JPH0395334A - Cold-heat storage device - Google Patents

Cold-heat storage device

Info

Publication number
JPH0395334A
JPH0395334A JP23076789A JP23076789A JPH0395334A JP H0395334 A JPH0395334 A JP H0395334A JP 23076789 A JP23076789 A JP 23076789A JP 23076789 A JP23076789 A JP 23076789A JP H0395334 A JPH0395334 A JP H0395334A
Authority
JP
Japan
Prior art keywords
refrigerant
cold
nozzle
heat storage
storage agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23076789A
Other languages
Japanese (ja)
Inventor
Kunio Iritani
邦夫 入谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP23076789A priority Critical patent/JPH0395334A/en
Publication of JPH0395334A publication Critical patent/JPH0395334A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress formation of a gas hydrate to the least possible and achieve an ample storage of cold heat at a specified temperature by providing a double tube comprising a refrigerant-feeding pipe to be set in a cold-heat storage vessel and an outer tube, said refrigerant-feeding pipe having a nozzle for ejecting refrigerant at the forward end and being surrounded at a part close to the nozzle by said outer tube with some space therebetween and in the manner of a double tube in structure. CONSTITUTION:A refrigerant-feeding pipe 2 has a nozzle 3 formed at the forward end and is surrounded at a part close to the nozzle 3 by an outer tube 4 concentrically and with some space therebetween, said outer tube 4 being fixed to the refrigerant-feeding pipe 2 by radially provided fins 5. A jet stream of refrigerant ejected into a cold-heat storage agent S from the nozzle 3 induces an upward flow of the cold-heat storage agent S in passageways 7 formed in the double-tube structure 6, causing a flow of cold-heat storage agent S into the passageways 7 from the lower end of the outer tube 4. Since the cold-heat storage agent S flowing through the passageways 7 is cooled by the outer surfaces of the refrigerant-feeding pipe 2 and the fins 5 to a preliminarily cooled state, there is but a small difference in temperature between the refrigerant ejected from the nozzle 3 and the cold-heat storage agent S flowing out from the passageways 7 together with and around the jet stream of refrigerant so that the contact between the refrigerant and the cold-heat storage agent S does not cause an explosive ebullition and the formation of a gas hydrate can be suppressed.

Description

【発明の詳細な説明】 r産業上の利用分野」 本発明は、水と冷媒との直接接触による氷蓄冷システム
を利用した蓄冷装置に関するものである.「従来の技術
及びその問題点」 都市におけるビル等の昼間冷房による電力消費量のピー
ク値の平準化、電力消費量の低減及び熱源設備の小型化
等を目的として、氷蓄熱システムが利用されている.氷
蓄熱システムは、伝熱管の氷結に伴う冷凍機の効率低下
を避けるため、水と冷媒の直接接触を利用する形式の氷
蓄熱システムが主流になりつつある. しかしながら、上記氷蓄熱システムは、冷媒を直接エチ
レングリコール水溶液等の蓄冷剤中に噴出するようにし
ているから、その蓄冷過程において氷〈リキッドアイス
〉を生成するとともに、ガス水和物をも生成する。蓄冷
剤と冷媒との温度差が大きいと、蓄冷剤と接触する冷媒
の爆発的な沸騰が繰り返されて、ガス水和物の生戊が益
々促進され、蓄冷剤の水面に達するまでガス水和物が生
成される.このため、気化した冷媒とともにガス水和物
が冷凍サイクル内に流出し、冷凍サイクルの閉塞を引き
起こす問題がある.さらに、ガス水和物はその生成温度
(氷結温度より高温)において潜熱をもつこととなり、
所定の氷結温度での蓄冷を十分行うことができない等の
問題点があった.「発明が解決しようとする課題」 本発明は、前記問題点を解決するためになされたもので
、ガス水和物の生戒を極力抑制して、所定温度での十分
な蓄冷を行うことができる蓄冷装置を提供することを目
的とするものである.「課題を解決するための手段」 前記目的を達成するための具体的手段として、蓄冷槽内
に冷媒供給管を配管し、その冷媒供給管の先幻に冷媒を
噴出するノズルを形戒するとともに、該ノズルの近傍を
外管により間隔を明けて取り囲んだ2重管構造としたこ
とを特徴とする蓄冷装置が提供される。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a cold storage device that uses an ice cold storage system that uses direct contact between water and a refrigerant. "Conventional technology and its problems" Ice thermal storage systems are used for the purpose of leveling out peak power consumption during daytime cooling of buildings, etc. in cities, reducing power consumption, and downsizing heat source equipment. There is. Ice heat storage systems that utilize direct contact between water and refrigerant are becoming mainstream in order to avoid the reduction in chiller efficiency caused by freezing of heat transfer tubes. However, since the ice heat storage system described above directly injects the refrigerant into a cold storage agent such as an aqueous ethylene glycol solution, not only ice (liquid ice) is generated in the cold storage process, but also gas hydrates are generated. . If the temperature difference between the cool storage agent and the refrigerant is large, the explosive boiling of the refrigerant that comes into contact with the cool storage agent will be repeated, and the formation of gas hydrate will be further promoted, and the gas hydrate will continue until it reaches the water surface of the cool storage agent. Things are generated. As a result, gas hydrates flow into the refrigeration cycle along with the vaporized refrigerant, causing a problem of clogging of the refrigeration cycle. Furthermore, gas hydrates have latent heat at their formation temperature (higher than freezing temperature).
There were problems such as the inability to sufficiently store cold at a specified freezing temperature. "Problems to be Solved by the Invention" The present invention was made to solve the above-mentioned problems, and it is possible to suppress the consumption of gas hydrates as much as possible and to perform sufficient cold storage at a predetermined temperature. The purpose is to provide a cold storage device that can "Means for Solving the Problems" As a specific means to achieve the above objective, a refrigerant supply pipe is installed inside the refrigerant tank, and a nozzle that spouts refrigerant is installed at the end of the refrigerant supply pipe. Provided is a cold storage device characterized in that it has a double tube structure in which the vicinity of the nozzle is surrounded by an outer tube with a gap between them.

「作用」 前記蓄冷装置によれば、冷媒供給管に冷媒を供給して先
端のノズルから蓄冷槽内の蓄冷剤中に噴出させると、冷
媒の噴出流に伴ってノズルの近傍に形戒した2重管構造
部を通過する蓄冷剤の流れが生じ5該2重管構造部にお
いて冷媒と蓄冷剤との間で熱交換が行われ、2重管構造
部を通過する蓄冷剤が予冷されてノズルから噴出する冷
媒との温度差が小さくなり、冷媒の爆発的な沸騰が生じ
ないからガス水和物の生戒が抑制される.「実施例」 (第1実施例) 本発明の第1実施例を添付図面第1〜3図に基づいて説
明する. 第1図は、蓄冷装置の概略構或図である.エチレングリ
コール水溶液等の蓄冷剤Sを貯める蓄冷槽1の底面1a
には、冷媒供給管2を配管してその先端にノズル3を形
戒する.ノズル3の近傍の冷媒供給管2を、外管4によ
り間隔を明けて同心で取り囲み半径方向のフィン5によ
り該外管4を冷媒供給管2に固定する。外管4の下端は
、蓄冷槽1の底面1aに接触させないで隙間lを形成す
る。前記フィン5の数は適宜設定する。
"Function" According to the refrigerant storage device, when refrigerant is supplied to the refrigerant supply pipe and jetted from the nozzle at the tip into the regenerator in the regenerator tank, the refrigerant ejects into the refrigerant near the nozzle. A flow of the regenerator passes through the double pipe structure, and heat exchange occurs between the refrigerant and the regenerator in the double pipe structure. Since the temperature difference between the refrigerant and the refrigerant spouted from the refrigerant is small, explosive boiling of the refrigerant does not occur, and the formation of gas hydrates is suppressed. ``Example'' (First Example) A first example of the present invention will be described based on the accompanying drawings 1 to 3. Figure 1 is a schematic diagram of the cold storage device. Bottom surface 1a of a cold storage tank 1 that stores a cold storage agent S such as an ethylene glycol aqueous solution
In this case, a refrigerant supply pipe 2 is installed and a nozzle 3 is installed at the tip of the refrigerant supply pipe 2. The refrigerant supply pipe 2 in the vicinity of the nozzle 3 is surrounded concentrically by an outer pipe 4 with a space therebetween, and the outer pipe 4 is fixed to the refrigerant supply pipe 2 by radial fins 5. The lower end of the outer tube 4 is not brought into contact with the bottom surface 1a of the cold storage tank 1 to form a gap l. The number of the fins 5 is set appropriately.

冷媒供給管2と外管4で構成される2重管構造部6は一
種の熟交換器であり、半径方向で隣り合うフィン5で区
画された複数の流通路7が形成され、冷媒供給管2内を
流れる冷媒と流通路7を流れる蓄冷剤Sとの間で熱交換
を行って、蓄冷剤Sを予冷する.このため、2重管構造
部6の長さは10〜30clI1が好適となる。さらに
蓄冷槽1の上面1bには冷媒流出管8を配管するととも
に、該冷媒流出管8と前記冷媒供給管2とを接続させて
冷媒循環路9を形成し、その冷媒循環路9中に圧縮機1
0.凝縮器11,レシーバ12,及び膨張弁13を配設
して冷媒サイクルを構或する。膨張弁13と冷媒供給管
2との間の冷媒循環路9aには電磁弁14を介装し、冷
媒流出管8と圧縮機10との間の冷媒循環路9bには、
電磁弁15と水分離器16どを直列に介装する.水分離
器16は、気化した冷媒中に混入する水分を分離して、
蓄冷槽1に戻す.前記2重管構造部6の外管4の上端部
には、流通路7を流れる蓄冷剤Sの温度を検出する温度
センサ17を設置する.また蓄冷槽1内には蓄冷剤Sの
温度を検出する温度センサ18が設置される。温度セン
サ17,18の各温度検出信号は、それぞれ制御ボック
ス19に入力される.制御ボックス19は、温度センサ
17.18等の各種センサからの信号を入力し、所定の
制御プログラムにより膨張弁13の開度を調整するとか
、ファンllaの回転を止めたり、圧縮機10の回転数
を制御する等の制御信号を出力するもので、入出力イン
ターフェイス1中央演算処理装置及びメモリくいずれも
図示しない)等により楕或される。
The double pipe structure 6 composed of the refrigerant supply pipe 2 and the outer pipe 4 is a kind of mature exchanger, and a plurality of flow passages 7 are formed that are partitioned by radially adjacent fins 5, and the refrigerant supply pipe Heat exchange is performed between the refrigerant flowing in the refrigerant 2 and the cool storage agent S flowing in the flow path 7, and the cool storage agent S is precooled. For this reason, the length of the double pipe structure portion 6 is preferably 10 to 30 clI1. Further, a refrigerant outflow pipe 8 is installed on the upper surface 1b of the cold storage tank 1, and the refrigerant outflow pipe 8 and the refrigerant supply pipe 2 are connected to form a refrigerant circulation path 9. Machine 1
0. A refrigerant cycle is constructed by disposing a condenser 11, a receiver 12, and an expansion valve 13. A solenoid valve 14 is interposed in the refrigerant circulation path 9a between the expansion valve 13 and the refrigerant supply pipe 2, and a refrigerant circulation path 9b between the refrigerant outlet pipe 8 and the compressor 10 is provided with a solenoid valve 14.
A solenoid valve 15 and a water separator 16 are installed in series. The water separator 16 separates water mixed into the vaporized refrigerant,
Return to cold storage tank 1. A temperature sensor 17 is installed at the upper end of the outer tube 4 of the double tube structure 6 to detect the temperature of the cool storage agent S flowing through the flow path 7. Further, a temperature sensor 18 for detecting the temperature of the cool storage agent S is installed in the cool storage tank 1 . Each temperature detection signal from the temperature sensors 17 and 18 is input to a control box 19, respectively. The control box 19 inputs signals from various sensors such as temperature sensors 17 and 18, and adjusts the opening degree of the expansion valve 13, stops the rotation of the fan lla, and controls the rotation of the compressor 10 according to a predetermined control program. The input/output interface 1 is used to output control signals for controlling the numbers, etc., and is controlled by the input/output interface 1 (central processing unit, memory (none of which are shown), etc.).

なお、冷媒としてはR−11,R−12等のハロゲン化
メタンを用いる. 本発明の第1実施例は、前記した構成になるもので、以
下にその作動を説明する。
Note that halogenated methane such as R-11 and R-12 is used as the refrigerant. The first embodiment of the present invention has the configuration described above, and its operation will be explained below.

圧縮機10,凝縮器11等から構戒される冷凍サイクル
が駆動されると、冷媒供給管2の先端のノズル3から蓄
冷剤S中に冷媒が噴出される.この冷媒の噴出流に伴っ
て、2重管構造部6の流通路7内の蓄冷剤Sに上向きの
流れが引き起こされ、2重管構造部6の外管4の下端か
ら蓄冷剤Sが流通路7へ流入する.流通路7中を流れる
蓄冷剤Sは、冷媒供給管2の外周と半径方向の多数のフ
ィン5により冷却され予冷状態となっているので、ノズ
ル3から噴出する冷媒と、その噴出流とともに流通路7
から冷媒の周囲に流出する蓄冷剤Sとの温度差は小さく
、冷媒と蓄冷剤Sとが接触しても爆発的な沸騰は起きな
い.冷媒と蓄冷剤Sとの接触により生成される氷〈リキ
ッドアイス)は、蓄冷剤Sの水面近くに上昇する. 前記したように、冷媒の爆発的沸騰が生じなII1ため
ガス水和物の生成が抑制され、所定の温度で十分な蓄冷
を行うことができるとともに、ガス水和物が水面近くま
で生成されないから、気化した冷媒とともにガス水和物
が冷凍サイクル内へ流出することもない。
When the refrigeration cycle controlled by the compressor 10, condenser 11, etc. is driven, refrigerant is ejected into the regenerator S from the nozzle 3 at the tip of the refrigerant supply pipe 2. With this jet flow of refrigerant, an upward flow is caused in the cool storage agent S in the flow path 7 of the double tube structure 6, and the cool storage agent S flows from the lower end of the outer tube 4 of the double tube structure 6. It flows into Route 7. The coolant S flowing through the flow path 7 is cooled by the outer periphery of the refrigerant supply pipe 2 and a large number of radial fins 5 and is in a pre-cooled state. 7
The temperature difference between the refrigerant and the cool storage agent S flowing out around the refrigerant is small, and even if the refrigerant and the cool storage agent S come into contact, explosive boiling will not occur. Ice (liquid ice) generated by contact between the refrigerant and the cold storage agent S rises near the water surface of the cold storage agent S. As mentioned above, since explosive boiling of the refrigerant does not occur II1, the generation of gas hydrates is suppressed, and sufficient cold storage can be performed at a predetermined temperature, and gas hydrates are not generated close to the water surface. Also, gas hydrates do not leak into the refrigeration cycle together with the vaporized refrigerant.

また、制御ボックス19は、例えば温度センサ1Sが検
出した蓄冷剤Sの温度が凍結温度に達していないのに、
温度センサ17が凍結温度を検出した場合には、制御信
号を出力して膨張弁13の開度を増加するとか、凝縮器
11のファンllaを止める等して、ノズル3や流通路
7の凍結を防止する.その他、2重管構造部6の外管4
Cこシ一ト状のヒータ(図示しない)を設置して、制御
ボ・ンクス19からの制御信号により該ヒータを加熱し
てノズル3とか流通路7の凍結を防止することもできる
. (第2実施例) 本発明の第2実施例を添付図面第4.5図に基づいて説
明する。
In addition, the control box 19 may, for example, even though the temperature of the cold storage agent S detected by the temperature sensor 1S has not reached the freezing temperature,
When the temperature sensor 17 detects a freezing temperature, it outputs a control signal to increase the opening of the expansion valve 13 or stops the fan lla of the condenser 11 to prevent the nozzle 3 and the flow path 7 from freezing. Prevent. In addition, the outer pipe 4 of the double pipe structure section 6
It is also possible to install a C-shaped heater (not shown) and heat the heater in response to a control signal from the control box 19 to prevent the nozzle 3 or the flow path 7 from freezing. (Second Embodiment) A second embodiment of the present invention will be described based on the accompanying drawings FIG. 4.5.

第2実施例の蓄冷装置の構成は、前記第1実施例の蓄冷
装置の構成と共通する部分が多いので、その共通部分は
第1実施例と同一の符号を付して説明を省略する, 第4図の蓄冷装置の概略nttc図において、蓄冷槽1
の底面1aに配管される冷媒供給管2は、前記底面1a
に平行な水平部2aと、該水平部2aからほぼ直角.E
向きに湾曲する湾曲部2bとから戒り、湾曲部2bの先
端にノズル3を形成したものである。また、冷媒供給管
2の水平部2aから湾曲部2bにかけて、外管4により
同心で間隔を明けて取り囲み、半径方向の多数のフィン
5により該外管4を冷媒供給管2に固定して2重管m造
部6を構戒する.冷媒供給管2と電磁弁14との間の冷
媒循環路9aには、三方弁21を介装して、該冷媒循環
路9aを分岐する。その分岐H@ 9 cは、蓄冷槽1
の底面1aに固定した冷媒噴出管22と接続する.冷媒
噴出管22の先端にはノズル23が形成されている。三
方弁21は、制御ボ・ンクス19からの切換信号により
切換えられる.また、圧縮機10は制御ボックス19の
制御信号Cこより回転数又は容量が制御される。
Since the configuration of the cold storage device of the second embodiment has many parts in common with the configuration of the cold storage device of the first embodiment, the common parts will be given the same reference numerals as those of the first embodiment, and the explanation will be omitted. In the schematic nttc diagram of the cold storage device in Figure 4, the cold storage tank 1
The refrigerant supply pipe 2 piped to the bottom surface 1a of the bottom surface 1a is
a horizontal portion 2a parallel to the horizontal portion 2a; E
A nozzle 3 is formed at the tip of the curved portion 2b, which curves in the same direction as the curved portion 2b. Further, from the horizontal part 2a to the curved part 2b of the refrigerant supply pipe 2, an outer pipe 4 surrounds the refrigerant supply pipe 2 concentrically and at intervals, and the outer pipe 4 is fixed to the refrigerant supply pipe 2 by a large number of radial fins 5. The heavy pipe construction section 6 will be inspected. A three-way valve 21 is interposed in the refrigerant circulation path 9a between the refrigerant supply pipe 2 and the electromagnetic valve 14 to branch the refrigerant circulation path 9a. The branch H@9c is the cold storage tank 1
It is connected to the refrigerant jet pipe 22 fixed to the bottom surface 1a of the. A nozzle 23 is formed at the tip of the refrigerant jet pipe 22 . The three-way valve 21 is switched by a switching signal from the control box 19. Further, the rotation speed or capacity of the compressor 10 is controlled by a control signal C from a control box 19.

上記槽戒の第2実施例の蓄冷装置の作動番二つ11)て
、第5図に示す蓄冷運転の制御フローチャートに従って
説明する。
The operation number of the cold storage device according to the second embodiment of the tank control described above will be explained according to the control flowchart of the cold storage operation shown in FIG.

蓄冷運転が開始されると、ステ・ソプ1104こおいて
蓄冷槽1内の蓄冷剤Sの温度を検出する温度センサ18
の検出温度と凍結温度とを比較し、検出温度が凍結温度
より高い場合は、ステ・7プ115へ進み三方弁21を
制御ボ・/クス19の切換信号により切換えて、冷媒を
冷媒供給管2の先端のノズル3から噴出させる.冷媒供
給管2の水平部2aから湾曲部2bに亘る熱交換器であ
る2重管構造部6の流通路7内では、冷媒と該流通路7
を流れる蓄冷剤Sとの間で熱交換が行われて、蓄冷剤S
が予冷される。従って、ノズノレ3カ)ら噴出される冷
媒と、該冷媒の噴出流に伴(1、2重管構造部6の流通
路7から噴出する冷媒の周囲に流出する蓄冷剤Sとの温
度差は小さく、冷媒と蓄冷剤Sとが接触しても冷媒の爆
発的沸騰は生じることはない.続くステップ120では
、流通路7を流出する蓄冷剤Sの温度を検出ずる温度セ
ンサ17の検出温度と凍結温度とを比較する.検出温度
が凍結温度よりも高い場合は、ステップ125へ進んで
制御ボックス1つからの制御信号により温度センサ17
の検出温度に応じて圧縮機10の回転数を上げたり、圧
縮機10の容量を大きくする等して、冷凍能力を高める
。前記ステップ120で温度センサ17の検出温度が凍
結温度に達したと判定されるまで、検出温度に応じて冷
凍能力を高めたり若しくは変化させて蓄冷運転を行う.
ステップ120で温度センサ17の検出温度が凍結温度
に達したと判定されると、ステップ130へ進んで、前
記と逆に冷凍能力を下げて蓄冷運転を行う。
When the cold storage operation is started, the temperature sensor 18 detects the temperature of the cold storage agent S in the cold storage tank 1 at the step 1104.
The detected temperature is compared with the freezing temperature, and if the detected temperature is higher than the freezing temperature, proceed to step 7 115 and switch the three-way valve 21 with the switching signal of the control box 19 to transfer the refrigerant to the refrigerant supply pipe. Spray from nozzle 3 at the tip of 2. In the flow passage 7 of the double pipe structure 6, which is a heat exchanger, extending from the horizontal part 2a to the curved part 2b of the refrigerant supply pipe 2, the refrigerant and the flow passage 7
Heat exchange is performed with the cool storage agent S flowing through the cool storage agent S.
is pre-cooled. Therefore, the temperature difference between the refrigerant spouted from the nozzle nozzle 3) and the cool storage agent S flowing around the refrigerant spouted from the flow path 7 of the double-pipe structure 6 along with the jet flow of the refrigerant is Even if the refrigerant and the cool storage agent S come into contact, explosive boiling of the refrigerant will not occur.In the subsequent step 120, the temperature detected by the temperature sensor 17 that detects the temperature of the cool storage agent S flowing out of the flow path 7 is compared with the temperature detected by the temperature sensor 17. If the detected temperature is higher than the freezing temperature, the process proceeds to step 125 and the temperature sensor 17 is compared with the control signal from one control box.
The refrigerating capacity is increased by increasing the rotation speed of the compressor 10 or increasing the capacity of the compressor 10 in accordance with the detected temperature. Until it is determined in step 120 that the temperature detected by the temperature sensor 17 has reached the freezing temperature, the cold storage operation is performed by increasing or changing the refrigerating capacity according to the detected temperature.
If it is determined in step 120 that the temperature detected by the temperature sensor 17 has reached the freezing temperature, the process proceeds to step 130, in which the refrigerating capacity is lowered and a cold storage operation is performed, contrary to the above.

冷凍能力を下げた蓄冷運転は、前記ステップ110で温
度センサ18の検出温度が凍結温度に達したと判定され
るか、又はステップ120で温度センサ17の検出温度
が凍結温度より高いと判定されるまで続行される7 j二た、前記λテッ71 ]−0で、温度七ンザ18の
検出温度が凍結m度に達したε判定さh、るど、スデッ
プ135へ巡み制御ボックス19からの制御信号により
、三方弁2lを切換えて冷媒循環路9aと分岐路9cと
を連通させ、冷媒を冷媒噴出管22のノズル23から噴
出さぜる。これは、温度センザ18により検田される蓄
冷MSの温度が凍結温度に達した場合には、最早2重管
構造部6で蓄冷剤Sを予冷する必要もないからである。
In the cold storage operation with reduced refrigerating capacity, it is determined in step 110 that the temperature detected by the temperature sensor 18 has reached the freezing temperature, or it is determined in step 120 that the temperature detected by the temperature sensor 17 is higher than the freezing temperature. 7 j Second, when the temperature detected by the temperature sensor 18 reaches m degrees of freezing at In response to the control signal, the three-way valve 2l is switched to connect the refrigerant circulation path 9a and the branch path 9c, and the refrigerant is ejected from the nozzle 23 of the refrigerant ejection pipe 22. This is because when the temperature of the cold storage MS detected by the temperature sensor 18 reaches the freezing temperature, it is no longer necessary to pre-cool the cold storage agent S in the double pipe structure section 6.

ステップ140では冷凍サイクルの冷凍能力を高めて蓄
冷運転を打う.この蓄冷運転は、ステップ145で温度
七ンザ18が、設定した所定の蓄冷温度以丁の温度を検
j{Jずるこεにより終了する。
In step 140, the refrigeration capacity of the refrigeration cycle is increased to perform cold storage operation. This cold storage operation is ended in step 145 when the temperature sensor 18 detects a temperature equal to or higher than the set predetermined cold storage temperature.

以上のように、温度七ンザ17,18の検出温度Cこ対
応して、冷凍ザイクルの冷凍能力をきめ細かく変更して
蓄冷運転を制御することにより、冷媒k蓄冷剤Sとの温
度差を小さくするとともに、蓄冷剤Sが凍結温度近くま
で予冷されるから、冷媒の燗発的な沸腕は起きずガス水
和物の生成が抑制さi1、る,まi:蓄冷剤Sの温度が
凍結温筬に達1,た時は、三方弁2】を切換!るとと#
,に冷凍能力を高めて、直接冷媒噴li管22のノズル
23がら冷媒を噴出するようにしたから、所定の蓄冷温
』ツまでの到連時間を短縮゜rきる、 尚、前記第2実瑞例における冷媒供給管2は湾曲部2b
を形成することなく、冷媒を水平方向へ噴出するように
してもよい。第2実施例の場合は、2重管梢造部bが水
平部及び湾曲部kがら形成され、第1実施例の場合に比
κて長くなっているが、前記したように、温度センザ1
7,18の検出温度に基づくきめ細かな制御を行ったり
、シーl・状ヒータ(図示しない)を適宜2重管槽造部
6に配設して、ノズル3ヒか流通路7が凍結l2ないよ
うにする。
As described above, by controlling the cold storage operation by finely changing the freezing capacity of the freezing cycle in response to the detected temperatures C of the temperature sensors 17 and 18, the temperature difference between the refrigerant K and the cold storage agent S is reduced. At the same time, since the cold storage agent S is pre-cooled to near the freezing temperature, the generation of gas hydrates is suppressed without causing boiling of the refrigerant. When reaching the reed, switch the three-way valve 2! #
Since the refrigerating capacity is increased and the refrigerant is ejected directly from the nozzle 23 of the refrigerant injection pipe 22, the time required to reach the predetermined cold storage temperature can be shortened. The refrigerant supply pipe 2 in the example has a curved part 2b.
The refrigerant may be ejected in the horizontal direction without forming the refrigerant. In the case of the second embodiment, the double pipe structure part b is formed of a horizontal part and a curved part k, and is longer than that in the first embodiment.
Fine control is carried out based on the detected temperatures of 7 and 18, and a seal heater (not shown) is appropriately installed in the double tube tank construction part 6 to prevent the nozzle 3 and the flow path 7 from freezing. do it like this.

また、冷凍ザイクルの冷凍能力の変更は、制御ボックス
19の制御借号により凝縮器11、のファン1 1 a
の回転又は崖張弁13の開度を変更するこヒにより行う
こεもできる, 「発明の効果」 本発明の蓄冷装置は、前配した構成を有するから冷媒供
給管に冷媒を供給して先端のノズルから蓄冷槽内の蓄冷
剤中に噴出さぜるヒ、冷媒の噴出流に伴ってノズルの近
傍に2重管構造部を通過する蓄冷剤の流れが生じ、該2
重管構造部において冷媒ヒ蓄冷剤ヒの間で熱交換が行わ
れ、2重管構造部を通過ずz)蓄冷剤が予冷きれてノズ
ルから噴出する冷媒ヒの温度差が小さくなり、冷媒の燗
発的な沸騰が生じないから、ガス水和物の生或が抑制き
れ、所定の氷結温度での十分な蓄冷を行うこヒができる
εεもに、該ガス水和物が蓄冷剤の水面近くまで生成さ
れるこヒもな《、気化した冷媒とεもにガス水和物が冷
凍ザイクル内に流出して、冷凍ザイクルを閉窓ず6よう
な不都合を生じることがない等の諸効果を有ずる3 5図は本発明の第2実施例を例示し.、第4図は概略槽
成図、第5図は制御フローチャ−1−である。
Further, the refrigerating capacity of the refrigerating cycle can be changed by controlling the fan 11a of the condenser 11 by controlling the control box 19.
This can also be done by rotating the refrigerant or changing the opening degree of the cliff valve 13. ``Effects of the Invention'' The refrigerant storage device of the present invention has a configuration in which the refrigerant is supplied to the refrigerant supply pipe. When the refrigerant is ejected from the nozzle at the tip into the refrigerant in the regenerator tank, a flow of the refrigerant passing through the double pipe structure is generated near the nozzle due to the ejected flow of the refrigerant.
Heat exchange occurs between the refrigerant and the refrigerant in the double pipe structure, and the refrigerant does not pass through the double pipe structure. Since no explosive boiling occurs, the formation of gas hydrates can be suppressed and sufficient cold storage can be achieved at a predetermined freezing temperature. Effects such as preventing the vaporized refrigerant and gas hydrate from flowing into the freezing cycle, which prevents the freezing cycle from closing and causing such inconveniences. Figure 35 illustrates a second embodiment of the invention. , FIG. 4 is a schematic diagram of the tank, and FIG. 5 is a control flowchart-1.

1....蓄冷槽、 2...冷媒供給管、 36,.
ノズル、 4..7外管,  6...2兎管構造部、
 S...蓄冷剤9
1. .. .. .. Cold storage tank, 2. .. .. Refrigerant supply pipe, 36,.
nozzle, 4. .. 7 outer tube, 6. .. .. 2 rabbit tube structure,
S. .. .. Cold storage agent 9

【図面の簡単な説明】[Brief explanation of drawings]

添付図面第1,〜3図は本発明の第1実施例を例示し、
第】7図は概略1iR或図5第2図は要部の拡大l1@
面調、第3図は第2図A−A線断面図、第福,第 1 図 第 4 図 第 2 図 6 第 3 図 第 5 図
The accompanying drawings 1 to 3 illustrate a first embodiment of the present invention,
Figure 7 is an outline 1iR or Figure 5 Figure 2 is an enlarged view of the main part l1@
Surface condition, Figure 3 is a sectional view taken along the line A-A in Figure 2, Figure 1, Figure 4, Figure 2, Figure 6, Figure 3, Figure 5.

Claims (1)

【特許請求の範囲】[Claims] 蓄冷槽内に冷媒供給管を配管し、その冷媒供給管の先端
に冷媒を噴出するノズルを形成するとともに、該ノズル
の近傍を外管により間隔を明けて取り囲んだ2重管構造
としたことを特徴とする蓄冷装置。
A refrigerant supply pipe is installed inside the refrigerant tank, a nozzle is formed at the tip of the refrigerant supply pipe to eject refrigerant, and the vicinity of the nozzle is surrounded by an outer pipe with a gap between them to create a double pipe structure. Characteristic cold storage device.
JP23076789A 1989-09-06 1989-09-06 Cold-heat storage device Pending JPH0395334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23076789A JPH0395334A (en) 1989-09-06 1989-09-06 Cold-heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23076789A JPH0395334A (en) 1989-09-06 1989-09-06 Cold-heat storage device

Publications (1)

Publication Number Publication Date
JPH0395334A true JPH0395334A (en) 1991-04-19

Family

ID=16912945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23076789A Pending JPH0395334A (en) 1989-09-06 1989-09-06 Cold-heat storage device

Country Status (1)

Country Link
JP (1) JPH0395334A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265182A (en) * 1993-03-11 1994-09-20 Nkk Corp Ice water slurry storage equipment
US6955050B2 (en) * 2003-12-16 2005-10-18 Active Power, Inc. Thermal storage unit and methods for using the same to heat a fluid
US7693402B2 (en) 2004-11-19 2010-04-06 Active Power, Inc. Thermal storage unit and methods for using the same to heat a fluid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265182A (en) * 1993-03-11 1994-09-20 Nkk Corp Ice water slurry storage equipment
US6955050B2 (en) * 2003-12-16 2005-10-18 Active Power, Inc. Thermal storage unit and methods for using the same to heat a fluid
US7693402B2 (en) 2004-11-19 2010-04-06 Active Power, Inc. Thermal storage unit and methods for using the same to heat a fluid

Similar Documents

Publication Publication Date Title
CN101922830B (en) Supercooled liquid ice slurry continuous preparation device
CN106196690B (en) Fountain refrigeration equipment and control method
EP1510763B1 (en) Apparatus for producing hydrate slurry
JPH0395334A (en) Cold-heat storage device
US4343157A (en) Refrigerator
US3034310A (en) Heat pump type ice-making machine
WO1997013961A1 (en) Power generating system by use of fluid
CN207095136U (en) A kind of United system
CN206670191U (en) A kind of air precooling system
JPH05133693A (en) Water cooling device
CN208606445U (en) The slice ice machine of high production efficiency
JPH11257694A (en) Ice cold storage method and device
US2860492A (en) Beverage cooling device
JPH04131670A (en) Ice making device
JPH10170110A (en) Dynamic type ice making device
JPH02166330A (en) Heat accumulation type cooling and heating method
CN117516025A (en) Ultralow temperature storage system
JP2006112652A (en) Ice making method and device for heat storage
JPH04306471A (en) Ice heat accumulating device
JP2019124445A (en) Ice making system
JPH05340562A (en) Ice heat accumulating device
JPH0498094A (en) Ice heat accumulating device
JPS56149586A (en) Water cooled cooler into which air is blown
JPH05312430A (en) Absorption refrigerator
JPH09159231A (en) Ice heat accumulating device