JPH0393425A - Dc power unit - Google Patents

Dc power unit

Info

Publication number
JPH0393425A
JPH0393425A JP1227797A JP22779789A JPH0393425A JP H0393425 A JPH0393425 A JP H0393425A JP 1227797 A JP1227797 A JP 1227797A JP 22779789 A JP22779789 A JP 22779789A JP H0393425 A JPH0393425 A JP H0393425A
Authority
JP
Japan
Prior art keywords
resistor
circuit
smoothing capacitor
contact
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1227797A
Other languages
Japanese (ja)
Inventor
Hidetaka Kidoguchi
木戸口 秀隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1227797A priority Critical patent/JPH0393425A/en
Publication of JPH0393425A publication Critical patent/JPH0393425A/en
Pending legal-status Critical Current

Links

Landscapes

  • Power Conversion In General (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

PURPOSE:To suppress surge current into a smoothing capacitor, simple operation with simple circuit and small main circuit machine, by inserting the primary winding of a leakage transformer having high leakage reactance between a DC power unit and the capacitor and arranging a resistor and a contact for short-circuiting the resistor on the secondary winding. CONSTITUTION:Primary winding of a leakage transformer 3 having high leakage reactance is connected between a DC power unit 1 and a smoothing capacitor 6. A resistor 4 is connected across the secondary winding of the leakage transformer 3 and a contact 8 for short-circuiting the resistor 4 is also provided. A circuit breaker 2 is closed, under open state of the short circuit contact 8, thus charging the smoothing capacitor 6. When a voltage detecting relay 5 detects that the voltage across the smoothing capacitor 6 has increased upto a predetermined level, the short circuit contact 8 is closed. The leakage transformer 3 functions as a reactor. By such arrangement, surge current can be suppressed and the main circuit machine can be simplified.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、平滑コンデンサ充電時の突入電流を抑制す
る直流電源装置に関する. 〔従来の技術〕 コンピュータなどの電子装置や、直流を入力してこれを
交流に変換するインバータなとは、脈動分が極めて少い
平滑な直流を必要とする.このような平滑直流は、たと
えば整流器などの直流電源と、これの出力側に直流リア
クトルと平滑コンデンサとを備えた直流電源装置によっ
て得ることができる. しかし、このような直流電源装置は、これを始動する際
に、直流電源から平滑コンデンサに大きな充電電流が突
入し、機器を破損させるおそれがあるので、この突入電
流を抑制する必要がある.第5図は平滑コンデンサへの
突入電流を抑制している直流電源装直の第1従来例を示
した回路図である. この第5図は手動予備充電方式と称するものであって、
遮断器2が開の状態で押釦スイッチ14を押すことで、
直流電源lから平滑コンデンサ6への充電電流が、抵抗
13で制限されつつ流れるので、平滑コンデンサ6の電
圧が抵抗l3の抵抗埴で定まる電圧まで上昇した時点、
あるいは所定時間を経遇した時点で遮断器2を投入する
.この遮断器2の投入により、直流電力は遮断器2と直
流リアクトルl2とを介して平滑コンデンサ6を充電完
了状態まで充電し゛、負荷としてのインバータ7へは遮
断器2の補助接点から充電完了信号が送られるので、こ
のインバータ7はいつでも運転できる状態となる. 第6図は平滑コンデンサへの突入電流を抑制している直
流電源装置の第2従来例を示した回路図である. この第6図はモータブレーカ起動方式と称するものであ
って、運転指令接点l8からの運転指令信号に従って、
起動シーケンス回路17は接点19に閉路信号を送る.
この接点l9は第5図に示す第1従来例回路における押
和スイッチl4に相当するものであり、直流電源lから
の直流電力はこの接点19と抵抗l3とにより電流を制
限されつつ、平滑コンデンサ6を充電する.この平滑コ
ンデンサ6の電圧が所定電圧まで上昇したことを電圧検
出器16が検出すると、起動シーケンス回路17はモー
タブレーカ15に閉路信号を、接点19には回路信号を
、またインバータ7へは充電完了信号をそれぞれ送出し
、このインバータ7はいつでも運転できる状態となる. 第7図は平滑コンデンサへの突入電流を抑制している直
流電源装置の第3従来例を示した回路図である. この第7図はコンタクタ起動方式と称するものであって
、遮断器2を投入することで平滑コンデンサ6の充電を
開始するのであるが、このときコンタクタ接点20は開
路しているので、直流電源lからの直流電力は抵抗l3
により充電電流が制限されながら、直流リアクトル12
を経て平滑コンデンサ6に流入する.この平滑コンデン
サ6の電圧が所定僅に到達したことを電圧検出器l6で
検出すると、起動シーケンス回路l7からの指令でコン
タクタ接点20が閉路して、抵抗l3を短絡すると同時
に、インバータ7に充電完了信号を送出するようにして
いる. なお、この第7図に示す第3従来例回路において、コン
タクタ接点20の代りに、半導体スイッチ素子、たとえ
ばサイリスタを使用して、主回路を無接点化する方法も
ある. 〔発明が解決しようとする課題〕 上述したように、直流電源装置では平滑コンデンサを充
電する際に、過大な突入電流が流れることがないように
抑制するのに各種の方法が従来から使用されていたが、
それぞれに欠点を有している.すなわち、第5図に示す
第1従来例回路は、回路構威は簡単であるが、手動操作
であり、操作に手間がかかる.かつ平滑コンデンサ6の
電圧が所定値に到達する以前に遮断器2を投入すると、
その瞬間に過大充電電流が流れてこの遮断器2をトリッ
プさせてしまう不具合を生じることがある.また第6図
に示す第2実施例回路は、操作が自動化されて手間が省
略できる半面、回路が*eiになることと、直流電at
の停電時にモータプレーカ15をトリップさせるための
別電源が必要で、さらに回路を複雑にする欠点がある.
さらに第7図に示す第3従来例回路では、コンタクタで
抵抗l3を短絡する方式なので、直流電源l停電時にト
リップ用別電源を用意する必要はないが、コンタクタ接
点20は主回路電流を通流すること、かつ過電流速断用
の遮断器2を備える必要があることなど、主回路機器の
ために装置が大形化する欠点がある.そこでこの発明の
目的は、操作が簡単で回路も復雑でなく、しかも主回路
機器も小なるままで平滑コンデンサへの突入電流を印制
しようとするものである. (課題を解決するための手段) 上記の目的を達威するために、この発明の直流電源装置
は、直流電源の出力側に接続したコンデンサと、このコ
ンデンサと直流電源との間に挿入している直流リアクト
ルとで構威した直流電源装直において、漏れリアクタン
スが大なる漏洩変圧器の1次側巻線を、前記直流リアク
トルに代って前記直流電源とコンデンサとの間に挿入し
、この漏洩変圧器の2次側巻線を短絡する抵抗と、前記
コンデンサの電圧に対応してこの抵抗を短絡する接点と
を備えるものとする. 〔作用〕 この発明は、直流電源と平滑コンデンサとの間に設置す
る直流リアクトルの代りに、漏れリアクタンスが大なる
漏洩変圧器の1次側を接続し、この漏洩変圧器の2次側
には、この2次巻線を短絡する抵抗と、この抵抗を短絡
する接点を備える.第3図は漏洩変圧器とこれに接続し
た負荷抵抗とをあらわした回路図であって、1次巻線と
2次巻線との巻数比がaである漏洩変圧器3の2次側に
、抵抗値R.なる負荷抵抗9を接続した場合を示してい
る. 第4図は第3図に示す漏洩変圧器と負荷抵抗との等価回
路図である.この等価回路からもわかるように、漏洩変
圧器3の1次電流口.は下記の(1》式で示される. 2次側に接続した負荷抵抗9の抵抗値RLを大にすれば
、!次電流!1は小さくなる.また負荷抵抗9を短絡、
すなわちRL−0にすれば、(1)式は下記の(2)式
となる. Rナj−X ここでR(Xとなるように漏洩変圧器3を設計すれば、
(2)式を下記の(3)式で近似することができる. J−X すなわちR(Xなる漏洩変圧器3の2次側巻線を短絡す
れば、この漏洩変圧器3はリアクトルとして作用するこ
とになる. よって、平滑コンデンサ6を充電するときは、漏洩変圧
器3の2次側に適切な値の抵抗を接続して充電電流を制
限し、その後にこの抵抗を短絡すればよいことになる. 〔実施例〕 第l図は本発明の実施例をあらわした回路図である. この第1図において、直流電源1からの直流電力を遮断
器2を介して平滑コンデンサ6に与えてこれを充電し、
充電完了後に負荷であるインバータ7の運転を開始する
のは、既述の各従来例回路の場合と同じである. 本発明においては、直流リアクトルl2の代りに、漏れ
リアクタンスが大なる漏洩変圧器3の1次巻線を、直流
電源1と平滑コンデンサ6との間に接続するのであるが
、この漏洩変圧器3の2次巻線には抵抗4を接続すると
ともに、この抵抗4を短絡する短絡接点8を設けている
. この第1図に示す直流電源装置を起動する際は、短絡接
点8が開の状態で遮断器2を投入して、平滑コンデンサ
6を充電するとき、その充電電流は(1)式に示すよう
に抵抗4により制限されるので、過大な突入電流が流れ
るおそれはない.この充電、電流により、平滑コンデン
サ6の電圧が上昇して所定電圧に到達したことを電圧検
出リレー5が検出すると、この電圧検出リレー5の動作
に連動している短絡接点8が閉路する.すなわち抵抗4
が短絡されるので、前述した(3)式により、この漏洩
変圧器3はリアクトルとしての作用をすることになる. 第2図は第1図に示す実施例回路の動作をあらわした動
作波形図であって、第2図は入力電圧Vの変化、第2図
(ロ〉はコンデンサ電圧vcの変化、第2図(ハ)は入
力電流■の変化を、それぞれがあらわしている. この第2図に示すように、T.時点に遮断器2を投入す
ると、平滑コンデンサ6の電圧は、このコンデンサ容量
と漏洩変圧器3の1次側に換算した抵抗値とで定まる時
定数に従って上昇するのであるが、このときの入力電流
Iはその最大値が抑制されている.このコンデンサ電圧
vcがT宏時点に電圧検出リレー5の設定電圧に到達す
ると、短絡接点8が閉路するので、その瞬間に入力電流
■が急上昇するが、その値も過大になるおそれはなく、
すぐに充電完了して、インバータ7を運転ずることがで
きる. 遮断器2をT,時点で開路すると、コンデンサ電圧vc
が低下してT4時点に電圧設定僅まで減少すると短絡接
点8が開路して元の状態に戻る.T$は遮断器2を投入
する時点であって、前述した動作を繰返すことで平滑コ
ンデンサ6を再充電する. 〔発明の効果〕 この発明によれば、直流電源と平滑コンデンサとの間に
漏洩変圧器の1次側巻線を挿入する.この漏洩変圧器の
2次側巻線に抵抗を接続すれば、l次電流を抑制するこ
とができ、抵抗を短絡すればりアクトルとしての作用を
することから、これを利用して平滑コンデンサの充電電
流を仰制し、かつコンデンサの充電完了後はリップル分
を除去するためのりアクトルとしても使用できるので、
主回路に使用する機器を簡略にできる効果が得られる.
さらにt流抑制用抵抗や、この抵抗短絡用接点は漏洩変
圧器の2次側に設置するので、その電流容量は小でよく
、装置を小形化するのに効果的である.
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a DC power supply device that suppresses inrush current when charging a smoothing capacitor. [Prior Art] Electronic devices such as computers and inverters that input direct current and convert it to alternating current require smooth direct current with extremely little pulsation. Such smoothed direct current can be obtained, for example, by a direct current power supply device including a direct current power source such as a rectifier, and a direct current reactor and a smoothing capacitor on the output side of the direct current power source. However, when starting such a DC power supply, a large charging current rushes into the smoothing capacitor from the DC power supply, potentially damaging the equipment, so it is necessary to suppress this rush current. Figure 5 is a circuit diagram showing the first conventional example of reconfiguring a DC power supply to suppress inrush current to a smoothing capacitor. This figure 5 is called the manual preliminary charging method,
By pressing the push button switch 14 while the circuit breaker 2 is open,
Since the charging current from the DC power supply 1 to the smoothing capacitor 6 flows while being restricted by the resistor 13, when the voltage of the smoothing capacitor 6 rises to the voltage determined by the resistance value of the resistor 13,
Alternatively, circuit breaker 2 is closed after a predetermined period of time has elapsed. When the circuit breaker 2 is turned on, the DC power charges the smoothing capacitor 6 to the charging completion state via the circuit breaker 2 and the DC reactor l2, and a charging completion signal is sent from the auxiliary contact of the circuit breaker 2 to the inverter 7 as a load. is sent to the inverter 7, so that the inverter 7 is ready for operation at any time. Figure 6 is a circuit diagram showing a second conventional example of a DC power supply that suppresses inrush current to a smoothing capacitor. This FIG. 6 is called a motor breaker starting method, and according to the operation command signal from the operation command contact l8,
The starting sequence circuit 17 sends a closing signal to the contact 19.
This contact 19 corresponds to the press switch 14 in the first conventional circuit shown in FIG. Charge 6. When the voltage detector 16 detects that the voltage of the smoothing capacitor 6 has increased to a predetermined voltage, the startup sequence circuit 17 sends a closing signal to the motor breaker 15, a circuit signal to the contact 19, and a signal to the inverter 7 that charging is completed. Each signal is sent out, and the inverter 7 is ready to operate at any time. Figure 7 is a circuit diagram showing a third conventional example of a DC power supply that suppresses inrush current to a smoothing capacitor. This figure 7 is called the contactor starting method, and charging of the smoothing capacitor 6 is started by closing the circuit breaker 2. At this time, since the contactor contact 20 is open, the DC power source l DC power from resistor l3
While charging current is limited by DC reactor 12
It flows into the smoothing capacitor 6 through the . When the voltage detector l6 detects that the voltage of the smoothing capacitor 6 has reached a predetermined level, the contactor contact 20 closes in response to a command from the startup sequence circuit l7, shorting the resistor l3 and at the same time, charging the inverter 7 is completed. I am trying to send a signal. In the third conventional circuit shown in FIG. 7, there is also a method of using a semiconductor switching element, such as a thyristor, in place of the contactor contact 20 to make the main circuit contactless. [Problems to be Solved by the Invention] As mentioned above, various methods have been conventionally used to suppress excessive inrush current from flowing when charging a smoothing capacitor in a DC power supply device. However,
Each has drawbacks. That is, although the first conventional circuit shown in FIG. 5 has a simple circuit structure, it is manually operated and requires time and effort. And if the circuit breaker 2 is turned on before the voltage of the smoothing capacitor 6 reaches a predetermined value,
At that moment, excessive charging current may flow, causing a problem that may cause circuit breaker 2 to trip. In addition, the second embodiment circuit shown in FIG.
A separate power supply is required to trip the motor breaker 15 in the event of a power outage, and this has the disadvantage of complicating the circuit.
Furthermore, in the third conventional circuit shown in FIG. 7, since the resistor l3 is short-circuited with a contactor, there is no need to prepare a separate power supply for tripping in the event of a DC power failure, but the contactor contact 20 allows the main circuit current to pass through. However, there are disadvantages in that the device becomes large due to the main circuit equipment, such as the need to provide a circuit breaker 2 for rapid overcurrent disconnection. Therefore, the purpose of this invention is to suppress the inrush current to the smoothing capacitor while keeping the operation simple, the circuit simple, and the main circuit equipment small. (Means for Solving the Problems) In order to achieve the above object, the DC power supply device of the present invention includes a capacitor connected to the output side of the DC power supply, and a capacitor inserted between the capacitor and the DC power supply. When reconfiguring a DC power supply with a DC reactor, the primary winding of a leaky transformer with a large leakage reactance is inserted between the DC power supply and the capacitor instead of the DC reactor. It shall be provided with a resistor that short-circuits the secondary winding of the leaky transformer, and a contact that short-circuits this resistor in response to the voltage of the capacitor. [Operation] This invention connects the primary side of a leaky transformer with a large leakage reactance instead of a DC reactor installed between a DC power source and a smoothing capacitor, and connects a leaky transformer with a secondary side to the secondary side of the leaky transformer. , a resistor that short-circuits this secondary winding, and a contact that short-circuits this resistor. FIG. 3 is a circuit diagram showing a leaky transformer and a load resistor connected to it. , resistance value R. This shows the case where a load resistor 9 is connected. Figure 4 is an equivalent circuit diagram of the leaky transformer and load resistor shown in Figure 3. As can be seen from this equivalent circuit, the primary current port of the leakage transformer 3. is shown by the following formula (1). If the resistance value RL of the load resistor 9 connected to the secondary side is increased, the next current !1 becomes smaller.Also, if the load resistor 9 is shorted,
That is, if RL-0 is set, equation (1) becomes equation (2) below. R na j−X Here, if the leakage transformer 3 is designed so that R(X),
Equation (2) can be approximated by equation (3) below. If you short-circuit the secondary winding of the leaky transformer 3 (J-X, that is, R(X), the leaky transformer 3 will act as a reactor. Therefore, when charging the smoothing capacitor 6, the leaky transformer It is sufficient to connect a resistor of an appropriate value to the secondary side of the device 3 to limit the charging current, and then short-circuit this resistor. [Embodiment] Figure 1 shows an embodiment of the present invention. 1, DC power from a DC power supply 1 is applied to a smoothing capacitor 6 via a circuit breaker 2 to charge it.
The operation of the inverter 7, which is the load, is started after charging is completed, as in the case of each of the conventional circuits described above. In the present invention, instead of the DC reactor l2, the primary winding of the leaky transformer 3 having a large leakage reactance is connected between the DC power supply 1 and the smoothing capacitor 6. A resistor 4 is connected to the secondary winding, and a shorting contact 8 is provided to short-circuit the resistor 4. When starting up the DC power supply shown in FIG. 1, when the circuit breaker 2 is turned on with the short-circuit contact 8 open and the smoothing capacitor 6 is charged, the charging current is as shown in equation (1). is limited by resistor 4, so there is no risk of excessive inrush current flowing. When the voltage detection relay 5 detects that the voltage of the smoothing capacitor 6 increases due to this charging and current and reaches a predetermined voltage, the short circuit contact 8 linked to the operation of the voltage detection relay 5 closes. i.e. resistance 4
is short-circuited, so according to equation (3) mentioned above, this leaky transformer 3 acts as a reactor. FIG. 2 is an operation waveform diagram showing the operation of the embodiment circuit shown in FIG. 1, in which FIG. 2 shows changes in input voltage V, FIG. (C) each represents the change in the input current ■.As shown in Fig. 2, when the circuit breaker 2 is closed at time T, the voltage of the smoothing capacitor 6 is equal to the capacitance of this capacitor and the leakage transformer. The input current I increases according to a time constant determined by the resistance value converted to the primary side of the capacitor 3, but the maximum value of the input current I at this time is suppressed.This capacitor voltage vc is detected at the time of T-hiro. When the set voltage of the relay 5 is reached, the short-circuit contact 8 closes, and at that moment the input current ■ increases rapidly, but there is no risk that its value will become excessive.
Charging is completed immediately and the inverter 7 can be operated. When circuit breaker 2 is opened at time T, capacitor voltage vc
When the voltage decreases to just the voltage setting at T4, the short-circuit contact 8 opens and returns to the original state. T$ is the point at which the circuit breaker 2 is closed, and the smoothing capacitor 6 is recharged by repeating the above-described operation. [Effects of the Invention] According to this invention, the primary winding of the leaky transformer is inserted between the DC power source and the smoothing capacitor. If a resistor is connected to the secondary winding of this leaky transformer, the primary current can be suppressed, and if the resistor is shorted, it acts as an actor, so this can be used to charge the smoothing capacitor. It can be used as a glue actor to control the current and remove ripple after the capacitor is fully charged.
This has the effect of simplifying the equipment used in the main circuit.
Furthermore, since the resistor for suppressing the t-current and the contact for shorting the resistor are installed on the secondary side of the leakage transformer, their current capacity can be small, which is effective in downsizing the device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例をあらわした回路図、第2図は
第1図に示す実施例回路の動作をあらわした動作波形図
、第3図は漏洩変圧器とこれに接続した負荷抵抗とをあ
らわした回路図、第4図は第3図に示す漏洩変圧器と負
荷抵抗との等価回路図であり、第5図は平滑コンデンサ
への突入電流を抑制している直流電源装置の第1従来例
を示した回路図、第6図は平滑コンデンサへの突入電流
を抑制している直流電源装置の第2従来例を示した回路
図、第7図は平滑コンデンサへの突入電流を抑制してい
る直流電源装置の第3従来例を示した回路図である. 1・・・直流電源、2・・・遮断器、3・・・漏洩変圧
!L4.l3・・・抵抗、5・・・電圧検出リレー 6
・・・平滑コンデンサ、7・・・負荷としてのインバー
タ、8・・・短絡接点、9・・・負荷抵抗、12・・・
直流リアクトル、14・・・押釦スイッチ、15・・・
モータプレーカ、16・・・電圧検出器、l7・・・起
動シーケンス回路、18・・・運転指令接点、l9・・
・接点、20・・・コンタクタ接点.篤 2 図 6 3 図 篤 4 図
Fig. 1 is a circuit diagram showing an embodiment of the present invention, Fig. 2 is an operation waveform diagram showing the operation of the embodiment circuit shown in Fig. 1, and Fig. 3 is a leakage transformer and a load resistor connected to it. Figure 4 is an equivalent circuit diagram of the leaky transformer and load resistor shown in Figure 3, and Figure 5 is a circuit diagram of the DC power supply that suppresses the rush current to the smoothing capacitor. 1. A circuit diagram showing a conventional example. Fig. 6 is a circuit diagram showing a 2nd conventional example of a DC power supply device that suppresses inrush current to a smoothing capacitor. Fig. 7 shows a circuit diagram that suppresses inrush current to a smoothing capacitor. FIG. 2 is a circuit diagram showing a third conventional example of a direct current power supply device. 1...DC power supply, 2...breaker, 3...leakage transformer! L4. l3...Resistance, 5...Voltage detection relay 6
...Smoothing capacitor, 7.Inverter as load, 8.Short contact, 9.Load resistance, 12..
DC reactor, 14...Push button switch, 15...
Motor breaker, 16... Voltage detector, l7... Starting sequence circuit, 18... Operation command contact, l9...
・Contact, 20... Contactor contact. Atsushi 2 Figure 6 3 Atsushi 4 Figure

Claims (1)

【特許請求の範囲】[Claims] 1)直流電源の出力側に接続したコンデンサと、このコ
ンデンサと直流電源との間に挿入している直流リアクト
ルとで構成した直流電源装置において、漏れリアクタン
スが大なる漏洩変圧器の1次側巻線を、前記直流リアク
トルに代って前記直流電源とコンデンサとの間に挿入し
、この漏洩変圧器の2次側巻線を短絡する抵抗と、前記
コンデンサの電圧に対応してこの抵抗を短絡する接点と
を備えていることを特徴とする直流電源装置。
1) In a DC power supply system consisting of a capacitor connected to the output side of a DC power supply and a DC reactor inserted between this capacitor and the DC power supply, the primary winding of a leaky transformer with large leakage reactance A wire is inserted between the DC power source and the capacitor in place of the DC reactor, and a resistor is inserted to short-circuit the secondary winding of the leaky transformer, and this resistor is short-circuited in accordance with the voltage of the capacitor. A direct current power supply device characterized by comprising a contact point.
JP1227797A 1989-09-02 1989-09-02 Dc power unit Pending JPH0393425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1227797A JPH0393425A (en) 1989-09-02 1989-09-02 Dc power unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1227797A JPH0393425A (en) 1989-09-02 1989-09-02 Dc power unit

Publications (1)

Publication Number Publication Date
JPH0393425A true JPH0393425A (en) 1991-04-18

Family

ID=16866541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1227797A Pending JPH0393425A (en) 1989-09-02 1989-09-02 Dc power unit

Country Status (1)

Country Link
JP (1) JPH0393425A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666252U (en) * 1993-02-22 1994-09-16 富士電気化学株式会社 Protection circuit in capacitor input type power supply circuit
JP2004336911A (en) * 2003-05-08 2004-11-25 Fukuda Denshi Co Ltd Power supply control circuit and living organism information recording apparatus using same
JP2015516533A (en) * 2012-03-06 2015-06-11 ヴァレオ エキプマン エレクトリク モトゥール Method for limiting inrush current in power circuit of motor vehicle starter, and corresponding electrical circuit, current limiter, and starter
JP2017225293A (en) * 2016-06-17 2017-12-21 日産自動車株式会社 Power conversion system
CN107769181A (en) * 2016-08-23 2018-03-06 全球能源互联网研究院 A kind of bridge-type current limiter based on pulse transformer
CN107800124A (en) * 2016-08-30 2018-03-13 南京中兴新软件有限责任公司 energy processing system and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666252U (en) * 1993-02-22 1994-09-16 富士電気化学株式会社 Protection circuit in capacitor input type power supply circuit
JP2004336911A (en) * 2003-05-08 2004-11-25 Fukuda Denshi Co Ltd Power supply control circuit and living organism information recording apparatus using same
JP2015516533A (en) * 2012-03-06 2015-06-11 ヴァレオ エキプマン エレクトリク モトゥール Method for limiting inrush current in power circuit of motor vehicle starter, and corresponding electrical circuit, current limiter, and starter
JP2017225293A (en) * 2016-06-17 2017-12-21 日産自動車株式会社 Power conversion system
CN107769181A (en) * 2016-08-23 2018-03-06 全球能源互联网研究院 A kind of bridge-type current limiter based on pulse transformer
CN107800124A (en) * 2016-08-30 2018-03-13 南京中兴新软件有限责任公司 energy processing system and method

Similar Documents

Publication Publication Date Title
EP0477367B1 (en) Device for preventing inrush current from flowing into electric apparatus
JPH0393425A (en) Dc power unit
US5687069A (en) Rectifier bridge apparatus
US3631332A (en) Inverter starting circuit
JPH0919154A (en) Rush current limiter for power supply
JPS58212369A (en) Converter circuit
JP2540225B2 (en) Battery switching circuit
KR100657473B1 (en) Inrush protection circuit and its method for inverter
JP3849298B2 (en) Voltage type inverter
JPH05316640A (en) Power converter
JP2909391B2 (en) Inrush current suppression circuit
JP2812345B2 (en) Capacitor charging circuit
JPS619120A (en) Leakage detecting circuit
JP3680563B2 (en) Half-bridge converter backup circuit
JPS633657A (en) Push current suppressing circuit for inverter
JPS59148561A (en) Rush current preventing circuit
JPH0461591B2 (en)
JPS61231878A (en) Dc power source
JPS5915263Y2 (en) frequency converter
JPH069547Y2 (en) Electronic AC circuit breaker
JP2727177B2 (en) DC power supply and quick charging device using the same
JPH03239163A (en) Voltage type inverter
JPS62166779A (en) Rush current suppressing circuit
SU1376070A1 (en) Load supply source
JPS60176467A (en) Power converter