JPH0393642A - Production of porous glass preform for optical fiber - Google Patents

Production of porous glass preform for optical fiber

Info

Publication number
JPH0393642A
JPH0393642A JP22878289A JP22878289A JPH0393642A JP H0393642 A JPH0393642 A JP H0393642A JP 22878289 A JP22878289 A JP 22878289A JP 22878289 A JP22878289 A JP 22878289A JP H0393642 A JPH0393642 A JP H0393642A
Authority
JP
Japan
Prior art keywords
glass
burner
outer diameter
deposited layer
glass fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22878289A
Other languages
Japanese (ja)
Inventor
Ryoji Suzuki
亮二 鈴木
Koichi Harada
光一 原田
Keiichiro Shioya
塩屋 啓一郎
Shigeru Emori
滋 江森
Masahiro Horikoshi
雅博 堀越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP22878289A priority Critical patent/JPH0393642A/en
Publication of JPH0393642A publication Critical patent/JPH0393642A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/62Distance
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/64Angle
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To improve the deposition efficiency of glass fine particles even when the outer diameter of a glass fine particle-deposited layer is increased by changing the direction of a burner so as to be satisfied with a specific conditions with the increase of the outer diameter of the glass fine particle-deposited layer when a porous glass preform for an optical fiber is produced by an outer-coating method. CONSTITUTION:In a method for producing a porous glass preform for an optical fiber by feeding a glass raw material into the flame 4 of a burner 3 for synthesizing glass fine particles to produce the glass fine particles and adhering the produced glass fine particles on the periphery of a central member 1 to form a porous glass fine particle-deposited layer 2, the following processes are adopted. As the outer diameter of the deposition layer 2 is increased, the direction of the burner 3 is changed so that an angle theta between the axis of the burner 3 and the contact line of the surface of the deposition layer at the cross point of the axis of the burner 3 with the surface of the glass fine particle-deposited layer 2 may substantially be fixed within a range of 40-80 degree. The further transfer of the burner 3 in the direction separating from the central member 1 with the increase of the outer diameter of the deposition layer so that the distance of the burner 3 from the surface of the deposition layer 2 may substantially be fixed permits to further heighten the effect.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、一般に外付け法と呼ばれている光ファイバ
用多孔質ガラス母材の製造方法に関する。
The present invention relates to a method for manufacturing a porous glass preform for optical fibers, which is generally referred to as an external attachment method.

【従来の技術】[Conventional technology]

一般に外付け法と呼ばれている光ファイバ用多孔質ガラ
ス母材の製造方法では、第5図に示すように中心部材1
の両端をガラス旋盤などで保持して回転させ、ガラス微
粒子合成用バーナ3を中心部材1の軸方向にトラバース
させて、その火炎4中で生戒されたガラス微粒子を中心
部材1の周囲に堆積して多孔質のガラス微粒子堆積層2
を形成する.この中心部材1は後に除去されるものであ
ったり、あるいは後に光ファイバとされたときにそのコ
アとなる石英系のガラス棒であったりする.バーナ3に
はガラス原料ガス(SiCQ4など〉を燃焼ガス(H2
)、助燃ガス(02)とともに送り込み、火炎4中で生
じる加水分解反応等によりSi02等のガラス微粒子を
生成させる。バーナ3を中心部材1の軸方向に複数回ト
ラバースさせ、そのトラバース毎に1層ずつガラス微粒
子堆積層2を形成する.このガラス微粒子堆積層2が所
定の厚さとなったとき、堆積を終了する. このガラス微粒子堆積層2は上記の通り多孔質体である
ため、後に高温の炉中で加熱処理することにより透明ガ
ラス化し、こうして得られる光ファイバ母材を線引き装
置にかけて細線化することにより光ファイバが作製され
る. このような外付け法において、従来では、バーナ3は、
その中心軸の延長線が中心部材1の中心軸に交わる方向
に向けられ、その向きを保ったまま堆積開始から終了ま
でトラバースが行われている. ところで、複数回トラバースを行い、ガラス微粒子堆積
層2を複数層堆積させる場合、堆積が進んで堆積層2の
外径が増加するにしたがい、堆積層2の表面温度は低下
してくる.この堆積層2の表面温度はガラス微粒子堆積
層2のかさ密度と関係しており、そのため、均一なかさ
密度のガラス微粒子堆積層2を得るためには堆積層2が
厚くなってくるにしたがい低下しようとする堆積層2の
表面温度を高めて一定の温度となるような方策をとる必
要がある.そこで、従来では堆積層2の外径が増加する
にしたがって燃焼ガス及び助燃ガスを増加させて堆積層
2の表面温度を一定に保つようにしている.
In the method of manufacturing a porous glass base material for optical fiber, which is generally called the external attachment method, as shown in FIG.
Both ends are held and rotated with a glass lathe, etc., and the burner 3 for glass particle synthesis is traversed in the axial direction of the central member 1, and the glass particles that are collected in the flame 4 are deposited around the central member 1. Porous glass fine particle deposit layer 2
form. This central member 1 may be removed later, or it may be a quartz-based glass rod that will become the core when it is later made into an optical fiber. The burner 3 uses a combustion gas (H2
), is fed together with combustion supporting gas (02), and glass fine particles such as Si02 are generated by a hydrolysis reaction etc. that occur in the flame 4. The burner 3 is traversed multiple times in the axial direction of the central member 1, and one layer of glass fine particle deposit layer 2 is formed each time the burner 3 is traversed. When the glass fine particle deposited layer 2 reaches a predetermined thickness, the deposition is terminated. Since this glass fine particle deposit layer 2 is a porous body as described above, it is later heat-treated in a high-temperature furnace to make it transparent, and the optical fiber preform obtained in this way is thinned by a wire drawing device to form an optical fiber. is created. In such an external attachment method, conventionally, the burner 3 is
The extension line of the central axis is oriented in a direction that intersects with the central axis of the central member 1, and traverse is performed from the start to the end of deposition while maintaining this orientation. By the way, when traversing is performed multiple times to deposit multiple layers of the glass fine particle deposit layer 2, as the deposition progresses and the outer diameter of the deposit layer 2 increases, the surface temperature of the deposit layer 2 decreases. The surface temperature of the deposited layer 2 is related to the bulk density of the glass fine particle deposited layer 2, and therefore, in order to obtain the glass fine particle deposited layer 2 with a uniform bulk density, it must decrease as the deposited layer 2 becomes thicker. It is necessary to take measures to increase the surface temperature of the deposited layer 2 to maintain a constant temperature. Therefore, conventionally, as the outer diameter of the deposited layer 2 increases, the amount of combustion gas and auxiliary combustion gas is increased to keep the surface temperature of the deposited layer 2 constant.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかしながら、同一のガラス微粒子合成用バーナを使用
してガラス微粒子を堆積させる場合に、燃焼ガス及び助
燃ガスの流量を増大させると、ガラス微粒子の堆積効率
が徐々に悪くなって堆積量が飽和するという問題がある
.すなわち、燃焼ガス及び助燃ガスの流量を増大させる
と、バーナから流出するガスの流速が増大し、ガラス微
粒子の速度が速くなる。ところが上記のように従来では
ガラス微粒子が堆積層の表面に直角に衝突するようバー
ナの方向を定めているため、ガラス微粒子はその速度が
大きくなると、堆積層表面に衝突したときに飛散してし
まう.そのため、何回もトラバースを行うときその回数
の進行とガラス微粒子堆積量との関係を調べてみると、
第4図の曲線Cのようにトラバース回数が多くなるにつ
れて堆積量が飽和してしまうことが分かる. この発明は、バーナから流出したガラス微粒子がガラス
微粒子堆積層の表面で飛散してしまうことを防止し、ガ
ラス微粒子堆積層の外径が増加してきたときでも効率良
く堆積を行うよう改善した光ファイバ用多孔質ガラス母
材の製造方法を提供することを目的とする.
However, when depositing glass particles using the same burner for glass particle synthesis, increasing the flow rates of combustion gas and auxiliary combustion gas causes the deposition efficiency of glass particles to gradually deteriorate and the amount of deposition to be saturated. There's a problem. That is, when the flow rates of the combustion gas and the auxiliary combustion gas are increased, the flow rate of the gas flowing out from the burner increases, and the speed of the glass particles increases. However, as mentioned above, in the conventional method, the direction of the burner is set so that the glass particles collide with the surface of the deposited layer at right angles, so if the speed of the glass particles increases, they will be scattered when they collide with the surface of the deposited layer. .. Therefore, when we examine the relationship between the number of traverses and the amount of glass particles deposited, we find that
As shown by curve C in Figure 4, it can be seen that as the number of traverses increases, the amount of accumulation becomes saturated. This invention is an improved optical fiber that prevents glass particles flowing out of a burner from scattering on the surface of a glass particle accumulation layer and allows efficient deposition even when the outer diameter of the glass particle accumulation layer increases. The purpose of this study is to provide a method for manufacturing porous glass base materials for use in industrial applications.

【課題を解決するための手段】[Means to solve the problem]

上記目的を達成するため、この発明によれば、ガラス微
粒子合成用バーナの火炎内にガラス原料を供給してガラ
ス微粒子を生成させ、該ガラス微粒子を中心部材の周囲
に付着させて多孔質のガラス微粒子堆積層を形成する光
ファイバ用多孔質ガラス母材の製造方法において、上記
バーナの軸が上記ガラス微粒子堆積層の表面と交わる点
における該堆積層表面の接線とバーナ軸とがなす角度が
40゜〜80”の範囲内で実質的に一定となるように該
堆積層の外径が増加するにしたがって上記バーナの向き
を変化させることを特徴とする.さらに、上記のように
バーナの向きを変化させることに加えて、バーナとガラ
ス微粒子堆積層の表面との距離が実質的に一定になるよ
うに該堆積層の外径が増加するにしたがって上記バーナ
を上記中心部材から離れる方向に移動させるようにして
もよい.
In order to achieve the above object, according to the present invention, a glass raw material is supplied into the flame of a burner for synthesizing glass fine particles to generate glass fine particles, and the glass fine particles are attached around a central member to form a porous glass. In the method for manufacturing a porous glass preform for an optical fiber forming a fine particle deposit layer, the angle between the tangent to the surface of the glass fine particle deposit layer and the burner axis at the point where the axis of the burner intersects with the surface of the glass fine particle deposit layer is 40 The burner is characterized in that the orientation of the burner is changed as the outer diameter of the deposited layer increases so as to be substantially constant within a range of 80° to 80". In addition to varying the burner, the burner is moved away from the central member as the outer diameter of the glass particle deposit layer increases such that the distance between the burner and the surface of the glass particle deposit layer remains substantially constant. You can do it like this.

【作  用】[For production]

バーナのトラバース毎に中心部材の周囲にガラス微粒子
堆積層が1層ずつ形成され、その堆積層の外径が増加し
ていくが、その外径増加にしたがってバーナの向きが変
化させられ、バーナの軸が上記ガラス微粒子堆積層の表
面と交わる点における該堆積層表面の接線とバーナ軸と
がなす角度が40゜〜80”の範囲内で実質的に一定と
なるようにされる。 つまり、バーナの火炎中で生戒したガラス微粒子の流れ
の方向と、この流れがガラス微粒子堆積層と接触する面
とが、常に40゜〜80”の範囲内で実質的に一定とな
るようにされる.そのため、ガラス微粒子堆積体の外径
が増加し、燃焼ガス、助燃ガスの流量が増加し、ガラス
微粒子の流れの速度が増加した場合でも、ガラス微粒子
が堆積体表面で飛散することを減少でき、効率良くガラ
ス微粒子を堆積することができる.また、このようなバ
ーナの向きの制御に加えて、バーナを、ガラス微粒子堆
積体の外径増加にしたがって後退させることによりバー
ナとガラス微粒子堆積体表面との距離を実質的に一定に
保つようにすれば、ガラス微粒子の流れの速度が増加し
た場合のガラス微粒子の堆積体表面での飛散をより防ぐ
ことができ、ガラス微粒子堆積効率をさらに向上させる
ことができる.
Each time the burner traverses, a glass fine particle deposit layer is formed around the central member, and the outer diameter of the deposit layer increases.As the outer diameter increases, the direction of the burner is changed, and the burner The angle between the burner axis and the tangent to the surface of the glass particle deposit layer at the point where the axis intersects with the surface of the glass particle deposit layer is substantially constant within the range of 40° to 80''. The direction of the flow of the glass particulates kept alive in the flame and the surface where this flow comes into contact with the glass particulate deposit layer are always kept substantially constant within the range of 40° to 80''. Therefore, even when the outer diameter of the glass particle deposit increases, the flow rate of combustion gas and combustion auxiliary gas increases, and the flow speed of glass particles increases, the scattering of glass particles on the surface of the deposit can be reduced. Glass particles can be deposited efficiently. In addition to controlling the direction of the burner, the distance between the burner and the surface of the glass particle deposit is maintained substantially constant by retracting the burner as the outer diameter of the glass particle deposit increases. By doing so, it is possible to further prevent glass particles from scattering on the surface of the deposit body when the flow speed of the glass particles increases, and the glass particle deposition efficiency can be further improved.

【実 施 例】【Example】

つぎにこの発明の一実施例について図面を参照しながら
説明する.第1図において、中心部材1は後に光ファイ
バとされたときにコアの部分となる石英系ガラスのロッ
ドよりなり、その両端がガラス旋盤のチャックにより把
持されて回転させられるようになっている.ガラス微粒
子合成用バーナ3はこの中心部材1の軸方向(長さ方向
〉に移動(トラバース)する.このバーナ3にはガラス
原料ガス(この実施例ではSiCQ4)、燃焼ガス(H
2)、助燃ガス(02).及び不活性ガス(Ar)が供
給され、その火炎4中で火炎加水分解反応が生じガラス
微粒子( Si02 )が生戒される.このバーナ3は
、火炎4中で生戒したガラス微粒子を吹き付けながら、
回転する中心部材1に対しトラバースさせられ、これに
より、ガラス微粒子堆積層2が中心部材1の周囲にトラ
バース毎に1層ずつ形成されていく. 火炎4であぶられるガラス微粒子堆積層2の表面温度が
温度測定器5により測定され、その測定温度によって各
トラバースにおける堆積層2の表面温度が常に一定のも
のとなるように燃焼ガス及び助燃ガスの流量が制御され
る. こうしてトラバースを中心部材1の軸方向の往復方向に
複数回繰り返して、ガラス微粒子堆積層2を複数層形成
し、全体として所望の厚さのガラス微粒子堆積層2が得
られたとき、堆積工程が終了させられる。 この実施例では、バーナ3は、中心部材1の軸に対して
直角な平面で見ると、第2図のように中心部材1の中心
に向いていす、傾けられている.すなわち、バーナ3は
中心部材1の軸に直角な平面内で回転可能に保持されて
おり、バーナ3の軸がガラス微粒子堆積層2の表面と交
わる点における堆積層2の表面の接線とバーナ軸とがな
す角度θが40゜〜80゜の範囲内で実質的に一定とな
るように制御される.つまり、ガラス微粒子堆積層2が
1層ずつ形成され、その外径が1層ずつ大きくなってく
ると、バーナ3は第2図の上側に向くよう回転させられ
る.このガラス微粒子堆積層2の外径は、外径測定器6
により随時測定されるようになっており、ガラス微粒子
堆積層2が1層形成されるごとに外径測定が行われ、そ
の測定値に応じてバーナ3の角度がトラバースごとに調
整される. ここで、角度θを種々に変化させて堆積を行ったところ
、40゜〜80”の範囲で良好な堆積効率が示された.
とくに65゜付近で最高の堆積効率が得られ、このとき
のトラバースごとの堆積量を調べたところ、第4図の曲
線bのような良好な結果が得られた.曲線Cは、比較の
ため従来の方法によって同じガス流量で堆積を行った結
果を表すものである.この曲線b,cから、トラバース
回数が少ないときは両者に大きな差はみちれないものの
、トラバース回数が増加するにつれて(ガラス微粒子堆
積体2の外径が大きくなるにつれて)、従来の方法では
堆積量の増加が飽和していくどころ、これを大きく改善
できることが分かる.第3図は変形例にかかるものであ
り、上記のようなバーナ3の角度調整に加えて、バーナ
3の位置を調整したものである.すなわち、トラバース
ごとにガラス微粒子堆積層2の外径が増大していくとき
、外径測定器6によってその外径測定をトラバースごと
に行い、その測定値により外径の増加分に見合うだけバ
ーナ3を中心部材1からはなれる方向に移動させる.こ
うしてバーナ3から、そのガラス微粒子が接触するガラ
ス微粒子堆積層2の表面までの距離をほぼ一定に保つこ
とにより、堆積層2の外径が増大してきてガラス微粒子
の流速が速くなっても、ガラス微粒子が堆積層2の表面
で飛散することをより防ぐことができる.このように角
度θをほぼ一定に保つとともに、バーナ3とそのガラス
微粒子が接触するガラス微粒子堆積層2゛の表面との距
離をほぼ一定に保つことにより、最高の堆積効率が得ら
れ、トラバース回数に対するガラス微粒子堆積量の関係
は第4図のaのようになり、トラバースごとの堆積量の
増加が飽和する傾向がなくなった。 なお、上記の実施例では中心部材1は回転するだけで、
その軸方向には固定し、バーナ3が移動するものとして
説明したが、逆に、バーナ3を固定し、中心部材1の側
をその軸方向に移動させるようにしてもよいことはもち
ろんである.
Next, one embodiment of this invention will be explained with reference to the drawings. In FIG. 1, a central member 1 is made of a quartz-based glass rod that will later become a core part when it is made into an optical fiber, and both ends of the rod are gripped and rotated by the chucks of a glass lathe. The burner 3 for glass particle synthesis moves (traverses) in the axial direction (lengthwise direction) of the central member 1.The burner 3 is supplied with frit gas (SiCQ4 in this example) and combustion gas (H
2), auxiliary combustion gas (02). and inert gas (Ar) are supplied, a flame hydrolysis reaction occurs in the flame 4, and glass fine particles (Si02) are collected. This burner 3 sprays fine glass particles that have been collected in the flame 4, while
The rotating central member 1 is traversed, and as a result, the glass fine particle deposit layer 2 is formed around the central member 1 one layer at a time with each traversal. The surface temperature of the glass particulate deposit layer 2 that is scorched by the flame 4 is measured by the temperature measuring device 5, and the combustion gas and auxiliary combustion gas are The flow rate is controlled. In this way, the traverse is repeated a plurality of times in the reciprocating direction in the axial direction of the central member 1 to form a plurality of glass fine particle deposited layers 2, and when the glass fine particle deposited layer 2 having the desired thickness as a whole is obtained, the deposition step is started. be terminated. In this embodiment, the burner 3 is tilted toward the center of the central member 1, as shown in FIG. 2, when viewed in a plane perpendicular to the axis of the central member 1. That is, the burner 3 is held rotatably within a plane perpendicular to the axis of the central member 1, and the tangent to the surface of the glass particle deposit layer 2 at the point where the axis of the burner 3 intersects with the surface of the glass fine particle deposit layer 2 and the burner axis The angle θ between the two is controlled to be substantially constant within the range of 40° to 80°. That is, as the glass fine particle deposit layer 2 is formed layer by layer and its outer diameter increases layer by layer, the burner 3 is rotated so as to face upward in FIG. 2. The outer diameter of this glass fine particle deposition layer 2 is determined by an outer diameter measuring device 6.
The outside diameter is measured every time one glass fine particle deposit layer 2 is formed, and the angle of the burner 3 is adjusted for each traverse according to the measured value. Here, when the deposition was performed while changing the angle θ variously, good deposition efficiency was shown in the range of 40° to 80”.
In particular, the highest deposition efficiency was obtained near 65°, and when the amount of deposition per traverse at this time was investigated, good results were obtained as shown by curve b in Figure 4. Curve C represents the results of conventional deposition at the same gas flow rate for comparison. From these curves b and c, it can be seen that when the number of traverses is small, there is no big difference between the two, but as the number of traverses increases (as the outer diameter of the glass particle deposit body 2 becomes larger), the amount of deposited by the conventional method It can be seen that, far from reaching saturation, this increase can be greatly improved. FIG. 3 shows a modification, in which the position of the burner 3 is adjusted in addition to the angle adjustment of the burner 3 as described above. That is, when the outer diameter of the glass fine particle deposit layer 2 increases with each traverse, the outer diameter is measured with the outer diameter measuring device 6 for each traverse, and the burner 3 is adjusted based on the measured value to correspond to the increase in the outer diameter. Move in the direction away from center member 1. In this way, by keeping the distance from the burner 3 to the surface of the glass particle deposition layer 2 with which the glass particles come into contact almost constant, even if the outer diameter of the accumulation layer 2 increases and the flow velocity of the glass particles increases, the glass It is possible to further prevent fine particles from scattering on the surface of the deposited layer 2. In this way, by keeping the angle θ almost constant and also keeping the distance between the burner 3 and the surface of the glass particle deposition layer 2' which is in contact with the glass particles almost constant, the highest deposition efficiency can be obtained and the number of traverses can be increased. The relationship between the amount of deposited glass particles and the amount of deposited glass particles became as shown in a in FIG. In addition, in the above embodiment, the central member 1 only rotates;
Although the description has been made assuming that the burner 3 is fixed in the axial direction and moved, it is of course possible to conversely fix the burner 3 and move the central member 1 side in the axial direction. ..

【発明の効果】【Effect of the invention】

この発明の光ファイバ用多孔質ガラス母材の製造方法に
よれば、ガラス微粒子堆積体の外径が大きくなってその
表面温度を保つために燃焼ガス、助燃ガスの流量を増加
させ、そのことによってガラス微粒子の流れの速度が増
加した場合でも、ガラス微粒子が堆積体表面で飛散する
ことを減少させ、ガラス微粒子の堆積効率を高め、堆積
量がトラバース回数の増大とともに飽和してしまうこと
を改善できる.
According to the method of manufacturing a porous glass preform for optical fibers of the present invention, the outer diameter of the glass particle deposit increases, and in order to maintain its surface temperature, the flow rate of combustion gas and combustion auxiliary gas is increased. Even when the flow speed of glass particles increases, it is possible to reduce the scattering of glass particles on the surface of the deposit body, increase the deposition efficiency of glass particles, and improve the situation where the amount of deposited particles becomes saturated as the number of traverses increases. ..

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を概念的に示す平面図、第
2図は同実施例の中心部材を横断する面での断面図、第
3図は変形例にかかる、中心部材を横断する面での断面
図、第4図はトラバース回数に対するガラス微粒子堆積
量の関係を示すグラフ、第5図は従来例を概念的に示す
平面図である.1・・・中心部材、2・・・ガラス微粒
子堆積体、3・・・バーナ、4・・・火炎、5・・・温
度測定器、6・・・外径測定器.
FIG. 1 is a plan view conceptually showing an embodiment of the present invention, FIG. 2 is a cross-sectional view of the embodiment taken along a plane that crosses the central member, and FIG. 3 is a modified example of the cross-sectional view that crosses the central member. 4 is a graph showing the relationship between the number of traverses and the amount of glass particles deposited, and FIG. 5 is a plan view conceptually showing a conventional example. DESCRIPTION OF SYMBOLS 1... Central member, 2... Glass fine particle deposit body, 3... Burner, 4... Flame, 5... Temperature measuring device, 6... Outer diameter measuring device.

Claims (2)

【特許請求の範囲】[Claims] (1)ガラス微粒子合成用バーナの火炎内にガラス原料
を供給してガラス微粒子を生成させ、該ガラス微粒子を
中心部材の周囲に付着させて多孔質のガラス微粒子堆積
層を形成する光ファイバ用多孔質ガラス母材の製造方法
において、上記バーナの軸が上記ガラス微粒子堆積層の
表面と交わる点における該堆積層表面の接線とバーナ軸
とがなす角度が40゜〜80゜の範囲内で実質的に一定
となるように該堆積層の外径が増加するにしたがって上
記バーナの向きを変化させることを特徴とする光ファイ
バ用多孔質ガラス母材の製造方法。
(1) A porous optical fiber in which a glass raw material is supplied into the flame of a burner for glass particle synthesis to generate glass particles, and the glass particles are attached around the central member to form a porous glass particle accumulation layer. In the method for producing a quality glass base material, the angle between the tangent to the surface of the deposited layer and the burner axis at the point where the axis of the burner intersects with the surface of the glass fine particle deposited layer is substantially within the range of 40° to 80°. A method for producing a porous glass preform for an optical fiber, characterized in that the direction of the burner is changed as the outer diameter of the deposited layer increases so that the outer diameter of the deposited layer remains constant.
(2)ガラス微粒子合成用バーナの火炎内にガラス原料
を供給してガラス微粒子を生成させ、該ガラス微粒子を
中心部材の周囲に付着させて多孔質のガラス微粒子堆積
層を形成する光ファイバ用多孔質ガラス母材の製造方法
において、上記バーナの軸が上記ガラス微粒子堆積層の
表面と交わる点における該堆積層表面の接線とバーナ軸
とがなす角度が40゜〜80゜の範囲内で実質的に一定
となるように該堆積層の外径が増加するにしたがつて上
記バーナの向きを変化させるとともに、上記バーナとガ
ラス微粒子堆積層の表面との距離が実質的に一定になる
ように該堆積層の外径が増加するにしたがって上記バー
ナを上記中心部材から離れる方向に移動させることを特
徴とする光ファイバ用多孔質ガラス母材の製造方法。
(2) A porous optical fiber in which a glass raw material is supplied into the flame of a burner for glass particle synthesis to generate glass particles, and the glass particles are attached to the periphery of the central member to form a porous glass particle accumulation layer. In the method for producing a quality glass base material, the angle between the tangent to the surface of the deposited layer and the burner axis at the point where the axis of the burner intersects with the surface of the glass fine particle deposited layer is substantially within the range of 40° to 80°. The direction of the burner is changed as the outer diameter of the deposited layer increases so that the distance between the burner and the surface of the glass fine particle deposited layer remains substantially constant. A method for producing a porous glass preform for an optical fiber, characterized in that the burner is moved in a direction away from the central member as the outer diameter of the deposited layer increases.
JP22878289A 1989-09-04 1989-09-04 Production of porous glass preform for optical fiber Pending JPH0393642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22878289A JPH0393642A (en) 1989-09-04 1989-09-04 Production of porous glass preform for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22878289A JPH0393642A (en) 1989-09-04 1989-09-04 Production of porous glass preform for optical fiber

Publications (1)

Publication Number Publication Date
JPH0393642A true JPH0393642A (en) 1991-04-18

Family

ID=16881763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22878289A Pending JPH0393642A (en) 1989-09-04 1989-09-04 Production of porous glass preform for optical fiber

Country Status (1)

Country Link
JP (1) JPH0393642A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002018284A1 (en) * 2000-09-01 2002-03-07 Heraeus Tenevo Ag Method for producing an sio2 preform
JP2010052956A (en) * 2008-08-26 2010-03-11 Fujikura Ltd Method for producing optical fiber preform

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002018284A1 (en) * 2000-09-01 2002-03-07 Heraeus Tenevo Ag Method for producing an sio2 preform
JP2010052956A (en) * 2008-08-26 2010-03-11 Fujikura Ltd Method for producing optical fiber preform

Similar Documents

Publication Publication Date Title
JPH10158025A (en) Production of optical fiber preform
JPH0393642A (en) Production of porous glass preform for optical fiber
JP3744350B2 (en) Porous glass base material synthesis burner and method for producing porous glass base material
JP3396430B2 (en) Method for manufacturing optical fiber preform and apparatus for manufacturing optical fiber preform
JPH03141133A (en) Production of porous glass matrix for optical fiber
JPH03109231A (en) Production of optical fiber porous preform
JPH0354129A (en) Preparation of optical fiber preform
JPH02289439A (en) Production of optical fiber preform
JP4530687B2 (en) Method for producing porous glass preform for optical fiber
JPH02164733A (en) Production of glass fine particle deposited body
JP2000272929A (en) Production of optical fiber preform
JP2004035282A (en) Process for manufacturing porous preform for optical fiber
JP2002338256A (en) Method and apparatus for manufacturing glass particulate deposit
JPH0738144U (en) Burner device for synthesizing glass particles
JP3730446B2 (en) Method and apparatus for producing porous glass base material
JP4398114B2 (en) Manufacturing method of glass base material for optical fiber with less unevenness
JPH11199238A (en) Fine glass particle deposition device
JP2523154B2 (en) Method for manufacturing glass particulate deposit
JPH03126633A (en) Production of optical fiber base material
JP2000063141A (en) Production of porous glass preform for optical fiber
JPH02243530A (en) Production of base material for optical fiber
JPH0720338A (en) Production of optical waveguide
JPH04219339A (en) Production of preform for optical fiber
JPH05297235A (en) Method of fabricating film for light waveguide
JPS6296B2 (en)