JPH0396915A - Beam shaping optical system - Google Patents

Beam shaping optical system

Info

Publication number
JPH0396915A
JPH0396915A JP23346589A JP23346589A JPH0396915A JP H0396915 A JPH0396915 A JP H0396915A JP 23346589 A JP23346589 A JP 23346589A JP 23346589 A JP23346589 A JP 23346589A JP H0396915 A JPH0396915 A JP H0396915A
Authority
JP
Japan
Prior art keywords
light
diffraction grating
parallel
angle
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23346589A
Other languages
Japanese (ja)
Inventor
Morihiro Karaki
唐木 盛裕
Masahisa Shinoda
昌久 篠田
Yasuyuki Sato
泰幸 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23346589A priority Critical patent/JPH0396915A/en
Publication of JPH0396915A publication Critical patent/JPH0396915A/en
Pending legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE:To make incident light and projection light parallel and to obtain the compact beam shaping optical system by making either one of an incidence or projection surface a diffraction grating. CONSTITUTION:The diverged beam from a laser 1 is collimated through a collimator lens 2 into nearly parallel light and the beam with elliptic section is converted by a shaping prism 6 into a circularly sectioned beam. A prism 6 has an incidence surface 7, a reflecting surface 8, and a projection surface 9, which is a diffraction grating surface and increases the diameter of the beam parallel to the paper surface. When the diffraction grating surface is formed in a saw-tooth shape, high diffraction efficiency is obtained and the generation of diffracted light other than desired light can be suppressed sufficiently low. Further, the magnification corresponding to an incidence angle theta1, a refraction angle theta2, and a diffraction angle theta3 is M1=costheta2/costheta1 on the incidence surface and M2=1/costheta3 on the projection surface and the total beam enlargement rate M is represented as M=M1XM2. This constitution holds the optical axes of the incident light and projection light parallel, the enlargement rate of the beam can be set optionally to some extent by varying the angle of the projection surface and the pitch of the diffraction grating, and only one component is required, so that the device becomes compact.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は光ビームの断面形状を整形する装置に関し、
特に平行光ビームの断面形状を整形するビーム整形プリ
ズムに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a device for shaping the cross-sectional shape of a light beam.
In particular, the present invention relates to a beam shaping prism that shapes the cross-sectional shape of a parallel light beam.

[従来の技術] 回転ずるディスク形状の情報記録媒体に光学的手段を用
いて情報の記録再生を行う光記録再生装置や、レーザビ
ームプリンタ等の光情報処理装置において、発光源とし
て小型軽量の点から半導体レーザが用いられる。この半
導体レーザから出射される光は発散光であり、半導体レ
ーザのP−n接合面に垂直な方向と平行な方向で発散角
が異なっており、一般に接合面に垂直な方向で拡がり角
が大きく、平行な方向では小さいため光軸断面が楕円形
状となる。
[Prior Art] Optical recording and reproducing devices that use optical means to record and reproduce information on a rotating disk-shaped information recording medium and optical information processing devices such as laser beam printers use small and lightweight light sources as light sources. Since then, semiconductor lasers have been used. The light emitted from this semiconductor laser is diverging light, and the divergence angle is different in the direction perpendicular to and parallel to the P-n junction surface of the semiconductor laser, and generally the divergence angle is larger in the direction perpendicular to the junction surface. , is small in the parallel direction, so the cross section of the optical axis becomes elliptical.

そこで、半導体レーザ光を効率よく使用するため、及び
光軸対称の強度分布を持つスポットに集光するために、
アナモルフィック光学系が必要になる。また、円形断面
をもつレーザビームについても、結像レンズに入るレー
ザビーム幅の縦横比を変えることによって、縦方向、横
方向の解像力を所望の値にする目的のためアナモルフィ
ック光学系が使用されることがある。
Therefore, in order to use semiconductor laser light efficiently and to focus it on a spot with an optical axis symmetrical intensity distribution,
Anamorphic optics will be required. Anamorphic optical systems are also used for laser beams with a circular cross section to adjust the vertical and horizontal resolution to desired values by changing the aspect ratio of the laser beam width entering the imaging lens. may be done.

第3図に示したのは特開昭61−216145号に記さ
れたビーム整形光学系を含む従来の光情報処理装置であ
る。(1)は縦横で発散角の異なる発光をする半導体レ
ーザ、(2)は半導体レーザからの発散光束を略平行光
束に変換するコリメータレンズ、(3)はコリメータレ
ンズからの非等方なビーム断面を整形するためのビーム
整形プリズム、(4)はビーム整形プリズムからの平行
光束を集光するための対物レンズ、(5)は情報記録媒
体である。
What is shown in FIG. 3 is a conventional optical information processing apparatus including a beam shaping optical system described in Japanese Patent Laid-Open No. 61-216145. (1) is a semiconductor laser that emits light with different divergence angles in vertical and horizontal directions, (2) is a collimator lens that converts the divergent beam from the semiconductor laser into a substantially parallel beam, and (3) is the anisotropic beam cross section from the collimator lens. (4) is an objective lens for condensing the parallel light flux from the beam shaping prism, and (5) is an information recording medium.

次に動作について説明を行う。まず、半導体レーザ( 
1. )が出射するレーザビームの放射角は半導体レー
ザ素子の構造によって異なっており、発光領域の縦横比
は1ではなく、半導体レーザ素子からの遠視野像におけ
る出射光分布の水平方向及び垂直方向の中心強度の半分
になる位置の発散角をそれぞれθ,,.θ7とすると、 例えば、第3図に示した半導体レーザ(1)では θ〃 =100 θ工 =2 5° であり、θi /θ7t”25となる。
Next, the operation will be explained. First, a semiconductor laser (
1. ) differs depending on the structure of the semiconductor laser device, and the aspect ratio of the emitting region is not 1, but the horizontal and vertical centers of the emitted light distribution in the far-field pattern from the semiconductor laser device. The divergence angle at the position where the intensity is half is θ, . For example, in the semiconductor laser (1) shown in FIG. 3, θ = 100, θ = 2 5°, and θi / θ7t''25.

この半導体レーザ(1)からの出射光を円形のコリメー
タレンズ(2)て略平行光に変換する訳だが、コリメー
タレンズ(2)の開口数NAが比較的小さい場合、例え
ば NA=0.1 程度のコリメータレンズ(2)を用いた場合にはコリメ
ータレンズ(2)から出射する平行光束はほぼ等方的な
ビームとなるが、レンズの最外周を通る光の入射角度は
光軸中心に対して57゜であるため、半導体レーザ出射
光のうち、発散角が011。4°以上の光は利用されな
いことになる。従って半導体レーザ出射光を効率よく利
用するためには対してコリメータレンズ(2)の開口数
NAを大きくずる必要がある。
The light emitted from the semiconductor laser (1) is converted into approximately parallel light by the circular collimator lens (2), but if the numerical aperture NA of the collimator lens (2) is relatively small, for example, NA = about 0.1. When using a collimator lens (2), the parallel light beam emitted from the collimator lens (2) becomes a nearly isotropic beam, but the incident angle of the light passing through the outermost circumference of the lens is relative to the center of the optical axis. Since the angle of divergence is 57°, out of the light emitted from the semiconductor laser, light having a divergence angle of 011.4° or more is not used. Therefore, in order to efficiently utilize the light emitted from the semiconductor laser, it is necessary to greatly deviate the numerical aperture NA of the collimator lens (2).

例えば、コリメータレンズ(2)の開口数をNA=03
とした場合には、NA= 0. 1のコリメータレンズ
に比べ、約3倍の有効利用が計れる。然しながら、半導
体レーザ(1)の出射光発散角θアθ とコリメータレ
ンズ(2)の最外周に入射する先のなす角(θ)を比較
すると、 θ7 〈θ〈θ,. となり、従って、コリメータレンズ(2)からの出射光
断面は楕円形状となる。
For example, if the numerical aperture of the collimator lens (2) is NA=03
In this case, NA=0. Compared to the collimator lens No. 1, it can be used approximately three times more effectively. However, when comparing the divergence angle θa of the emitted light from the semiconductor laser (1) and the angle (θ) formed by the point of incidence on the outermost periphery of the collimator lens (2), we find that θ7 〈θ〈θ, . Therefore, the cross section of the light emitted from the collimator lens (2) has an elliptical shape.

そこで第3図に示す如く、ビーム整形プリズム(3)を
用いてこの楕円断面の光ビームを整形する。つまりこの
ビーム整形プリズム(3)により楕円形の短軸方向を拡
大し略円形ビームに変換する。よって、対物レンズ(4
)により情報記録媒体(5)上に集光照射された光スポ
ットはほぼ円形となる。
Therefore, as shown in FIG. 3, this light beam having an elliptical cross section is shaped using a beam shaping prism (3). In other words, the beam shaping prism (3) expands the short axis direction of the ellipse and converts it into a substantially circular beam. Therefore, the objective lens (4
), the light spot focused and irradiated onto the information recording medium (5) becomes approximately circular.

この種の光学装置においては情報記録媒体(5)からの
反射光を検出し、フォーカシング及びトラッキング制御
信号、情報再生信号を得るという構成をとっているが、
第3図に示した装置には情報記録媒体(5)や反射光検
出手段は示していない。
This type of optical device has a configuration in which reflected light from the information recording medium (5) is detected to obtain focusing and tracking control signals and information reproduction signals.
The information recording medium (5) and reflected light detection means are not shown in the apparatus shown in FIG.

[発明が解決しようとする課題] 従来のビーム整形光学系は以上のように構成されている
ので、第3図に示したごとく、光軸が折れまがり、装置
の形状に制限を受け、設計の自由度が損なわれる。また
さらに、ビーム整形プリズム(3)の配置誤差が生じた
場合には、出射光光軸のシフト、傾き等が発生し易く、
厳しい配置精度が要求される。
[Problems to be Solved by the Invention] Since the conventional beam shaping optical system is configured as described above, the optical axis is bent as shown in Fig. 3, and the shape of the device is limited, making it difficult to design. Freedom is lost. Furthermore, if a placement error occurs in the beam shaping prism (3), the optical axis of the emitted light is likely to shift or tilt.
Strict placement accuracy is required.

また、第3図に示した以外のビーム整形光学系としては
、シリンドリカレンズを用いたものがあるが、この方式
は通常2枚のシリンドリカレンズを用いるため、部品点
数増は免れない。さらに、配置精度についても非常に厳
しく、部品のわずかなずれに対して波面収差が劣化する
Further, there is a beam shaping optical system other than the one shown in FIG. 3 that uses a cylindrical lens, but since this system usually uses two cylindrical lenses, the number of parts inevitably increases. Furthermore, placement accuracy is also very strict, and wavefront aberration deteriorates with the slightest misalignment of components.

この発明は上記のような問題点を解消するためになされ
たもので、コリメータレンズからの出射光光軸を折りま
げることなく、配置ずれに対しても強いビーム整形光学
系を得ることを目的とする[課題を解決するための手段
] この発明に係るビーム整形光学系は入射面、反射面およ
び出射面を有しており、入射面及び出射面の少なくとも
一方を回折格子面とし、該光学系の入射面に対してある
角度で入射光ビームを入射させた場合に出射光が入射光
と平行になる様な構成にしたものである。
This invention was made to solve the above-mentioned problems, and its purpose is to obtain a beam shaping optical system that is resistant to misalignment without bending the optical axis of the light emitted from the collimator lens. [Means for Solving the Problems] A beam shaping optical system according to the present invention has an entrance surface, a reflection surface, and an exit surface, and at least one of the entrance surface and the exit surface is a diffraction grating surface, and the optical system The structure is such that when an incident light beam is made incident at a certain angle with respect to the incident plane, the outgoing light becomes parallel to the incident light.

〔作用〕[Effect]

この発明におけるビーム整形光学系では入射面及び出射
面の少なくとも一方を回折格子化したことにより、入射
光と出射光とを平行に出来、コンパクトなビーム整形光
学系が得られる。
In the beam shaping optical system according to the present invention, at least one of the entrance surface and the exit surface is made into a diffraction grating, so that the incident light and the output light can be made parallel, and a compact beam shaping optical system can be obtained.

[実施例] 以下この発明の一実施例を図について説明する。第1図
に示したのが本発明におけるビーム整形光学系の構成図
であり。半導体レーザ(1)、及びコリメータレンズ(
2)は従来装置と同様のものである。(6)は本発明に
よるビーム整形プリズムであり、入射面(7)、反射面
(8)および出射面(9)を有している。第1図におけ
る実施例においては、出射面(9)が回折格子面である
次に動作について説明を行う。半導体レーザ(1)から
出射された発散するレーザビームはコリメータレンズ(
2)で略平行光に変換され、そこから楕円断面の光ビー
ムが出射する。この光ビームを本発明によるビーム整形
プリズム(6)によって円形断面の光ビームに変換する
。本発明におけるビーム整形プリズム(6)は入射面(
7)、反射面(8)および出射面(9)からなり、出射
面(9)が回折格子面となされていて、第1図の紙面に
平行な方向のビーム径の拡大を行う。
[Embodiment] An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a configuration diagram of a beam shaping optical system according to the present invention. Semiconductor laser (1) and collimator lens (
2) is similar to the conventional device. (6) is a beam shaping prism according to the present invention, which has an entrance surface (7), a reflection surface (8) and an exit surface (9). In the embodiment shown in FIG. 1, the output surface (9) is a diffraction grating surface.Next, the operation will be explained. The diverging laser beam emitted from the semiconductor laser (1) is passed through a collimator lens (
In step 2), the light is converted into substantially parallel light, from which a light beam with an elliptical cross section is emitted. This light beam is converted into a light beam with a circular cross section by a beam shaping prism (6) according to the invention. The beam shaping prism (6) in the present invention has an entrance surface (
7) It consists of a reflecting surface (8) and an exit surface (9), and the exit surface (9) is a diffraction grating surface, which enlarges the beam diameter in the direction parallel to the plane of the paper in FIG.

第2図に、出射面(9)の回折格子面で光が回折される
様子を示す。出射光の回折角を03、回折格子のピッチ
をA、硝子材の屈折率をn’  (空気の屈折率n=1
),光の波長を九とすると、ん θs  =sin−’  (−)   −−−のn′ 
・ A なる関係が成り立つ。また回折格子面を第2図に示すよ
うに鋸型の形状にすることによって高い回折効率が得ら
れ、所望の光以外の回折光の発生を十分低く押えること
ができる。
FIG. 2 shows how light is diffracted by the diffraction grating surface of the exit surface (9). The diffraction angle of the emitted light is 03, the pitch of the diffraction grating is A, and the refractive index of the glass material is n' (the refractive index of air n=1
), the wavelength of light is 9, then θs = sin-' (-) n' of ---
・The relationship A holds true. Further, by forming the diffraction grating surface into a sawtooth shape as shown in FIG. 2, high diffraction efficiency can be obtained, and the generation of diffracted light other than desired light can be suppressed to a sufficiently low level.

次にビームの拡大率について述べる。第1図に示した様
に入射面(7)及び出射面(9)において光ビームは屈
折(回折)し、ビーム拡大が行われる。入射面で行われ
るビーム拡大の倍率をM1、出射面で行われるビーム拡
大の債率をM2とすると、全体的なビーム拡大率Mは M=MI XM2  −一一■ で与えられる。なお、倍率M,,M2は以下の様に与え
られる。
Next, we will discuss the beam expansion ratio. As shown in FIG. 1, the light beam is refracted (diffracted) at the entrance surface (7) and the exit surface (9), and the beam is expanded. If the magnification of the beam expansion performed at the entrance surface is M1, and the rate of beam expansion performed at the exit surface is M2, the overall beam expansion factor M is given by M=MI XM2 -11. Note that the magnifications M, , M2 are given as follows.

但し、θ1は入射面(7)への入射角、θ2は入射面(
7)での屈折角、θ3は出射面(9)での回折角である
However, θ1 is the angle of incidence on the incident surface (7), and θ2 is the angle of incidence on the incident surface (7).
The refraction angle at 7) and θ3 are the diffraction angle at the exit surface (9).

なお、第1図に示した実施例においては、出射面(9)
を回折格子面としたが、入射面(7)を回折格子面とし
ても良く、上記実施例と同様の効果を奏する。
In addition, in the embodiment shown in FIG.
Although the diffraction grating surface is used as the diffraction grating surface, the incident surface (7) may also be used as the diffraction grating surface, and the same effect as in the above embodiment can be obtained.

またさらに、回折格子面である出射面(9)若しくは入
射面(7)及び出射面(9)に無反射コーティングを施
すことによって、ビーム整形プリズム(6)の透過効率
を向上させることができ、上記実施例と同様の効果を奏
する。
Furthermore, the transmission efficiency of the beam shaping prism (6) can be improved by applying an anti-reflection coating to the exit surface (9) or the entrance surface (7) and the exit surface (9), which are diffraction grating surfaces. The same effects as in the above embodiment are achieved.

また、上記実施例においては光ビームを拡大する様な構
成としたが、第1図の出射面(9)側より光ビームを入
射させ、ビームを縮小させてもよく、上記実施例と同様
の効果を奏する。
Further, in the above embodiment, the configuration is such that the light beam is expanded, but the light beam may be made incident from the exit surface (9) side in FIG. 1 and the beam may be reduced. be effective.

また、上記実施例においては、出射面(9)と出射光と
が直交しているが出射面(9)と出射光は直交しなくて
も良く、ビームの拡大率はこの場合についても となり、上記実施例と同様の効果を奏する。
Further, in the above embodiment, the output surface (9) and the output light are perpendicular to each other, but the output surface (9) and the output light do not have to be perpendicular to each other, and the beam expansion ratio is also the same in this case. The same effects as in the above embodiment are achieved.

また上記実施例においては、光源に半導体レーザ(1)
を用いた場合を示したがこれに限定されるわけではない
Further, in the above embodiment, a semiconductor laser (1) is used as a light source.
Although the case is shown in which the method is used, the present invention is not limited to this.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば入射面、反射面及び出射
面を有するビーム整形プリズムにおいて、入射面及び出
射面の少なくとも一方を回折格子面にすることによって
、ビーム整形プリズムの入射光と出射光の光軸を平行に
保つことができ、かつビームの拡大率を出射面の角度と
回折格子のピッチを変化させることによって、ある程度
任意に設定できるため、設計の自由度が増す。さらに、
部品点数も一つであるため、装置全体がコンパクl・な
ものになる。
As described above, according to the present invention, in a beam shaping prism having an entrance surface, a reflection surface, and an exit surface, at least one of the entrance surface and the exit surface is made a diffraction grating surface, so that the incident light and the output light of the beam shaping prism are The optical axes of the beam can be kept parallel, and the beam expansion rate can be set arbitrarily to some extent by changing the angle of the exit surface and the pitch of the diffraction grating, increasing the degree of freedom in design. moreover,
Since there is only one part, the entire device is compact.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例によるビーム整形光学系の
側面図、第2図(a)はこの発明の一実施例の動作を説
明する部分拡大図、第2図(b)は更に拡大した図、第
3図は従来のビーム整形光学系を用いた光学装置の側面
図である。 図において、(1)は半導体レーザ、(2)はコリメー
タレンズ、(6)はビーム整形プリズム(7)は入射面
、(8)は反射面、(9)は出身寸面てある。
Fig. 1 is a side view of a beam shaping optical system according to an embodiment of the present invention, Fig. 2(a) is a partially enlarged view explaining the operation of an embodiment of the invention, and Fig. 2(b) is a further enlarged view. FIG. 3 is a side view of an optical device using a conventional beam shaping optical system. In the figure, (1) is a semiconductor laser, (2) is a collimator lens, (6) is a beam shaping prism (7) is an incident surface, (8) is a reflective surface, and (9) is an original dimension surface.

Claims (1)

【特許請求の範囲】[Claims] (1)光ビームの断面形状を変換するための光学系であ
り、光ビームが入射する入射面、反射面、及び光ビーム
を出射する出射面を有しており、前記光学系の入射面に
対してある所定の角度をもって光を入射させた場合、入
射光軸と出射光軸が平行となる様に構成されたビーム整
形光学系において、 出射面および入射面の少なくとも一方を回折格子面とし
たことを特徴とするビーム整形光学系。
(1) An optical system for converting the cross-sectional shape of a light beam, which has an entrance surface on which the light beam enters, a reflection surface, and an exit surface from which the light beam exits. In a beam shaping optical system configured so that when light is incident at a certain predetermined angle, the input optical axis and the output optical axis are parallel, at least one of the output surface and the input surface is a diffraction grating surface. A beam shaping optical system characterized by:
JP23346589A 1989-09-09 1989-09-09 Beam shaping optical system Pending JPH0396915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23346589A JPH0396915A (en) 1989-09-09 1989-09-09 Beam shaping optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23346589A JPH0396915A (en) 1989-09-09 1989-09-09 Beam shaping optical system

Publications (1)

Publication Number Publication Date
JPH0396915A true JPH0396915A (en) 1991-04-22

Family

ID=16955460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23346589A Pending JPH0396915A (en) 1989-09-09 1989-09-09 Beam shaping optical system

Country Status (1)

Country Link
JP (1) JPH0396915A (en)

Similar Documents

Publication Publication Date Title
JP2000089161A (en) Optical intensity converting element and optical storage device
KR19990076486A (en) Light intensity converter, optical device and optical disc device
JPH0412039B2 (en)
JPH07326065A (en) Optical information processor
KR102178770B1 (en) Generating an array of spots on inclined surfaces
JPH10227992A (en) Bessel beam generating method and optical scanning device using the same
JPH02216626A (en) Optical scanner
RU2176097C2 (en) Optical system forming beam ( variants ) and optical sensor
JPH0514334Y2 (en)
JPH0661566A (en) Optical device and its manufacture
JPH0396915A (en) Beam shaping optical system
JPS6153775B2 (en)
KR100252944B1 (en) Device for picking-up light
JP3276486B2 (en) Exposure equipment
JPH0482032A (en) Optical information recording and reproducing head
JP3331144B2 (en) Beam shaping optics
JP3391308B2 (en) Focusing optical system for laser light source
JPH04263131A (en) Beam shaping apparatus
JP2004191479A (en) Optical system
JPH0797162B2 (en) Optical beam expander
JPS62187321A (en) Beam shaping optical device
JPH10269613A (en) Optical head device
JPH04209335A (en) Light emitting member
JPH10213777A (en) Beam shaping device
JPH0566358A (en) Light beam convergence device