JPH0393480A - Vibration wave motor - Google Patents

Vibration wave motor

Info

Publication number
JPH0393480A
JPH0393480A JP1229814A JP22981489A JPH0393480A JP H0393480 A JPH0393480 A JP H0393480A JP 1229814 A JP1229814 A JP 1229814A JP 22981489 A JP22981489 A JP 22981489A JP H0393480 A JPH0393480 A JP H0393480A
Authority
JP
Japan
Prior art keywords
phase
vibration
vibration wave
drive
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1229814A
Other languages
Japanese (ja)
Inventor
Koichi Ueda
浩市 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1229814A priority Critical patent/JPH0393480A/en
Publication of JPH0393480A publication Critical patent/JPH0393480A/en
Priority to US07/724,450 priority patent/US5134348A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To suppress the vibration of unnecessary wave sufficiently low even with a power source voltage by a method wherein unnecessary vibration from a S-phase piezo-electric element is cancelled by a D-phase piezo-electric element through a driving signal attenuating circuit and a phase shifting circuit. CONSTITUTION:D-phase piezo-electric elements 1-4 for suppressing unnecessary vibration are fixed to a vibrating body 1a. A signal from S-phase piezo-electric elements 1-1 is amplified by an amplifier 9 through a driving signal attenuating circuit 7 and a phase shifting circuit to drive the piezo electric elements 1-4. According to this method, unnecessary vibration, included in the detecting signal of progressive vibration wave detected in S-phase, is cancelled and the normal vibration mode of 8 waves is realized. In this case, the vibration of a signal, provided with a vibration not coinciding with a designed value, may be suppressed. Thus, the constituents of driving frequency may be attenuated suffi ciently, the utilizing efficiency of a power source may be increased with scarce influence on the frequency-phase characteristics and the vibration of unnecessary wave may be suppressed sufficiently even under a low power source voltage.

Description

【発明の詳細な説明】 [a業上の利用分野] 本発明は振動波モータの振動制御回路に関するものであ
る. [従来の技術] 進行性振動波を利用した振動波モータの原理的概要は代
表的には下記により説明される.全周長がある長さλの
整数倍であるような弾性材料製のリング状の振動体の片
面に、周方向に配列された二群の複数個の圧電素子を固
着したものをステータとする.これらの圧電素子は各群
内ではλ/2のピッチにて且つ交互に逆の伸縮極性とな
るように配列されており、また両群間はλ/4の奇数倍
のずれがあるように配置されている.圧電素子の両群に
は夫々電極膜が施されている.いずれかの一群(以下A
相と称す)のみに交流電圧を印加すれば、上記振動体は
、該群の各圧電素子の中央点及びそこからλ/2おきの
点が腹の位置、また該腹の位置間の中央点が節の位置で
あるような曲げ振動の定在波(波長λ)が振動体の全周
に亘って発生する.他の一群(以下B相と称す)のみに
交流電圧を印加すれば同様に定在波が生ずるが、その腹
及び節の位置はA相による定在波に対してλ/4ずれた
ものとなる.一方A,B相に、周波数が同じで且つ互い
に90”の時間的位相差を有する交流電圧を同時に印加
すると、両者の定在波の合成の結果、振動体には周方向
に振動する曲げ振動の進行波(波長λ)が発生し、この
とき、厚みを有する上記振動体の多面状の各点は一種の
楕円運動をする.よって、振動体の各多面に、ロータと
して例えばリング状の移動体を加圧接触させておけば、
この移動体は振動体から周方向の摩擦を受け回転駆動さ
れる.また、上記A%B相の圧電素子群の他に、振動体
に振動検出用の圧電素子(以下S相と称す)を設け、例
えばこのS相からの出力と、A,B相の圧電素子群への
駆動印加電圧との位相差を一定.にする条件を満たす周
波数で駆動して、振動体の振動状態を一定(保ちモータ
出力を安定させる駆動方法がとられている.第12図は
従来の振動波モータの駆動回路、第13図はリング状振
動体のA%B相及びS相の配置並びに分極パターンを示
している.これらの図において、31は振動波モータの
リング状に形成された振動体で、その片面側にS相圧電
素子30−l%A相圧電素子群3o−2、B相圧電素子
群30−3が例えば接着剤で接着されると共に、これら
の圧電素子の共通電極をなすC相電極Cが同様に接着さ
れている. A相圧電素子群30−2及びB相圧電素子群3o−3は
、夫々発振器33、90”移相器34、増幅器35、3
6、及びS相圧電素子30−1からの位相差又は振幅情
報等に基づき振動状態を検出する振動検出回路32とか
らなる駆動回路により駆動制御されるようになっており
、発信器33からの交流信号は一方の増幅器35に直接
入力し、また他方の増幅器36には90’移相器34を
介して時間的位相差が90”ずれて入力されて夫々A相
圧電素子群30−2及びB相圧電素子群30−3を駆動
するようになっており、その際S相圧電素子30−1に
より振動体31上に形成されている進行性振動波の位相
を検出しながら正規の波数でモータを駆動するように、
振動検出回路32により発振器33を制御する.発振器
33によりA相圧電素子群30−2及びB相圧電素子群
30−3に印加する交流信号の周波数は振動体31の固
有振動数により決められ、また振動体31上に形威され
る進行性振動波の波数は、振動体31に設けられる例え
ばA相圧電素子群30−2における分極方向が異なる隣
接した圧電素子の間隔と振動体31の局長によって決め
られ、第13図の場合は8波の進行波が形威されるよう
にしている. [発明がM決しようとしている課題] 上記構成において、振動波千一夕が設計通りの進行性振
動波の波数で駆動している場合は、その振動波そ一夕が
有している性能を充分引き出すことができるが、例えば
振動波モータの振動体と移動体間の摩擦力により自助振
動が発生して、設計値通りでない進行性振動波の振動(
波数も異なる)が加わった場合には、振動検出相である
S相の出力として第3図(C)に示すような信号が得ら
れ、これに基づいて駆動制御を行なうと、本来必要な第
3図(a)に示される信号との間にずれを生じ、ひいて
は回転ムラの増加や急激な回転数及びトルクの低下や異
音発生を招くといった問題がある. そこでこのような回転ムラや異音発生等の問題を解決で
きる手段にとして、振動体の振動状態を検出する振動検
出相(S相)と共に振動抑圧用の第3の駆動相を振動体
に設け、振動検出相から検出した信号を増幅手段を介し
て該第3の駆動相に入力するようにした構成を有する振
動波モータを提案し、既に特願平1−88698号とし
て出願している. ところで上記により振動波モータを駆動制御する方法を
実用に供する場合には、振動波モータの共振周波数の温
度や負荷による変動を可及的に抑制し、また電池等の携
帯電源を用いる場合には、電源の利用効率を一層向上さ
せるという点で、更に改善の余地のあることが指摘され
る. すなわち、上記提案の構成により駆動モード以外の不用
の振動を抑えて、振動波モータを安定駆動させるために
、例えば振動検出相(S相)から検出した信号をフィル
ターに通し、駆動周波数の信号を減衰させる方式が好ま
しく採用されるが、通常、駆動周波数の信号に対し抑圧
したい波動の信号はlO〜30dBほど小さく、また増
幅器の電源の効率等を考えれば駆動周波数の信号は40
dB程度減衰させることが好ましい.しかし、通常のア
ナログ的なフィルターでたかだか数倍程度の周波数の差
において数十dBもの減衰量を得るにはどうしても高次
のフィルターが必要となり、さらにフィルターでの周波
数一位相特性の変化も急激となり、振動波モータの共振
周波数の温度や負荷による変動に対応しきれないという
問題がある. 第14図はこのようなアナログフィルターの周波数特性
の一例を示しており、この図では駆動周波数(fo)を
3 0 kHx ,抑圧したい振動の周波数を10kH
xと仮定し、カットオフ周波数をfc− 1 5 kH
xとしたうえで駆動周波数の信号を40dB以上減衰で
きるようにフィルターの次数を8次として計算した場合
として例示してぃる。
[Detailed Description of the Invention] [Field of Application in Industry] The present invention relates to a vibration control circuit for a vibration wave motor. [Prior Art] The basic principle of a vibration wave motor using progressive vibration waves is typically explained as follows. A stator is a ring-shaped vibrating body made of an elastic material whose total circumference is an integral multiple of a certain length λ, and two groups of piezoelectric elements arranged in the circumferential direction are fixed to one side of the ring-shaped vibrating body. .. These piezoelectric elements are arranged at a pitch of λ/2 within each group so that they alternately have opposite expansion and contraction polarities, and between both groups there is a shift of an odd multiple of λ/4. It has been done. Both groups of piezoelectric elements are each coated with an electrode film. Any group (hereinafter A)
If an alternating current voltage is applied only to the piezoelectric elements in the group, the vibrating body will have an antinode position at the center point of each piezoelectric element in the group and points every λ/2 from there, and a center point between the antinode positions. A standing wave (wavelength λ) of bending vibration is generated around the entire circumference of the vibrating body, where is the position of the node. If AC voltage is applied only to the other group (hereinafter referred to as B phase), a standing wave will be generated in the same way, but the positions of the antinodes and nodes will be shifted by λ/4 with respect to the standing wave due to A phase. Become. On the other hand, when AC voltages with the same frequency and a temporal phase difference of 90'' are simultaneously applied to the A and B phases, as a result of the synthesis of the standing waves of both, the vibrating body experiences bending vibration vibrating in the circumferential direction. A traveling wave (wavelength λ) of If you keep your body in pressure contact,
This moving body is rotationally driven by friction in the circumferential direction from the vibrating body. In addition to the above A%B phase piezoelectric element group, a piezoelectric element for vibration detection (hereinafter referred to as S phase) is provided on the vibrating body, and for example, the output from this S phase and the A and B phase piezoelectric elements The phase difference with the driving voltage applied to the group is constant. A driving method is used in which the vibration state of the vibrating body is kept constant (and the motor output is stabilized) by driving at a frequency that satisfies the conditions for The arrangement and polarization pattern of the A%B phase and S phase of the ring-shaped vibrating body are shown. In these figures, 31 is the ring-shaped vibrating body of the vibration wave motor, and the S-phase piezoelectric is mounted on one side of the ring-shaped vibrating body. Element 30-l% A-phase piezoelectric element group 3o-2 and B-phase piezoelectric element group 30-3 are bonded together, for example, with an adhesive, and a C-phase electrode C forming a common electrode of these piezoelectric elements is similarly bonded. The A-phase piezoelectric element group 30-2 and the B-phase piezoelectric element group 3o-3 include an oscillator 33, a 90'' phase shifter 34, and amplifiers 35 and 3, respectively.
6, and a vibration detection circuit 32 that detects the vibration state based on the phase difference or amplitude information from the S-phase piezoelectric element 30-1. The alternating current signal is directly input to one amplifier 35, and is input to the other amplifier 36 through a 90' phase shifter 34 with a temporal phase difference of 90'', thereby outputting the A-phase piezoelectric element groups 30-2 and 36, respectively. The B-phase piezoelectric element group 30-3 is driven, and at this time, the phase of the progressive vibration wave formed on the vibrating body 31 by the S-phase piezoelectric element 30-1 is detected at a regular wave number. Like driving a motor,
An oscillator 33 is controlled by a vibration detection circuit 32. The frequency of the AC signal applied by the oscillator 33 to the A-phase piezoelectric element group 30-2 and the B-phase piezoelectric element group 30-3 is determined by the natural frequency of the vibrating body 31, and The wave number of the oscillating wave is determined by the interval between adjacent piezoelectric elements having different polarization directions in the A-phase piezoelectric element group 30-2 provided in the vibrating body 31 and the length of the vibrating body 31, and in the case of FIG. The traveling wave of the wave is made to take shape. [Problem to be solved by the invention] In the above configuration, if the vibration waves are driven at the wave number of progressive vibration waves as designed, the performance of the vibration waves can be improved. However, for example, self-supporting vibrations may occur due to the frictional force between the vibrating body of a vibration wave motor and the moving body, resulting in progressive vibration wave vibrations that are not as designed.
(with different wave numbers), a signal as shown in Figure 3 (C) is obtained as the output of the S phase, which is the vibration detection phase, and when drive control is performed based on this, the originally required wave number is There is a problem that a deviation occurs between the signal shown in Fig. 3(a), which in turn leads to an increase in rotational unevenness, a sudden decrease in rotational speed and torque, and the generation of abnormal noise. Therefore, as a means to solve such problems such as rotational unevenness and abnormal noise generation, a third drive phase for vibration suppression is provided on the vibrating body in addition to a vibration detection phase (S phase) that detects the vibration state of the vibrating body. proposed a vibration wave motor having a configuration in which a signal detected from the vibration detection phase is input to the third drive phase via an amplifying means, and has already filed an application as Japanese Patent Application No. 1-88698. By the way, when putting into practical use the method for driving and controlling a vibration wave motor as described above, it is necessary to suppress fluctuations in the resonant frequency of the vibration wave motor due to temperature and load as much as possible, and when using a portable power source such as a battery. It has been pointed out that there is room for further improvement in terms of further improving the efficiency of power usage. That is, in order to suppress unnecessary vibrations other than the drive mode and stably drive the vibration wave motor with the configuration proposed above, for example, the signal detected from the vibration detection phase (S phase) is passed through a filter, and the drive frequency signal is An attenuating method is preferably adopted, but normally the wave signal to be suppressed is about 10 to 30 dB smaller than the signal at the drive frequency, and considering the efficiency of the amplifier power supply, etc., the signal at the drive frequency is about 40 dB.
It is preferable to attenuate by about dB. However, in order to obtain an attenuation amount of several tens of dB for a frequency difference of several times at most with a normal analog filter, a high-order filter is necessary, and furthermore, the frequency-phase characteristics of the filter change rapidly. However, there is a problem in that the resonant frequency of the vibration wave motor cannot cope with fluctuations due to temperature and load. Figure 14 shows an example of the frequency characteristics of such an analog filter. In this figure, the drive frequency (fo) is 30 kHz, and the frequency of vibration to be suppressed is 10 kHz
x, and the cutoff frequency is fc- 15 kHz
An example is shown in which the order of the filter is calculated as 8th order so that the signal of the drive frequency can be attenuated by 40 dB or more.

本発明は上記問題を解決し、駆動周波数成分に関しては
充分な減衰を与えることができ、かつ周波数一位相特性
に関しては極力影響を与えないようにして、電源の利用
効率を高め、低い電源電圧でも不用な波の振動を充分に
抑圧できるように回路構成をもつ駆動制御回路を備えた
振動波モータを提供することを目的とする.[課題を解
決するための手段及び作用]上記目的を実現する本発明
の振動波モータの特徴は、電気一機械エネルギー変換素
子からなる第1相(A相)及び第2相(B相)の駆動相
に駆動制御回路から交流電圧を印加することにより、こ
れらの駆動相が設けられた振動体に波長λの進行性振動
波を生じさせ、振動体に加圧接触されk例えばロータを
この進行性振動波により相対運動させる振動波モータに
おいて、前記振動体には、振動状態を検出するための少
なくともーの振動検出相(S相)と、前記進行性振動波
以外の振勤抑用の第3の駆動相とを設けると共に、前記
制御回路には、前記進行性振動波成分を減衰するために
前記S相から得られた検出信号と該信号を移相した信号
とを合成する第1の制御手段と、前記進行性振動波以外
の振動抑制のためにこの合成して得られた信号を位相調
整して前記第3の駆動相に入力する第2の制御手段とを
設けたという構戒をなすところにある. 上記構戒において、S相から検出された信号から、振動
体に進行性振動波を生じさせる振動成分(以下「駆動信
号成分』という)を減衰させるために設けられる第1の
制御手段としては、例えば遅延回路と加算器の組合せが
代表的に示される. [実 施 例] 以下本発明を図面に示す実施例に基づいて詳細に説明す
る. 実施例1 第1図(a)は実施例1のブロック図、第2図はその振
動波モータの電極パターンを示す平面図である. 本実施例の振動波モータ1は、リング状の振動体1aに
A相圧電素子群1−2及びB相圧電素子群!−3を第2
図に示す如く設けて8波の進行性振動波を形戒すると共
に、振動検出回路2で検出したS相圧電素子1−1から
の検出情報に基づき発振器3を駆動制御して、A相圧電
素子群1−2及びB相圧電素子群1−3を、夫々増幅器
5、及び移相器4、増幅器6を介して駆動するようにし
ており、この構成は従来例の第12図の場合と同じであ
る.そして本実施例では振動体1aにさらに負極に分極
処理した不用振動抑圧用のD相圧電素子(第1図では符
合l−4)を固着し、S相圧電素子!−1からの検出信
号を駆動信号減衰回路7及び移相回路8を通した後、増
幅器9で増幅し、この不用振動抑圧用圧電素子1−4を
駆動するようにしている特徴がある.これにより本実施
例ではS相で検出した進行性振動波の検出信号に含まれ
ている不用振動を圧電素子1−4の駆動で打ち消して、
8波の正常な振動モードを実現するものである. 本実施例において特徴的な構戊をなしている第1の制御
手段としての上記駆動信号減衰回路7は、遅延回路10
及び加算器11によって構威され、これによって不用振
動抑圧用圧電素子1−4(D相)に印加すべき振動信号
が好適に取り出され、、第2の制御手段としての移相器
8で振動体の不用振動を抑圧するのに適当な位相に調整
された後、増幅器9を介してD相に入力される. 以下に第1図を基にして実施例1の動作を更に説明する
. まず第1図の発振器3より振動波そ一夕の駆動周波数f
Dを発生させ、増幅器5にて増幅した後振動波そ一夕の
駆動相1−2(A相)に入力する.また発振器3の出力
は90’移相器4にも入力ざれて90゛移相された後、
増幅器6にて増幅され、もう一方の駆動相1−3(B相
)ダ入力される.他方S相1−1よりの出力を振動検出
回路2にて検出し、振動波モータを所定の状態に制御す
るためにこの検出信号を発振器3にフィードバックする
. 以上の制御動作は従来と同様である. ところで、振動波モータ上に何らかの要因により設計値
通りでない振動が発生した場合のS相の出力信号の様子
は第3図(C)に示され、これは設計上考えられる理想
的な出力信号<8)(便宜上これをfn− 3 0 k
Hzとする)と、設計値通りでない振動出力(b)(便
宜上fn− 1 0kHxとする)により合成されたも
のである.本例ではこの合成信号が駆動信号減衰回路7
に入力される.ここで当該回路7の遅延回路1oの遅延
時間Δtを T1 Δt −    (see)   (T= −)2  
        f, と設定した場合を考えると、このときの回路7の周波数
伝達特性は第4図に示される.この第4図より、回路7
を通った信号のうち駆動周波数の信号ro(第3図)の
利得はほぼゼロまで減衰され、さらに上記設計値通りで
ない信号出力fn(第3図(b))に関しては第4図よ
り約30”位相変化を伴ってはいるが、約1.7倍の利
得が得られる.そこでこのようにfDは減衰され、f7
は増幅された信号を移相器8で位相の条件を満足させた
上、増幅器9で増幅し、上記D相1−4に入力すること
で上記fnw 1 0 kHzの振動を抑圧することが
可能となる.このような遅延回路11としては例えば遅
延線を用いることができる.このような駆動信号減衰回
路7の具体例は*S′cgUに示される. 実施例2 先の実施例1は遅延回路の構成例として遅延線を用いて
いるが、遅延回路としてはCCD(チャージカップルド
デバイス)やBBD  (バケツトプリケードデバイス
)といった遅延素子やサンプル&ホールド回路を並べて
構成することも勿論可能であり、本実施例2では′sS
図に示すようにこのうちサンプル&ホールド回路を用い
て構成した例を示した.第6図の例では、サンプル&ホ
ールド回路2個で1段とし、合計n段(サンプル&ホー
ルド回路は2n個)で構威しており、この場合の遅延時
間Δtは Δt = n / fcLK(sac)であるから、こ
れが振動波モータの駆動周波数の周期Tに対し となるようにn及びfcいを調整してやればよい. 実施例3 振動波モータにおいては、負荷や温度の変化により共振
周波数が変化することが知られている。そこで上述の遅
延回路によって与えられる遅延時間は、これに追従する
ことが実用上特に好ましい構成となる. 第7図はこのような負荷変動や温度変動に対しての補償
作用を有するように構成された駆動制御回路の好適な実
施例を示したものであり、第1図に示した実施例1との
相違は発振器3からの出力を周波数てい倍器12を.介
して遅延回路10に入力させるようにしたところにある
. このような構戒によって、振動波モータの駆動周波数f
t,が時間と共に変化しても遅延回路10における遅延
時間Δtがf0の変化に対応し、常にΔt−T/2の関
係を満足することができる. なお第7図の例における振動波モータ1の駆動周波数を
用いて遅延時間制御用の周波数fcLκを作っているが
、これは振動検出回路2の出力で遅延時間制御周波数f
cLκを制御し、これを分周して振動波モータの駆動周
波数を作ることも可能である.この場合には駆動周波数
の周期と遅延時間の関係がより正確となることは言うま
でもない. また第7図の構戒における遅延回路10は、先に述べた
CCDやBBD等の遅延素子あるいはサンプル&ホール
ド回路を並べた構戒でも可能である他、第8図に示して
いるようにデジタル的に行うこともできる.また、周波
数てい倍器12は第8図に示したようにフェーズロック
ルーブを用いた周波数てい倍回路等により構成が可能で
ある. 実施例4 上述した各実施例は、 延時間を 遅延時間1 Oによる遅 の場合として説明したが、これはこのような遅延時間に
限定されるものではなく、 として構成す゛ることができる. 第9図〜第11図はnm2とした場合の実施例を具体的
に示したものであり、第9図は同実施例における駆動制
御回路の全体構戒の概要ブロック図で示し、第10図は
駆動周波数減衰回路7の具体的構戒一例を示している. またこれらによって制御された駆動周波数減衰回路7の
周波数伝達特性の一例は第11図により説明される. [発明の効果] 以上説明したように本発明の振動波モータは、設計値通
りでない振動の発生を抑えるためには不用である駆動周
波数の信号を大幅に減衰させることができ、これによっ
て電源の利用効率を高くできるという効果があり、低い
電源電圧でも充分な増幅度の確保ができる.また設計値
通りでない振動の発生を強力に抑えることができるため
、適正な振動波モータの作動を与えることができ、回転
ムラの増加や急激な回転数及びトルクの低下、異音の発
生が好適に抑制されるという効果がある.
The present invention solves the above problems, provides sufficient attenuation for drive frequency components, and minimizes the influence on frequency-one-phase characteristics, thereby increasing the efficiency of power supply usage and even at low power supply voltages. The purpose of this invention is to provide a vibration wave motor equipped with a drive control circuit having a circuit configuration that can sufficiently suppress unnecessary wave vibrations. [Means and operations for solving the problems] The vibration wave motor of the present invention that achieves the above object is characterized by a first phase (A phase) and a second phase (B phase) consisting of an electrical-mechanical energy conversion element. By applying an alternating current voltage to the drive phases from the drive control circuit, a progressive vibration wave of wavelength λ is generated in the vibrating body provided with these drive phases, and when the vibrating body is brought into pressure contact with the vibrating body, for example, a rotor is caused to move along this traveling wave. In a vibration wave motor that causes relative movement using progressive vibration waves, the vibrating body has at least a vibration detection phase (S phase) for detecting a vibration state, and a vibration suppression phase other than the progressive vibration waves. In addition, the control circuit includes a first drive phase that combines the detection signal obtained from the S phase and a signal obtained by shifting the phase of the signal in order to attenuate the progressive vibration wave component. A control means is provided, and a second control means for adjusting the phase of the signal obtained by this synthesis and inputting it to the third drive phase in order to suppress vibrations other than the progressive vibration waves. It is in the place where it is done. In the above structure, the first control means provided for attenuating the vibration component (hereinafter referred to as "drive signal component") that causes a progressive vibration wave in the vibrating body from the signal detected from the S phase is as follows: For example, a combination of a delay circuit and an adder is typically shown. [Embodiments] The present invention will be explained in detail below based on embodiments shown in the drawings. Embodiment 1 FIG. 1(a) shows Embodiment 1. Fig. 2 is a plan view showing the electrode pattern of the vibration wave motor. Piezoelectric element group!-3 is the second
As shown in the figure, the oscillator 3 is driven and controlled based on the detection information from the S-phase piezoelectric element 1-1 detected by the vibration detection circuit 2, and the A-phase piezoelectric The element group 1-2 and the B-phase piezoelectric element group 1-3 are driven through an amplifier 5, a phase shifter 4, and an amplifier 6, respectively, and this configuration is different from the conventional example shown in FIG. It's the same. In this embodiment, a negatively polarized D-phase piezoelectric element (designated l-4 in FIG. 1) for suppressing unnecessary vibrations is further fixed to the vibrating body 1a, and an S-phase piezoelectric element! -1 passes through a drive signal attenuation circuit 7 and a phase shift circuit 8, and is then amplified by an amplifier 9 to drive this unwanted vibration suppression piezoelectric element 1-4. As a result, in this embodiment, the unnecessary vibration included in the detection signal of the progressive vibration wave detected in the S phase is canceled by driving the piezoelectric element 1-4.
This realizes eight normal vibration modes. The drive signal attenuation circuit 7 serving as the first control means, which has a characteristic structure in this embodiment, has a delay circuit 10.
and the adder 11, whereby the vibration signal to be applied to the piezoelectric element 1-4 (D phase) for suppressing unwanted vibrations is suitably taken out, and the vibration signal is outputted by the phase shifter 8 as a second control means. After being adjusted to an appropriate phase to suppress unnecessary body vibrations, it is input to the D phase via an amplifier 9. The operation of the first embodiment will be further explained below based on FIG. First, the driving frequency f of the vibration wave from the oscillator 3 in Fig. 1 is
D is generated, amplified by the amplifier 5, and then input to the drive phase 1-2 (A phase) of the vibration wave. The output of the oscillator 3 is also input to the 90' phase shifter 4, and after being phase-shifted by 90',
The signal is amplified by an amplifier 6 and inputted to the other drive phases 1-3 (B phase). On the other hand, the output from the S-phase 1-1 is detected by the vibration detection circuit 2, and this detection signal is fed back to the oscillator 3 in order to control the vibration wave motor to a predetermined state. The above control operations are the same as before. By the way, the state of the S-phase output signal when vibration that does not match the design value occurs due to some factor on the vibration wave motor is shown in Figure 3 (C), and this is the ideal output signal < 8) (For convenience, refer to this as fn-30k
Hz) and a vibration output (b) that is not as designed (for convenience, it is assumed to be fn-10kHz). In this example, this composite signal is the drive signal attenuation circuit 7.
is input into . Here, the delay time Δt of the delay circuit 1o of the circuit 7 is T1 Δt − (see) (T= −)2
Considering the case where f, is set, the frequency transfer characteristics of circuit 7 in this case are shown in FIG. From this figure 4, circuit 7
Among the signals passing through the signal, the gain of the driving frequency signal ro (Fig. 3) is attenuated to almost zero, and the gain of the signal output fn (Fig. 3 (b)), which is not in accordance with the above design value, is approximately 30% as shown in Fig. 4. ``Although it involves a phase change, a gain of approximately 1.7 times can be obtained. Therefore, fD is attenuated in this way, and f7
It is possible to suppress the vibration of fnw 10 kHz by satisfying the phase condition with the phase shifter 8, amplifying the amplified signal with the amplifier 9, and inputting it to the D phase 1-4. becomes. As such a delay circuit 11, for example, a delay line can be used. A specific example of such a drive signal attenuation circuit 7 is shown in *S'cgU. Embodiment 2 Although Embodiment 1 uses a delay line as an example of the configuration of a delay circuit, the delay circuit may include a delay element such as a CCD (charge coupled device) or a BBD (bucket topric device) or a sample and hold device. Of course, it is also possible to configure the circuits by arranging them, and in the second embodiment, 'sS
As shown in the figure, an example of the configuration using a sample-and-hold circuit is shown. In the example shown in Fig. 6, two sample and hold circuits constitute one stage, and there are a total of n stages (2n sample and hold circuits), and the delay time Δt in this case is Δt = n / fcLK ( sac), it is only necessary to adjust n and fc so that this corresponds to the period T of the driving frequency of the vibration wave motor. Embodiment 3 It is known that the resonance frequency of a vibration wave motor changes due to changes in load and temperature. Therefore, it is practically preferable that the delay time given by the above-mentioned delay circuit follows this delay time. FIG. 7 shows a preferred embodiment of a drive control circuit configured to compensate for such load fluctuations and temperature fluctuations, and is different from the first embodiment shown in FIG. The difference is that the output from the oscillator 3 is converted into a frequency multiplier 12. The signal is input to the delay circuit 10 via the signal. With this arrangement, the driving frequency f of the vibration wave motor
Even if t, changes with time, the delay time Δt in the delay circuit 10 corresponds to the change in f0, and the relationship Δt−T/2 can always be satisfied. Note that the drive frequency of the vibration wave motor 1 in the example of FIG.
It is also possible to control cLκ and divide it to create the driving frequency of the vibration wave motor. Needless to say, in this case, the relationship between the period of the drive frequency and the delay time will be more accurate. In addition, the delay circuit 10 in the structure shown in FIG. 7 can be a structure in which delay elements such as CCD and BBD or sample and hold circuits are lined up as described above, or a digital circuit as shown in FIG. You can also do it manually. Further, the frequency multiplier 12 can be configured by a frequency multiplier circuit using a phase-locked lube, as shown in FIG. Embodiment 4 Each of the embodiments described above has been described assuming that the delay time is a delay time of 1 O, but this is not limited to such a delay time, and can be configured as follows. 9 to 11 specifically show an embodiment in which nm2 is used. FIG. 9 is a schematic block diagram of the overall structure of the drive control circuit in the same embodiment, and FIG. shows a specific example of the structure of the drive frequency attenuation circuit 7. Further, an example of the frequency transfer characteristic of the drive frequency attenuation circuit 7 controlled by these is explained with reference to FIG. [Effects of the Invention] As explained above, the vibration wave motor of the present invention can significantly attenuate the drive frequency signal that is unnecessary for suppressing the occurrence of vibrations that are not in accordance with the design value, thereby reducing the power supply. It has the effect of increasing usage efficiency, and can ensure sufficient amplification even with a low power supply voltage. In addition, since it is possible to strongly suppress the occurrence of vibrations that do not meet the design values, it is possible to provide proper operation of the vibration wave motor, and it is suitable for increasing uneven rotation, sudden decreases in rotation speed and torque, and generation of abnormal noise. It has the effect of suppressing

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の振動波モータの実施例1における駆動
制御回路の構戒概要をブロック図で示した図、第2図は
同振動波モータの電極パターンを示した図、第3図は同
実施例1におけるS相出力信号の一例を示した図、第4
図は同実施例1における振動体を駆動する駆動波の減衰
回路における周波数伝達特性を示した図、第5図は駆動
波減衰回路の具体的な構戒を示した図、第6図はWAa
波減衰回路の他の実施例2の具体的な構戒を示した図、
第7図は本発明の振動波モータの実施例3における駆動
制御回路の構成I!要をブロック図で示した図、第8図
は同実施例3における駆動波減衰回路の具体的な構成を
示した図、第9図は本発明の振動波モータの実施例4に
おける駆動制御回路の構成概要をブロック図で示した図
、第10図は同実施例4における駆動波減衰回路の具体
的な構成を示した図、第11図は同実施例4における振
動体を駆動する駆動波の減衰回路における周波数伝達特
性を示した図である。 第12図は従来の振動波モータの駆動回路の構戒概要を
ブロック図で示した図、第13図は同振動波モータの電
極パターンを示した図、第14図は同従来例におけるS
相からの検出信号をアナログフィルターで処理した場合
の周波数特性を説明するための図である. 1・・・振動波モータ 1−1・・・S相     1−2・・・駆勤相1−3
・・・駆動相    1−4・・・D相2・・・振動検
出回路 3・・・発振回路(電圧制御発振回路)4・・・90゜
移相器 5,6.9・・・増幅器 7・・・駆動信号減衰回路 8・・・移相器     10・・・遅延回路1l・・
・加算回路   12・・・周波数てい倍器13・・・
減算器 他4名 第 l 図 ア 第 2 図 第 3 図 第 4 図 周波数(KIIZ) 第 5 図 第 6 図 第 図 第 9 図 第 10 図 7 第 11 図 周波数 第 12 図 AQ(.−
FIG. 1 is a block diagram showing an outline of the drive control circuit in Embodiment 1 of the vibration wave motor of the present invention, FIG. 2 is a diagram showing the electrode pattern of the vibration wave motor, and FIG. A diagram showing an example of the S-phase output signal in Example 1, No. 4
The figure shows the frequency transfer characteristics of the drive wave damping circuit that drives the vibrating body in Example 1, FIG. 5 shows the specific configuration of the drive wave damping circuit, and FIG. 6 shows the WAa
A diagram showing the specific structure of another example 2 of the wave attenuation circuit,
FIG. 7 shows the configuration I of the drive control circuit in Embodiment 3 of the vibration wave motor of the present invention! A block diagram showing the main points, FIG. 8 is a diagram showing a specific configuration of the drive wave attenuation circuit in the third embodiment, and FIG. 9 is a drive control circuit in the fourth embodiment of the vibration wave motor of the present invention. Fig. 10 is a block diagram showing the configuration outline of the drive wave damping circuit in the fourth embodiment, and Fig. 11 is a diagram showing the drive wave that drives the vibrating body in the fourth embodiment. FIG. 3 is a diagram showing frequency transfer characteristics in the attenuation circuit of FIG. Fig. 12 is a block diagram showing an outline of the drive circuit of a conventional vibration wave motor, Fig. 13 is a diagram showing the electrode pattern of the vibration wave motor, and Fig. 14 is an S in the conventional example.
It is a diagram for explaining the frequency characteristics when the detection signal from the phase is processed by an analog filter. 1... Vibration wave motor 1-1... S phase 1-2... Drive phase 1-3
...Drive phase 1-4...D phase 2...Vibration detection circuit 3...Oscillation circuit (voltage controlled oscillation circuit) 4...90° phase shifter 5, 6.9...Amplifier 7... Drive signal attenuation circuit 8... Phase shifter 10... Delay circuit 1l...
-Addition circuit 12...Frequency multiplier 13...
Subtractor and 4 others Figure A Figure 2 Figure 3 Figure 4 Figure Frequency (KIIZ) Figure 5 Figure 6 Figure Figure 9 Figure 10 Figure 7 Figure 11 Frequency Figure 12 Figure AQ (.-

Claims (1)

【特許請求の範囲】 1、電気−機械エネルギー変換素子からなる第1及び第
2の駆動相に駆動制御回路から交流電圧を印加すること
により、この駆動相が設けられた振動体に波長λの進行
性振動波を生じさせ、振動体に加圧接触された部材をこ
の進行性振動波により相対運動させる振動波 モータにおいて、前記振動体には、振動状態を検出する
ための振動検出相と、前記進行性振動波以外の振動抑制
用の第3の駆動相とを設けると共に、前記制御回路には
、前記進行性振動波成分を減衰するために前記振動検出
相から得られた検出信号と該信号を移相した信号とを合
成する第1の制御手段と、前記進行性振動波以外の振動
抑制のためにこの合成して得られた信号を位相調整して
前記第3の駆動相に入力する第2の制御手段とを設けた
ことを特徴とする振動波モータ。 2、請求項1において、第一の制御手段における検出信
号を移相する手段が遅延回路であることを特徴とする振
動波モータ。 3、請求項1において、第一の制御手段における信号を
合成する手段が加算器あるいは減算器であることを特徴
とする振動波モータ。 4、請求項2において、遅延回路により遅延する時間Δ
tが Δt=(nT)/2(nは整数) (ただしTは、第1および第2の駆動相に 印加する交流電圧の周期) であることを特徴とする振動波モータ。
[Claims] 1. By applying an alternating current voltage from a drive control circuit to the first and second drive phases consisting of an electro-mechanical energy conversion element, a vibration of wavelength λ is applied to the vibrating body provided with the drive phases. In a vibration wave motor that generates a progressive vibration wave and causes a member that is in pressure contact with a vibrating body to move relative to each other by the progressive vibration wave, the vibrator includes a vibration detection phase for detecting a vibration state; A third drive phase for suppressing vibrations other than the progressive vibration wave is provided, and the control circuit includes a detection signal obtained from the vibration detection phase and a third drive phase for damping the progressive vibration wave component. a first control means for synthesizing the phase-shifted signal; and a phase-adjusted signal of the synthesized signal for suppressing vibrations other than the progressive vibration wave, and inputting the phase-adjusted signal to the third drive phase. A vibration wave motor characterized in that it is provided with a second control means for controlling the vibration wave motor. 2. The vibration wave motor according to claim 1, wherein the means for phase shifting the detection signal in the first control means is a delay circuit. 3. The vibration wave motor according to claim 1, wherein the means for synthesizing the signals in the first control means is an adder or a subtracter. 4. In claim 2, the time Δ delayed by the delay circuit
A vibration wave motor characterized in that t is Δt=(nT)/2 (n is an integer) (where T is a period of an alternating current voltage applied to the first and second drive phases).
JP1229814A 1989-04-07 1989-09-05 Vibration wave motor Pending JPH0393480A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1229814A JPH0393480A (en) 1989-09-05 1989-09-05 Vibration wave motor
US07/724,450 US5134348A (en) 1989-04-07 1991-07-03 Vibration wave motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1229814A JPH0393480A (en) 1989-09-05 1989-09-05 Vibration wave motor

Publications (1)

Publication Number Publication Date
JPH0393480A true JPH0393480A (en) 1991-04-18

Family

ID=16898088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1229814A Pending JPH0393480A (en) 1989-04-07 1989-09-05 Vibration wave motor

Country Status (1)

Country Link
JP (1) JPH0393480A (en)

Similar Documents

Publication Publication Date Title
JP2874765B2 (en) Vibration type motor device
JP2589698B2 (en) Vibration type actuator device
JP5037767B2 (en) Control device for vibration actuator
US5134348A (en) Vibration wave motor
JP2003319668A (en) Oscillating wave driving device and driving circuit thereof
JP2995789B2 (en) Ultrasonic motor drive
JPH0393480A (en) Vibration wave motor
US6400063B2 (en) Ultrasonic motor and electronic apparatus having an ultrasonic motor
JPS59185178A (en) Vibration type motor and its driving method
JP2001157473A (en) Vibrator with electromechanical energy converter as vibration source, oscillating wave driver with vibrator as drive source, apparatus having oscillating wave driver and conveyor with vibrator as conveying source
JP5262360B2 (en) Driving method and driving apparatus for ultrasonic motor
JP3260041B2 (en) Ultrasonic motor driving method and driving circuit
JP2933318B2 (en) Vibration type motor
JP2794692B2 (en) Ultrasonic motor drive circuit
WO2021246015A1 (en) Drive control device and ultrasonic motor system
JPH01298967A (en) Driver for ultrasonic actuator
JPH0365079A (en) Drive controller of ultrasonic motor
JPH03145981A (en) Vibration wave motor
JPH11201758A (en) Piezoelectric vibrator and piezoelectric vibrational angular velocity meter
SU1597234A1 (en) Ultrasonic radiator
JPH01136575A (en) Supersonic motor driving device
JP2817992B2 (en) Starting the vibration wave motor
JP2601268B2 (en) Ultrasonic motor
JP3533321B2 (en) Ultrasonic motor drive circuit
JPH03103082A (en) Vibration controlling method for vibration wave motor