877B2 (en) Anti-tyrosinase monoclonal antibody F (ab ') 2 fragment
JPH02142494A (en) Antiurokinase monclonal antibody
JPH1072498A (en) Anti-hiv antibody as reference sample
Dousson et al. Histone H1° mapping using monoclonal antibodies
JP3623271B2 (en) Anti-tyrosinase monoclonal antibody Fab fragment
JPH0698794A (en) Antibody to human gastrin-releasing peptide precursor and its use
Morse III et al. Murine Plasma Cells Secreting More Than One Class of Immunoglobulin Heavy Chain: IV. Sequence Differences Between κ-Chains of SAMM 368 IgG2b and IgA
JP7002101B2 (en) Anti-glycyrrhetinic acid antibody and its utilization