JPH0395446A - Apparatus and method for measuring lattice constant - Google Patents

Apparatus and method for measuring lattice constant

Info

Publication number
JPH0395446A
JPH0395446A JP1231739A JP23173989A JPH0395446A JP H0395446 A JPH0395446 A JP H0395446A JP 1231739 A JP1231739 A JP 1231739A JP 23173989 A JP23173989 A JP 23173989A JP H0395446 A JPH0395446 A JP H0395446A
Authority
JP
Japan
Prior art keywords
crystal
sample
lattice constant
monochromator
crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1231739A
Other languages
Japanese (ja)
Inventor
Tsutomu Ishiba
石場 努
Seiichi Isomae
誠一 磯前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1231739A priority Critical patent/JPH0395446A/en
Publication of JPH0395446A publication Critical patent/JPH0395446A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To exclude a crystallographic restriction in an optical system and to enable highly-precise measurement of the lattice constant of any single crystals by a method wherein a monochromator constituting an apparatus is constructed of a plurality of crystals of which the crystal faces in a plurality are disposed in parallel. CONSTITUTION:An X-ray beam 1 generated from an X-ray source 2 is made monochrome by a monochromator 4 and applied to a sample crystal 10 and a standard crystal 11 fixed on a rotary sample stage 9, and a diffracted beam obtained at this time is measured by a counter tube 7. On the occasion, the monochromator 4 is formed of spectral crystals 5 and 6, which are cut out of the same crystal so that they are disposed in complete parallel in terms of crystallography, respectively. By using Si or the like, these crystal faces can take out the beam 1 made monochrome. By making the beam 1 enter the crystals 5 and 6 from directions reverse to each other before and after the rotation of the sample stage 9, besides, various errors due to measurement are offset and thus highly precise measurement can be conducted.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は格子定数測定装置及び格子定数測定方法、更に
詳しく言えば、モノクロメータにより単色化されたX線
ビームを標準結晶及び測定すへき試料結晶に同時照射し
、両結晶の回折ビームの角度差から試料結晶の格子定数
の変化(相対値)を高精度に測定する方法及び装置に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a lattice constant measuring device and a lattice constant measuring method, and more specifically, to a standard crystal and a sample to be measured using an X-ray beam made monochromatic by a monochromator. The present invention relates to a method and apparatus for simultaneously irradiating a crystal and measuring changes in the lattice constant (relative value) of a sample crystal with high precision from the angular difference between the diffraction beams of both crystals.

[従来の技術] 半導体の技術分野において、半導体素子の電気的特性を
改善するため、半導体結晶の格子定数を正確に測定する
技術が重要になる。格子定数a。の測定は通常X線回折
法を用いて行われる。単結晶にX線を照射すると、特定
の方向に強いX線が散乱される。単結晶に入射されるX
線ビー、ムとその強い散乱ビーム(回折ビーム)の間の
角度を20 (0をブラッグ角という)とすると、結晶
の格子面間隔dと、ブラック角θ及び回折ビームの波長
λとの間には、よく知られたブラッグの法則2 d s
inθ=λ がなりたつ。格子定数a。は格子面間隔d
に一定の定数を乗したものとしてあたえられる。従って
、ブラッグ角θを測定することによって、格子定数a。
[Background Art] In the technical field of semiconductors, a technique for accurately measuring the lattice constant of a semiconductor crystal is important in order to improve the electrical characteristics of a semiconductor element. Lattice constant a. The measurement is usually carried out using an X-ray diffraction method. When a single crystal is irradiated with X-rays, strong X-rays are scattered in a specific direction. X incident on a single crystal
Assuming that the angle between the linear beam, M and its strongly scattered beam (diffraction beam) is 20 (0 is called the Bragg angle), there is a relationship between the lattice spacing d of the crystal, the Black angle θ, and the wavelength λ of the diffracted beam. is the well-known Bragg's law 2 d s
inθ=λ. Lattice constant a. is the lattice spacing d
It is given as the product of , multiplied by a certain constant. Therefore, by measuring the Bragg angle θ, the lattice constant a.

を求めることができる。can be found.

格子定数をX線回折法によって高精度に求める測定装置
として、第5図に示す装置が知られている(特開昭4.
 9 − 3 6 7 7号公報参照)。この公知の測
定装置は,X線源20から発生したX線ビームを2方向
に分割するスリット12、13を有し、上記スリッ1−
によって2方向に分割されたX線ビームそれぞれを反射
させるモノクロメータ14、15を設け、モノクロメー
タ14、15によって反射されたそれぞれのX線ビーム
16、17が同一の回転台に固定された標準結晶18と
試料結晶工9に照射し、両結晶による回折条件を満たし
うる方向に計数管21、22を配置させた単結晶の格子
定数測定装置である。
As a measuring device for determining lattice constants with high precision using the X-ray diffraction method, the device shown in FIG.
(See Publication No. 9-3677). This known measuring device has slits 12 and 13 that divide an X-ray beam generated from an X-ray source 20 into two directions.
Monochromators 14 and 15 are provided to reflect the X-ray beams split into two directions by the monochromators 14 and 15. This is a single-crystal lattice constant measuring device in which counter tubes 21 and 22 are arranged in a direction that can irradiate the sample crystal 18 and the sample crystal 9 and satisfy the diffraction conditions for both crystals.

[発明が解決しようとする課題] 上記公知の格子定数測定装置は二結品法の並行配置を応
用したもの、即ち、モノクロメータを構成する分光結晶
の結晶面と測定すへき試料結晶の結晶面を並行とするこ
とによってX線ビームの分散を少なくし、測定精度を高
精度にするものであり、測定すべき試料結晶の種類、あ
るいは測定回折面の条件によっては高精度に格子定数の
変化(相対値)を測定できる。しかし、X線ビームに対
するモノクロメータl4、15と試料結品19、或は標
準結晶18には一定のX線結晶学的拘束がある。 例え
ば、試料結晶19とモノクロメータ14或は15の格子
定数、回折格子面がほぼ等しいこと、モノクロメータ]
4による回折X線ビー−3− ムl6とモノクロメータ15による回折X線ビーム7は
試料結晶19上の回転中心で交差する必要がある。
[Problems to be Solved by the Invention] The above-mentioned known lattice constant measuring device applies the parallel arrangement of the two-piece method, that is, the crystal plane of the spectroscopic crystal constituting the monochromator and the crystal plane of the sample crystal to be measured. By making the lattice constants parallel, the dispersion of the X-ray beam is reduced and the measurement accuracy is increased. Depending on the type of sample crystal to be measured or the conditions of the measurement diffraction surface, changes in the lattice constant ( relative value) can be measured. However, there are certain X-ray crystallographic constraints on the monochromators 14, 15 and the sample sample 19 or standard crystal 18 for the X-ray beam. For example, the lattice constants and diffraction grating planes of the sample crystal 19 and the monochromator 14 or 15 are approximately the same, and the monochromator]
It is necessary that the diffracted X-ray beam 16 by the monochromator 4 and the diffracted X-ray beam 7 by the monochromator 15 intersect at the center of rotation on the sample crystal 19.

上記X線結晶学的拘束から、上記公知の格子定数測定装
置は試料結晶の種類、或は結晶の測定回折面に大きな制
約を受ける。結晶によっては測定できないものも有り、
格子定数測定装置としての汎用性に欠ける。
Due to the above-mentioned X-ray crystallographic constraints, the above-mentioned known lattice constant measuring apparatus is greatly restricted by the type of sample crystal or the measurement diffraction plane of the crystal. Some crystals cannot be measured,
It lacks versatility as a lattice constant measuring device.

本発明の目的は従来装置の欠点である光学系における結
晶学的拘束を排除し、あらゆる結晶(結晶面)の単結晶
の格子定数を相対値(Δd/d)で10−゜〜10−7
の高精度で測定しうる格子定数測定装置および格子定数
の測定方法を提供することである。
The purpose of the present invention is to eliminate the crystallographic constraints in the optical system, which are the drawbacks of conventional devices, and to adjust the lattice constant of a single crystal of any crystal (crystal plane) from 10-° to 10-7 in relative value (Δd/d).
An object of the present invention is to provide a lattice constant measuring device and a lattice constant measuring method capable of measuring lattice constants with high accuracy.

[課題を解決するための手段] 本発明は上記目的を達戊するために、格子定数の測定装
置を測定すべき試料結晶と標準結晶を搭載する回転試料
台と、上記試料結晶と標準結晶に同時にX線ビームを照
射する並行配置の複数結晶からなるモノクロメータと、
上記試料結晶と標準4 結晶からの回折ビームを割数する計数管とを持つように
構威した。なお、回転試料台とX線ビームの関係はX線
ビームが上記標準結晶および試料結晶に回転試料台の回
転前後によって互いに逆方向から入射できるようにする
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a rotary sample stage on which a lattice constant measuring device is mounted with a sample crystal to be measured and a standard crystal, and a rotary sample stage on which a lattice constant measuring device is mounted. A monochromator consisting of multiple crystals arranged in parallel that simultaneously irradiates an X-ray beam,
It was constructed to have a counter that divides the diffracted beams from the sample crystal and the standard 4 crystal. The relationship between the rotating sample stage and the X-ray beam is such that the X-ray beam is incident on the standard crystal and the sample crystal from opposite directions depending on whether the rotating sample stage is rotated or not.

[作用] 本発明の格子定数測定装置を構戊するモノクロメータは
複数の結晶面が並行配置された複数の結晶で構成された
ものであるので、波長による分散効果が除かれ、上記試
料結晶と標準結晶を照射するxlビーム自体の波長分散
(Δλ/λ、λはX線ビームの中心波長、△λ半値幅の
槽域)を10−6程度に小さくすることができる。また
、モノクロメータ自体によってX線ビームの波長分散を
小さくしているので、試料結晶の穐類、結晶面の位置に
よらず、得られる回折強度曲線のピークの半値幅は1〜
2秒程度と或り、高精度の格子定数測定精度(10’〜
10−7)が可能となる。また、本発明の測定装置では
回転試料台の回転前後において同一のX線ビームが利用
されるため、前記公知技術における結晶学的拘束が除か
れる。
[Function] Since the monochromator constituting the lattice constant measuring device of the present invention is composed of a plurality of crystals in which a plurality of crystal planes are arranged in parallel, the dispersion effect due to wavelength is removed, and the monochromator can be used to measure the lattice constant of the sample crystal. The wavelength dispersion (Δλ/λ, where λ is the center wavelength of the X-ray beam and the tank region of the half-value width of Δλ) of the xl beam itself that irradiates the standard crystal can be reduced to about 10 −6 . In addition, since the wavelength dispersion of the X-ray beam is reduced by the monochromator itself, the half-width of the peak of the obtained diffraction intensity curve is 1 to 1, regardless of the position of the sample crystal or crystal plane.
High precision lattice constant measurement accuracy (10'~2 seconds)
10-7) becomes possible. Furthermore, in the measurement apparatus of the present invention, the same X-ray beam is used before and after the rotation of the rotating sample stage, so the crystallographic constraints in the known techniques are removed.

[実施例] 第1図及び第2図に本発明による格子定数測定装置の一
実施例の要部(光学系)構戊を示す。なお、第1図及び
第2図は同一装置において、回転試料台1.9の回転前
後における様子を分けて示したものである。XltX2
から発生したxPIAはスリット3により制限され、モ
ノクロメータ4に入則する。モノクロメータ4は第1結
晶5と第2結晶6とから或り、それぞれの結晶は結晶工
学的適に完全に並行になるような配置(並行配置の二結
品法)がとられるよう、同一結晶から切り出した結晶を
用いている。
[Embodiment] FIGS. 1 and 2 show the structure of a main part (optical system) of an embodiment of a lattice constant measuring device according to the present invention. Note that FIGS. 1 and 2 separately show the same apparatus before and after rotation of the rotating sample stage 1.9. XltX2
The xPIA generated from the slit 3 is restricted by the slit 3 and enters the monochromator 4. The monochromator 4 consists of a first crystal 5 and a second crystal 6, and the crystals are identical so that they are arranged completely parallel to each other (parallel arrangement two-piece method) suitable for crystal engineering. It uses crystals cut from crystals.

第1結品5、第2結品6の結晶面はSi(440)など
を使用することにより、X線ビームの波長の広がりはΔ
λ/λが10″″6となり、単色化(Kα、)されたX
線ビーム7を取り出すことができる。また、第1結晶5
などに非対称反射の結晶面を用いれば、波長の分散は極
めてよくなり、かつ、xlのビーム幅を広くすることが
でき?。
By using Si (440) etc. as the crystal planes of the first crystal 5 and the second crystal 6, the wavelength spread of the X-ray beam is Δ
λ/λ becomes 10″″6, and X becomes monochromatic (Kα,)
The line beam 7 can be taken out. In addition, the first crystal 5
If we use crystal planes with asymmetric reflection for example, the wavelength dispersion will be extremely good and the xl beam width can be widened. .

モノクロメータ4によって単色化されたX線ビーム7は
スリッ1・8によりビーム径が制限され、ゴニオメータ
の回転試料台9上に固定された試料結晶10および標準
結晶11を同時照射し、それぞれから回折されたX線ビ
ームは計数管7によって検出される。以下の説明では第
1図に示した光学系での測定をA側測定と呼ぶことにす
る。
The X-ray beam 7 made monochromatic by the monochromator 4 has its beam diameter limited by the slits 1 and 8, and simultaneously irradiates the sample crystal 10 and standard crystal 11 fixed on the rotating sample stage 9 of the goniometer, and diffracts from each. The generated X-ray beam is detected by a counter tube 7. In the following explanation, the measurement using the optical system shown in FIG. 1 will be referred to as A-side measurement.

次に、入射X線側の光学系は第上図と同しで、回転試料
台9の回転によって試料結晶10および標準結晶11の
向きをωだけ回転し、第2図に示した位置での測定(B
側d1リ定と呼ぶ)を行う。回転試料台9の回転ωによ
り、第1図と第2図の結晶に対するX線ビーム1の入射
方向が互いに逆になる。
Next, the optical system on the incident X-ray side is the same as that shown in the upper figure, and the orientation of the sample crystal 10 and standard crystal 11 is rotated by ω by the rotation of the rotating sample stage 9, and the positions shown in FIG. Measurement (B
(referred to as side d1 determination). Due to the rotation ω of the rotating sample stage 9, the directions of incidence of the X-ray beam 1 on the crystals in FIGS. 1 and 2 are reversed.

第3図(a)及び(b)はそれぞれ第1図及び第2図の
試料結晶10近傍を拡大した図である。
FIGS. 3(a) and 3(b) are enlarged views of the vicinity of the sample crystal 10 in FIGS. 1 and 2, respectively.

A側測定における試料結晶10からの回折線をO■S、
標準結晶11からの回折線をflxr+とする。
The diffraction line from the sample crystal 10 in the A-side measurement is O■S,
Let the diffraction line from the standard crystal 11 be flxr+.

また、B側測定においても、試料結晶10からの−7− ?折線をo2s.標準結晶11からの回折線をO,Rと
する。これらの回折強度曲線の様子を第5図に示す。以
上の測定結果から、上記01s、O■R、0,s、及び
θ2Rが回折角度も表すとすると、(コ)及び(2)式
が得られる。
Also, in the B-side measurement, -7-? from sample crystal 10? The broken line is o2s. Let the diffraction lines from the standard crystal 11 be O and R. The appearance of these diffraction intensity curves is shown in FIG. From the above measurement results, if the above-mentioned 01s, O■R, 0,s, and θ2R also represent the diffraction angle, equations (c) and (2) can be obtained.

ΔS 1 = FB,s−01R= ct−ΔO   
  (上)ΔS2=Q,s−0,n=a+ΔO    
(2)但し、αは試料結晶10と標準結晶11の回折面
における両者の並行からの角度ずれ、Δθは試料結晶1
0と標準結晶1工の格子定数の差によるブラッグ角の角
度差である。従って、(コ)と(2)式の差を求めるこ
とにより(3),(4.)式を求めることができる。
ΔS 1 = FB, s-01R = ct-ΔO
(Top) ΔS2=Q, s-0, n=a+ΔO
(2) However, α is the angular deviation of the diffraction planes of the sample crystal 10 and the standard crystal 11 from parallelism, and Δθ is the angle deviation of the sample crystal 10 and the standard crystal 11 from parallel.
This is the difference in Bragg angle due to the difference in lattice constant between 0 and standard crystal. Therefore, equations (3) and (4.) can be obtained by finding the difference between equations (e) and (2).

Δθ=(ΔS1−Δ82)/2     (3)Δd/
do=−cot61o・Δ0    (4)ここで、Δ
d=d1−do,doは標準結晶の格子面間隔、d1は
試料結晶の格子面間隔、OoはX線の波長λに対する標
準結晶のブラッグ角である。
Δθ=(ΔS1−Δ82)/2 (3) Δd/
do=-cot61o・Δ0 (4) Here, Δ
d=d1-do, do is the lattice spacing of the standard crystal, d1 is the lattice spacing of the sample crystal, and Oo is the Bragg angle of the standard crystal with respect to the wavelength λ of the X-ray.

即ち、第1図、第2図に示した光学系において、A側、
B側の測定データθ.S、(J1R、および0,s、−
8− θ2Rのピーク間隔を求めることにより、(3),(4
)式から試料結晶の標準結晶に対する相対格子定数(Δ
d/do)を高精度に求めることができる。
That is, in the optical system shown in FIGS. 1 and 2, the A side,
B side measurement data θ. S, (J1R, and 0,s,-
8- By finding the peak interval of θ2R, (3), (4
), the relative lattice constant (Δ
d/do) can be determined with high precision.

上記実施例においてはモノクロメータは2個の結晶を並
行配置した場合を示したが、結晶の個数は更に増やして
よい。しかし結晶の個数を増やすことはビームの強度を
弱めること、結晶面の調整のための複雑さが伴う。
In the above embodiment, the monochromator has two crystals arranged in parallel, but the number of crystals may be further increased. However, increasing the number of crystals involves weakening the beam intensity and complicating the adjustment of crystal planes.

[発明の効果コ 本発明によれば、複数個の結晶からなるモノクロメータ
により、波長幅の狭い(〜10−6)入射X線ビームを
得ることができ、それによる回折強度曲線の半値幅は秒
オーダとなる。また、本発明による測定方法は標準結晶
と試料結晶に対し、A側、B側の逆方向入射を採用して
いるため、測定による各種誤差は相殺され、高精度(Δ
d/doで10−6〜10−7)な測定ができる。
[Effects of the Invention] According to the present invention, an incident X-ray beam with a narrow wavelength width (~10-6) can be obtained by using a monochromator made of a plurality of crystals, and the half-width of the diffraction intensity curve is It is on the order of seconds. In addition, since the measurement method according to the present invention adopts opposite directions of incidence on the A side and B side for the standard crystal and sample crystal, various errors caused by measurement are canceled out, resulting in high accuracy (Δ
10-6 to 10-7) can be measured in d/do.

更に、本発明の特徴は」二述のように、入射X線に並行
配置の二結晶法を光学系の基本とするため、10 測定すべき試料(結晶)の結晶の種類が変わるとき、モ
ノクロメータの交換など、光学系の変更は全く必要がな
く、実験の効率を大幅に向上することができる。
Furthermore, as mentioned in Section 2, the present invention is characterized by the fact that the optical system is based on the two-crystal method in which the two crystals are arranged parallel to the incident X-rays. There is no need to change the optical system, such as replacing meters, and the efficiency of experiments can be greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はいずれも本発明による格子定数測定
装置の1実施例の要部構成図、第3図(a)及び(b)
はそれぞれ第↓図及び第2図の試料結晶10近傍を拡大
した図、第4図は本発明で得られる回折強度曲線の模式
図、第5図は従来の格子定数測定装置の概略図である。 工:X線ビーム、2:X線源、3:スリット、5:モノ
クロメータの第1結晶、6:モノクロメータの第2結晶
、7:計数管、9:回転試料台、10:試料結晶、11
:標準結晶、。
1 and 2 are main part configuration diagrams of one embodiment of the lattice constant measuring device according to the present invention, and FIGS. 3(a) and (b)
are enlarged views of the vicinity of the sample crystal 10 in Figures ↓ and 2, respectively, Figure 4 is a schematic diagram of the diffraction intensity curve obtained by the present invention, and Figure 5 is a schematic diagram of a conventional lattice constant measuring device. . Engineering: X-ray beam, 2: X-ray source, 3: slit, 5: first crystal of monochromator, 6: second crystal of monochromator, 7: counter tube, 9: rotating sample stage, 10: sample crystal, 11
: Standard crystal.

Claims (1)

【特許請求の範囲】 1、X線源から発生するX線ビームを単色化するモノク
ロメータと、回転試料台を有し、上記モノクロメータに
よって単色化されたX線ビームを上記回転試料台に固定
された複数個の単結晶に対し照射したときの回折ビーム
を計測する手段とを有する格子定数測定装置において、
上記モノクロメータが複数個の結晶を反射結晶面が並行
になるように配置して構成されたことを特徴とする格子
定数測定装置。 2、請求項第1記載の格子定数測定装置を用いて試料結
晶の格子定数の変化を測定する方法において、 上記回転試料台に固定された複数個の単結晶のうち、少
なくとも1つを標準結晶とし、上記試料結晶の近くに配
置し、第1の方向から上記単色化されたX線ビームを上
記標準結晶及び試料結晶に照射し、その時の標準結晶及
び試料結晶の回折ビームの第1の角度差、及び上記第1
の方向に上記回折ビームが生じるような第2の方向から
上記単色化されたX線ビームを上記標準結晶及び試料結
晶に照射し、その時の標準結晶及び試料結晶の回折ビー
ムの第2の角度差を計測し、上記第1及び第2の角度差
をもちいて試料結晶の格子定数の変化を測定することを
特徴とする格子定数の測定方法。
[Claims] 1. A monochromator that monochromates an X-ray beam generated from an X-ray source and a rotating sample stage, and the X-ray beam monochromated by the monochromator is fixed to the rotating sample stage. A lattice constant measuring device having a means for measuring a diffracted beam when irradiating a plurality of single crystals,
A lattice constant measuring device characterized in that the monochromator is constructed by arranging a plurality of crystals so that their reflective crystal planes are parallel. 2. A method for measuring a change in the lattice constant of a sample crystal using the lattice constant measuring device according to claim 1, wherein at least one of the plurality of single crystals fixed to the rotating sample stage is a standard crystal. is placed near the sample crystal, and the monochromated X-ray beam is irradiated to the standard crystal and sample crystal from a first direction, and the first angle of the diffracted beams of the standard crystal and sample crystal at that time is difference, and the first
The standard crystal and the sample crystal are irradiated with the monochromatic X-ray beam from a second direction such that the diffracted beam is generated in the direction of the second angular difference between the diffracted beams of the standard crystal and the sample crystal. A method for measuring a lattice constant, characterized in that the change in the lattice constant of a sample crystal is measured using the first and second angular differences.
JP1231739A 1989-09-08 1989-09-08 Apparatus and method for measuring lattice constant Pending JPH0395446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1231739A JPH0395446A (en) 1989-09-08 1989-09-08 Apparatus and method for measuring lattice constant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1231739A JPH0395446A (en) 1989-09-08 1989-09-08 Apparatus and method for measuring lattice constant

Publications (1)

Publication Number Publication Date
JPH0395446A true JPH0395446A (en) 1991-04-19

Family

ID=16928282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1231739A Pending JPH0395446A (en) 1989-09-08 1989-09-08 Apparatus and method for measuring lattice constant

Country Status (1)

Country Link
JP (1) JPH0395446A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194743A (en) * 2005-01-13 2006-07-27 Canon Inc Crystal orientation measuring method and sample holder used therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194743A (en) * 2005-01-13 2006-07-27 Canon Inc Crystal orientation measuring method and sample holder used therefor

Similar Documents

Publication Publication Date Title
EP0110469B1 (en) X-ray analysis apparatus comprising a four-crystal monochromator
US8085900B2 (en) Method for X-ray wavelength measurement and X-ray wavelength measurement apparatus
EP0095207B1 (en) Double crystal x-ray spectrometer
JP3519203B2 (en) X-ray equipment
JPH0395446A (en) Apparatus and method for measuring lattice constant
JPH11304729A (en) X-ray measurement method and x-ray measurement device
JPH0763897A (en) X-ray spectroscope
JPS63225159A (en) Electromagnetic beam diffraction apparatus
JPH10282022A (en) Fluorescent x-ray analysis method and apparatus
JPS6243160B2 (en)
SU1141321A1 (en) X-ray spectrometer
JPH04175644A (en) Lattice constant measuring device
JPH03125948A (en) Method for precisely measuring lattice constant
JPH0395445A (en) Apparatus and method for measuring lattice constant
JP2952284B2 (en) X-ray optical system evaluation method
JP2616452B2 (en) X-ray diffractometer
JPH0795044B2 (en) X-ray diffractometer
SU842519A1 (en) Method of mono-crystal lattice parameter relative measuring
JPH06167464A (en) Inspecting apparatus for cut surface of single crystal material
SU1622803A1 (en) Method of determining the degree of disturbance of surface of volume of monocrystalline plates
SU1103127A1 (en) Method of determination of monocrystal plate orientation
JP2000065763A (en) X-ray analyzer
JPH0762720B2 (en) Double crystal X-ray spectrometer
SU894499A1 (en) Method of measuing monocrystal bend
JPH04110646A (en) X-ray diffraction apparatus