JPH03977Y2 - - Google Patents

Info

Publication number
JPH03977Y2
JPH03977Y2 JP9088285U JP9088285U JPH03977Y2 JP H03977 Y2 JPH03977 Y2 JP H03977Y2 JP 9088285 U JP9088285 U JP 9088285U JP 9088285 U JP9088285 U JP 9088285U JP H03977 Y2 JPH03977 Y2 JP H03977Y2
Authority
JP
Japan
Prior art keywords
needle
electrodes
microwave
electrode
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9088285U
Other languages
Japanese (ja)
Other versions
JPS621605U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9088285U priority Critical patent/JPH03977Y2/ja
Publication of JPS621605U publication Critical patent/JPS621605U/ja
Application granted granted Critical
Publication of JPH03977Y2 publication Critical patent/JPH03977Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、後端がマイクロ波発生装置に接続す
る高周波同軸ケーブル先端から生体組織へマイク
ロ波を照射するように成つたマイクロ波メスに関
するものである。
[Detailed description of the invention] [Industrial application field] The present invention relates to a microwave scalpel whose rear end is connected to a microwave generator and which irradiates microwaves to living tissue from the tip of a high-frequency coaxial cable. It is.

〔従来の技術と考案が解決しようとする問題点〕[Problems that conventional technology and ideas try to solve]

従来のマイクロ波メスは、中心導体に針状電極
を接続し、不関電極と共にユニポーラアンテナを
構成する所謂ユニポーラ電極式であつた。これに
より、脆くて含有血液の多い実質臓器でも容易に
無血で手術できるようになる。しかしながら、マ
イクロ波の発生状態で針状電極を生体から抜いた
ときに無負荷となるために定在波が生じ、針状電
極後方のケーブル部分にハンドピースが装着され
ていたにしても、これが異常に加熱される問題が
あつた。
Conventional microwave scalpels are of the so-called unipolar electrode type, in which a needle-like electrode is connected to a central conductor and together with an indifferent electrode constitute a unipolar antenna. This makes it possible to easily perform bloodless surgery even on fragile parenchymal organs that contain a large amount of blood. However, when the needle electrode is removed from the living body while microwaves are being generated, there is no load and a standing wave is generated, even if the handpiece is attached to the cable behind the needle electrode. There was a problem with abnormal heating.

本考案は、所要のメス処理を行うためのマイク
ロ波発生装置からの送出エネルギを低減させ得る
と、省電力だけでなく、前述の異常加熱も回避で
きることに着眼し、高効率のマイクロ波メスを提
供することを目的とする。
The present invention focuses on the fact that if the energy sent out from the microwave generator for performing the required scalpel treatment can be reduced, it is possible not only to save power but also to avoid the abnormal heating mentioned above, and has developed a highly efficient microwave scalpel. The purpose is to provide.

〔問題点を解決するための手段〕[Means for solving problems]

本考案は、この目的を達成するために、高周波
同軸ケーブル先端の中心導体及び外部導体にそれ
ぞれ針状電極を接続し、これらの針状電極を先端
部を露出させて剛性の切刃形状の誘電体で包囲し
た。
In order to achieve this objective, the present invention connects needle-shaped electrodes to the center conductor and outer conductor at the tip of a high-frequency coaxial cable, and connects these needle-shaped electrodes with their tips exposed to form a rigid cutting edge-shaped dielectric. I surrounded myself with my body.

〔作用〕[Effect]

切刃形状の誘電体は、メス刃として機能し、ま
た両針状電極はバイポーラ電極としてこれらの先
端にマイクロ波を集中させる。したがつて、針状
電極後端の生体への非挿入部でのマイクロ波漏洩
及び生体組織中の電極途中でのマイクロ波放射が
なく、先端でのみ放射が行われる。したがつて、
マイクロ波発生装置の出力電力が、低損失で針状
電極の先端まで伝搬され、先端部分での局部的な
処置が行なわれる。
The cutting edge-shaped dielectric functions as a scalpel blade, and the needle-like electrodes act as bipolar electrodes to concentrate microwaves at their tips. Therefore, there is no microwave leakage at the rear end of the needle-shaped electrode where it is not inserted into the living body, and there is no microwave radiation in the middle of the electrode in the living tissue, and radiation is performed only at the tip. Therefore,
The output power of the microwave generator is propagated to the tip of the needle electrode with low loss, and local treatment is performed at the tip.

〔考案の実施例〕[Example of idea]

第1図において、10は後端がマイクロ波発生
回路に接続する高周波同軸ケーブルであり、周知
のように誘電体11の中心に位置する内部導体1
2と、この導体を同軸状に包囲する外部導体13
と、これらを包囲する外皮14とより構成されて
いる。16は、生体組織を切開し得る程度の剛性
で切刃形状の誘電体、例えばセラミツクである。
このセラミツクには、後端において内部導体12
及び外部導体13にそれぞれ接続している2本の
針状電極17,18が先端を露出されて埋込まれ
ている。19は、ケーブル10の先端部及びセラ
ミツク16の後端部に嵌入されて、これらを保持
しているハンドピースである。
In FIG. 1, 10 is a high frequency coaxial cable whose rear end is connected to a microwave generation circuit, and as is well known, an internal conductor 1 is located at the center of a dielectric 11.
2, and an outer conductor 13 coaxially surrounding this conductor.
and an outer skin 14 surrounding these. Reference numeral 16 denotes a dielectric material, such as ceramic, which has a cutting edge shape and is rigid enough to incise living tissue.
This ceramic has an internal conductor 12 at the rear end.
Two needle-shaped electrodes 17 and 18 connected to the external conductor 13, respectively, are buried with their tips exposed. Reference numeral 19 denotes a hand piece that is fitted into the tip of the cable 10 and the rear end of the ceramic 16 to hold them.

使用に際しては、ハンドピース19を手で握
り、そこに取付けられているスイツチ或はフート
スイツチ等でマイクロ波発生をオンオフさせなが
ら、両針状電極17,18の先端部からの放射マ
イクロ波及びセラミツク16の切開機能により組
織の切除、凝固、止血等を行う。この際、ケーブ
ル10を伝搬してきたマイクロ波は、従来のユニ
ポーラ電極と異り、ケーブル端で漏洩することな
く、またセラミツク16の周囲からもほとんど放
射されることなくバイポーラ電極17,18の先
端から集中的に放射される。
When in use, hold the hand piece 19 with your hand and turn microwave generation on and off using a switch or foot switch attached to the hand piece 19, while radiating microwaves from the tips of both needle-like electrodes 17 and 18 and the ceramic 16. The incision function performs tissue resection, coagulation, and hemostasis. At this time, unlike conventional unipolar electrodes, the microwaves that have propagated through the cable 10 do not leak at the end of the cable, and are hardly radiated from around the ceramic 16, leaving the tips of the bipolar electrodes 17 and 18. radiated intensively.

第2図は、本考案の効果を確認するための実験
例を示す。長さ1.55mの高周波同軸ケーブル30
(RG−62A/U)の後端から2450MHz、40Wのマ
イクロ波を供給し、3種の比較用電極を0.9%、
10c.c.の食塩水31に浸漬し、時間経過に対するそ
の温度上昇を測定した。ここで、第2図aは従来
のユニポーラ電極に対応するもので、ケーブル3
0から誘電体33が10mm突出し、そこからさらに
突出した長さ20mmの針状電極32が食塩水31に
浸漬されている。第2図bは、第2図aと同じ条
件の針状電極をより深く外部導体35まで浸漬さ
せたもので、本考案の前提となるバイポーラ電極
に相当する。第2図cは本考案による長さ30mmの
セラミツク34で包囲されたバイポーラ電極であ
り、針状電極の間隔は2mmになつている。
FIG. 2 shows an experimental example for confirming the effects of the present invention. High frequency coaxial cable 30 with a length of 1.55m
2450MHz, 40W microwave was supplied from the rear end of (RG-62A/U), and three types of comparison electrodes were 0.9%
It was immersed in 10 c.c. of saline solution 31, and its temperature rise over time was measured. Here, Figure 2a corresponds to the conventional unipolar electrode, and the cable 3
A dielectric material 33 protrudes 10 mm from the dielectric material 33, and a needle electrode 32 with a length of 20 mm protrudes further from the dielectric material 33 and is immersed in the saline solution 31. FIG. 2b shows a needle electrode under the same conditions as FIG. 2a, immersed deeper to the outer conductor 35, and corresponds to the bipolar electrode that is the premise of the present invention. FIG. 2c shows a bipolar electrode surrounded by a ceramic 34 having a length of 30 mm according to the present invention, and the spacing between the needle electrodes is 2 mm.

第3図は、その実験結果を示すもので、第2図
aに対する結果は○印、第2図bは×印及び第2
図cは□印で示す。この結果から、マイクロ波メ
スをバイポーラ電極にすることにより、ユニポー
ラ型に対して効率が大巾に改善されることが分
る。また、本考案により切刃形状の誘電体に両針
状電極を埋込むと、その誘電損失により効率は落
ちるにしても、逆に加熱は局部的に行われるため
に、エネルギの利用率が向上し、いずれにしても
大巾な効率改善が可能となる。
Figure 3 shows the experimental results. The results for Figure 2 a are marked with an ○, the results for Figure 2 b are marked with an x, and the results for the second
Figure c is indicated by a □ mark. This result shows that by using a bipolar electrode for the microwave scalpel, the efficiency is greatly improved compared to the unipolar type. In addition, by embedding both needle-like electrodes in a cutting edge-shaped dielectric material according to the present invention, although the efficiency decreases due to the dielectric loss, on the contrary, heating is performed locally, improving the energy utilization rate. However, in any case, a significant efficiency improvement is possible.

尚、針状電極及びその包囲体の形状は、用途又
はインピーダンス整合に応じて種々変形できる。
Note that the shape of the needle electrode and its surrounding body can be variously modified depending on the application or impedance matching.

〔考案の効果〕[Effect of idea]

以上、本考案の必要個所を局部的に処置するよ
うにしたバイポーラ電極型のマイクロ波メスによ
り、マイクロ波エネルギの効率が大巾に向上し、
その高出力化又は逆にマイクロ波発生装置の出力
電力の低減化が可能となる。そして、この低減に
より、マイクロ波を放射させたままでマイクロ波
メスを生体から抜いてもハンドピースが異常に加
熱することがなくなる。さらに、両針状電極の包
囲体は切刃として機能し、深部へ向つて徐々に止
血切開を行ない得るために、従来のユニポーラ型
の場合のように切開の前に深部に針状電極を挿入
することにより血管を切断して大量の出血をさせ
るような問題もなくなる。
As described above, the bipolar electrode type microwave scalpel of the present invention, which locally treats the necessary areas, greatly improves the efficiency of microwave energy.
It is possible to increase the output power or, conversely, to reduce the output power of the microwave generator. This reduction prevents the handpiece from becoming abnormally heated even if the microwave scalpel is removed from the living body while radiating microwaves. In addition, the envelope of the two needle electrodes acts as a cutting edge, allowing the needle electrode to be inserted deep before making the incision, as in the case of a conventional unipolar type, in order to gradually make a hemostatic incision toward the depth. This eliminates the problem of cutting blood vessels and causing massive bleeding.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例によるマイクロ波メス
を示すもので、aはその断面図及びbはその先端
部の斜視図であり、第2図a〜cはそれぞれ本考
案の効果を確認する実験用の針状電極及び第3図
はその実験結果を示す。 12……内部導体、13……外部導体、16…
…セラミツク、17,18……針状電極。
Fig. 1 shows a microwave scalpel according to an embodiment of the present invention, a is a cross-sectional view thereof, b is a perspective view of its tip, and Figs. 2 a to c respectively confirm the effects of the present invention. The experimental needle electrode and FIG. 3 show the experimental results. 12...Inner conductor, 13...Outer conductor, 16...
...ceramic, 17,18...acicular electrode.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 後端がマイクロ波発生装置に接続する高周波同
軸ケーブル先端の中心導体及び外部導体にそれぞ
れ針状電極を接続し、前記両針状電極をこれらの
電極の先端部を露出させるように剛性の切刃形状
の誘電体で包囲して成るマイクロ波メス。
Needle-like electrodes are connected to the center conductor and outer conductor at the tip of a high-frequency coaxial cable whose rear end is connected to a microwave generator, respectively, and both needle-like electrodes are cut with a rigid cutting blade so as to expose the tips of these electrodes. A microwave scalpel surrounded by a shaped dielectric material.
JP9088285U 1985-06-18 1985-06-18 Expired JPH03977Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9088285U JPH03977Y2 (en) 1985-06-18 1985-06-18

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9088285U JPH03977Y2 (en) 1985-06-18 1985-06-18

Publications (2)

Publication Number Publication Date
JPS621605U JPS621605U (en) 1987-01-08
JPH03977Y2 true JPH03977Y2 (en) 1991-01-14

Family

ID=30646277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9088285U Expired JPH03977Y2 (en) 1985-06-18 1985-06-18

Country Status (1)

Country Link
JP (1) JPH03977Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044000A1 (en) * 2006-10-10 2008-04-17 Medical Device Innovations Limited Surgical antenna
GB2472972A (en) * 2009-07-20 2011-03-02 Microoncology Ltd A microwave antenna
JP6457265B2 (en) 2012-05-14 2019-01-23 国立大学法人滋賀医科大学 Organ resection tool

Also Published As

Publication number Publication date
JPS621605U (en) 1987-01-08

Similar Documents

Publication Publication Date Title
Gerhard Surgical Electrotechnology: Quo Vadis?
US6059781A (en) Electroconvergent cautery system
US6610057B1 (en) Electrosurgical blade electrode
US5733282A (en) Nasal surgical procedure using electrosurgical apparatus and novel electrode
JP5511265B2 (en) Microwave antenna assembly having a dielectric body portion with radial sections of dielectric material
US20070016181A1 (en) Microwave tissue resection tool
US4517975A (en) Electrosurgical electrode for matrisectomy
US6607528B1 (en) Shapeable electrosurgical scalpel
RU2499574C2 (en) Bipolar radio-frequency ablative instrument
US5964759A (en) Electroconvergent cautery system
JP2004267644A (en) Electrode rod for biological tissue treatment
Sebben Electrosurgery principles: cutting current and cutaneous surgery—part I
Hancock et al. A new wave in electrosurgery: A review of existing and introduction to new radio-frequency and microwave therapeutic systems
KR20000070981A (en) Apparatus for biological tissue treatment utilizing high frequency
JP7406811B2 (en) electrosurgical instruments
JPH08187297A (en) Microwave treatment device
US20200000516A1 (en) Sterile disposable bipolar ablation needle, associated system, and method of use
JPH03977Y2 (en)
WO2018040620A1 (en) Radio frequency ablation electrode device
JPH09140723A (en) High-frequency treatment instrument
US20170360501A1 (en) Disposable bipolar coaxial radio frequency ablation needle, system and method
US20070100331A1 (en) Systems and methods for organ tissue ablation
JPH0236487Y2 (en)
JPH0120619B2 (en)
JP2012143276A (en) Microwave surgical instrument