JPH0392789A - Radiation detector - Google Patents

Radiation detector

Info

Publication number
JPH0392789A
JPH0392789A JP22980189A JP22980189A JPH0392789A JP H0392789 A JPH0392789 A JP H0392789A JP 22980189 A JP22980189 A JP 22980189A JP 22980189 A JP22980189 A JP 22980189A JP H0392789 A JPH0392789 A JP H0392789A
Authority
JP
Japan
Prior art keywords
radiation
scintillation
shielding material
optical fibers
radiation shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22980189A
Other languages
Japanese (ja)
Inventor
Yoshihiro Atsumi
渥美 至弘
Katsumi Urayama
浦山 勝己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Atomic Power Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Atomic Power Industries Inc filed Critical Mitsubishi Atomic Power Industries Inc
Priority to JP22980189A priority Critical patent/JPH0392789A/en
Publication of JPH0392789A publication Critical patent/JPH0392789A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To contrive light weight by collimating radiation from a measurement object with the use of scintillation plastic optical fibers which pass through a radiation shielding material. CONSTITUTION:Lead, lead rubber or iron can be used as a radiation shielding material 2, through holes for inserting scintillation plastic optical fiber 3 are bored by a drill in the case of iron, drilled or die-casted to mold in the case of lead and bored by the drill or injected to mold in the case of lead rubber. Since radiation from a measurement object is collimated with the use of scintillation plastic optical fibers passing through the radiation shielding material, light weight can be performed, compared with the conventional lead collimator.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は原子力産業、放射線医療、非破壊検査のよう
に放割性物質や放躬線を使用する分野においで利用可能
な遠隔放射線線源強度分布計測装直の放射線検出器に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention is a remote radiation source that can be used in fields that use radioactive substances and radioactive rays, such as the nuclear industry, radiation medicine, and non-destructive testing. This relates to a radiation detector directly connected to an intensity distribution measuring device.

「従来の技術コ 放射線の検出やS1測をする場合に、従来採用されでい
る技術(.!、例えば、放射線線源強度分布計測装同に
おいてはコリメー夕を測定対象物に対しで走査させ、放
射線をコリメート穴にて検出器へノJイドし・照射させ
ることにJ.−)で指向竹を{!IていI5二。
``Conventional technology'' When detecting radiation or performing S1 measurement, the conventional technology (.!) For example, in a radiation source intensity distribution measuring device, a collimator is scanned over the measurement target. In order to direct and irradiate the radiation to the detector through the collimating hole, the directional bamboo is set at {!I52.

しかし、コリメータ(鉛製)が重吊物となり、検出部の
検出領域が狭いために走査計測に長時間を要する問題が
あった。
However, since the collimator (made of lead) is a heavy object and the detection area of the detection unit is narrow, there is a problem in that scanning measurement requires a long time.

「発明が解決しようとづる課題] 従って、この充明は前述の問題点、すなわち、検出器の
軽量化と訓測時間の短縮化、及び1検知情報の多重化に
J:る検出領域の払人を図り4Efる放割線検出器を提
供することを目的とするものである。
``Problems to be Solved by the Invention'' Therefore, this improvement is aimed at solving the aforementioned problems, namely, reducing the weight of the detector, shortening the training time, and multiplexing one sensed information. The object of the present invention is to provide a radiosecant detector that measures 4Ef for humans.

[課題を解決するための手段] この目的にス4応じて、この発明の故銅線検出器は、板
若しくは柱状の放射線遮蔽祠に目通配説された複数のシ
ンブレーシ−」ン・プラスチック・光ファイバの一端面
に磁気シールドイ・1の多素子型光電変換素子を装着す
ると共に、他方の端面に遮光を施すか、或いは、複数の
シンブレーシ]ン・ゾラスブック・光ファイバの貫通配
設された柱状の放射線遮蔽材ど多素子型光電変換索了と
の171に光軸屈折部材を設けた検出部を直列に配’+
6 1るとJtに放躬線入国面を遮光し、他の周&Vは
放射線遮蔽を施したことを特徴としでいる。
[Means for Solving the Problems] In accordance with this objective, the copper wire detector of the present invention includes a plurality of thin plastic wires arranged in a plate or columnar radiation shielding shrine. A multi-element type photoelectric conversion element of magnetic shield I-1 is attached to one end face of the optical fiber, and the other end face is shielded from light, or a plurality of thin beams, zolas books, and columnar optical fibers are installed through the optical fiber. A detection unit equipped with an optical axis refraction member is arranged in series with the radiation shielding material and the multi-element photoelectric conversion cable.
6 1 and Jt are characterized by shielding the radiation entry surface from light, while the other Z&Vs are characterized by radiation shielding.

[作用1 シンヂレーシ三1ン・ブノスブ−ツク・光フン1イバは
、通常の光(可視光線)は勿論のこと、放!8線や紫外
線の入剣によって発光する。この発光した光は光ファイ
バの光伝送機能によって軸方向に伝送されるので、シン
ヂレーション・ゾラスチック・光ファイバの喘面に光電
素了@設(ノることにより、光を電気パルスに変換する
ことが′Cきる。
[Effect 1 Shinjireshi 31n, Bunosbootsuk, Light Fun 1 Iba, not only normal light (visible light), but also radiation! It emits light when exposed to 8-rays or ultraviolet light. This emitted light is transmitted in the axial direction by the optical transmission function of the optical fiber, so it is possible to convert the light into electrical pulses by installing a photoelectric element on the surface of the optical fiber. is 'C'.

この発明の放射線検出器は通常の光は外乱となるので遮
光部材により遮光し、放射線の影響のみ幻象としている
In the radiation detector of this invention, since normal light causes disturbance, it is blocked by a light shielding member, and only the effects of radiation are illusory.

また、シンヂレーション・ブラスヂック・光ファイバの
側面からの入剣については、これを放射線遮蔽祠によっ
て遮っているので、側面から入則する放躬線は前面入t
lA(測定対象物よりの敢躬線入射〉に比べ光パルス波
高は極端に小さくなる。
In addition, radiation shielding shrines block the entry of syndilation, brass wick, and optical fibers from the side, so radiation lines entering from the side are blocked by radiation shielding from the front.
The optical pulse height is extremely small compared to lA (direct line incidence from the measurement object).

そして、この発明の放躬線検出器では、複数のシンヂレ
ーション・ブラスヂック・光ファイバを用い、これに多
素子型の光電変換素子を装着しているので、各光ファイ
バの各々から独立した信号を得ることができる。このこ
とは、情報の多重化にJ、る検出精度の向上と検出領域
の拡大に寄与する。
The radiation detector of the present invention uses a plurality of syndilation, brassic, and optical fibers and is equipped with a multi-element type photoelectric conversion element, so that independent signals can be obtained from each of the optical fibers. Obtainable. This contributes to improving detection accuracy and expanding the detection area due to information multiplexing.

[尖施例1 以F、この発明の詳細を−実施例を示す図面について説
明づる。
[Example 1] Hereinafter, details of the present invention will be explained with reference to drawings showing embodiments.

(実施例1) 5 第1図(a)及び(b)は特許請求の範囲第1項(柱状
の敢銅線遮蔽林)に対応する放射線検出器の概念図であ
る。
(Example 1) 5 FIGS. 1(a) and 1(b) are conceptual diagrams of a radiation detector corresponding to claim 1 (column-shaped copper wire shielding forest).

第1図(a)において、1は敢剣線検出器である。放射
線・検出器1は、この例では柱状(円柱を例示している
が角柱でもよい)のIIl躬線鴻蔽′vJ2の厚み方向
(軸方向)に複数の穴が貫通しており、この貫通穴の各
々にシンチレーション・ブラスブツク・光ファイバ3が
與通配設されている。
In FIG. 1(a), reference numeral 1 indicates a line detector. The radiation detector 1 has a plurality of holes penetrating in the thickness direction (axial direction) of a columnar (cylindrical is shown as an example, but a rectangular column may also be used) J2 in this example. A scintillation brass book optical fiber 3 is provided through each of the holes.

4は磁気シールド5の施された多素子型の光電変換素子
であって、複数のシンチレーション・ブラスヂック・光
ファイバの一端面を包含づ゛るtJ’i DJ線遮蔽材
2の端面(光ファイバ3の同一端面どなっている〉に密
@するように装着されている。
Reference numeral 4 denotes a multi-element type photoelectric conversion element provided with a magnetic shield 5, which includes one end face of a plurality of scintillation/brassic/optical fibers. It is attached closely to the same end surface of the

(複数の信号出力線は記載を省略している。)6はシン
ヂレーション・ブラスヂック・光ファイバ3のもう一方
の端面、ずなわら、測定幻象物に向いた側( 1Il!
8線入則側)を遮光する為に設(ノられた遮光部材であ
る。
(The description of the plurality of signal output lines is omitted.) 6 is the other end face of the syndilation/brassic/optical fiber 3, which is the side facing the measurement illusion (1Il!
This is a light shielding member installed to shield the 8-line entry side from light.

11は光電変換素子列を作動させるための高電6 L1−供給袈備、12+よプリj2ンブ、13はfイス
クリミネータ( {+(い波先の発光パルスを劃Iる機
能を首リる)、14は多重波高分析装賀、15は画像処
理装圃である。ここで、11〜15の各装闘は、M割線
線源強度分イ+i At illll H置としてのシ
スjム構成を参κまでに聞示りるものであって、従来技
術である−]リメータ走査の場合もシステム構成は同−
て・ある。
11 is a high-voltage 6L1- supply equipment for operating the photoelectric conversion element array, 12+ is a pre-j2 emblem, and 13 is an f-is liminator ({+ (completes the function of cutting the light emission pulse at the tip of the wave)) , 14 is a multiple wave height analysis device, and 15 is an image processing device.Here, each of the devices 11 to 15 refers to the system configuration as an M secant source intensity unit. The system configuration is the same in the case of remeter scanning, which is known up to κ and is the prior art.
There is.

尚、この発明においーC、放射線遮蔽材2として(よ鉛
、鉛入りゴム、また(ま、鉄を使用することがぐき、シ
ンブレーシ」ン・プラスチック・光ファイバ3を挿入す
るための貫通穴は鉄の場合はドリルで穿孔し、鉛の場合
はドリル穿孔ずるかダイキ1・ス1へ成型、鉛入りゴム
の場合はドリル穿孔または割出成型にJ;ることができ
る。
In addition, in this invention, as the radiation shielding material 2, the through hole for inserting the optical fiber 3 is made of lead, lead-containing rubber, or iron. In the case of iron, it can be drilled, in the case of lead, it can be drilled or molded into Daiki 1/S1, and in the case of lead-containing rubber, it can be drilled or indexed.

シンヂレーション・ブラスヂック・光ファイバ3は、例
えば、日本石油化学株式会社(東京都)が販売し(いる
ので、これを用いることができる。
The syndilation brassic optical fiber 3 is sold by, for example, Nippon Petrochemical Co., Ltd. (Tokyo), and can be used.

多素子型の光電変換累子ぺどしでは、市販されいるマル
f− y− 1−ンネルのフA1〜ダイオード或いは光
電子増倍管を用いることがCきる。また、外乱による影
響を訪止“りるため鉄板や導電+!1ブラスブックで磁
気シールドしたものが市販されているので、これらを使
用りるのが好適である。
In a multi-element type photoelectric conversion converter, a commercially available multichannel channel diode or photomultiplier tube can be used. Furthermore, in order to eliminate the influence of external disturbances, magnetically shielded devices such as iron plates or conductive +!1 brass books are commercially available, so it is preferable to use these.

遮光部材6としては、X線よりも波長の長い光を遮るも
の4Tら何でもよく、例えば、黒色の紙、ブラスナック
或いはポリシー1〜等を用いることができる。また、シ
ンヂレーシ]ン・プラスブック・光ファイバ3の端面に
アルミコー7イング(アルミを蒸@)ずるとによって遮
光づることして゛きる。
The light shielding member 6 may be anything such as 4T that blocks light with a longer wavelength than X-rays, and for example, black paper, brass snacks, policy 1, etc. can be used. In addition, light shielding can be accomplished by applying aluminum coating (steamed aluminum) to the end face of the syndylation, plusbook, and optical fiber 3.

(実施例2) 第2図は特許請求の範囲第1項(板状の敢則線遮蔽材)
に対応ずる放射線検出器の概念図である。
(Example 2) Figure 2 is Claim 1 (Plate-shaped line shielding material)
FIG. 2 is a conceptual diagram of a radiation detector corresponding to FIG.

例示の放躬線検出器と前述の第1図に示す放QJ線検出
器との相違点は、シンチレーション・プラスチック・光
ファイバ3の貫通ずる放躬線遮蔽拐2の形状が板状(円
板を想定しているが、角板状状でもJ:い)であるとい
うことであり、他の構成(よ基本的に同−である。
The difference between the exemplified radiation detector and the radiation QJ ray detector shown in FIG. Although it is assumed that the shape is square plate-like, it is also J:i), and other configurations are basically the same.

尚、符月7は多素子型の光電変換素子4の信号出力線で
あり、第1図の例では記載を省略しているが、この例で
はX−Y方向に17X18本あるものが束ねて外部に引
き出ざれている。この種、受光面の広い板状の検出器に
おいて番よ、多素了型光電変換素子として、浜松ホトニ
クス株式会社(浜松市)が製造・販売する位置検出光電
子増倍管、多素子光電子増倍管、或いはマイクロチャン
ネルプレート応用マルヂアノード光電子増倍管を用いる
ことがOY適である。
Note that the sign 7 is a signal output line of the multi-element type photoelectric conversion element 4, and is not shown in the example of Fig. 1, but in this example, 17 x 18 lines are bundled in the X-Y direction. It is being pulled outside. In this kind of plate-shaped detector with a wide light-receiving surface, the position detection photomultiplier tube, which is manufactured and sold by Hamamatsu Photonics Co., Ltd. (Hamamatsu City), is a multi-element photomultiplier as a multi-element type photoelectric conversion element. It is suitable to use a multi-anode photomultiplier tube or a microchannel plate.

(実施例3) 第3図は特許請求の範囲第2項、または第3項に苅応ず
る放躬線検出器の概念図である。
(Third Embodiment) FIG. 3 is a conceptual diagram of a radiation detector according to claim 2 or 3.

第3図において、1は1ll.銅線検出器である。放躬
線検出器1は、柱状の放射線遮蔽材2の軸方向に複数の
穴が貫通しており、この貢通穴の各々にシンチレーショ
ン・プラスチック・光ファイバ3が貫通配設されている
。8は光軸屈折部拐であり、この光軸屈折部材8(ま一
方の端面8aが前記シンブレーション・プラスヂック・
光ファイバ3の端9 面(放射線遮蔽拐2の端面も同一面となっている)に密
着するように配設されており、他の一方の端面8bには
多素子型の光電変換素子4が畜着して装着ざれた検出部
9a(第1の検出部という)と、この第1の検出部と同
一構成の第2の検出部9bをタンデム(直列)に備えて
いる。
In FIG. 3, 1 is 1ll. It is a copper wire detector. In the radiation detector 1, a plurality of holes pass through a columnar radiation shielding material 2 in the axial direction, and a scintillation plastic optical fiber 3 is disposed to pass through each of the holes. Reference numeral 8 denotes an optical axis refracting member 8 (the other end surface 8a of which is the optical axis refracting member 8).
It is arranged so as to be in close contact with the end 9 surface of the optical fiber 3 (the end surface of the radiation shield 2 is also on the same surface), and the multi-element type photoelectric conversion element 4 is disposed on the other end surface 8b. A detecting section 9a (referred to as a first detecting section) that is attached to the sensor and a second detecting section 9b having the same configuration as the first detecting section are provided in tandem (in series).

符号6は遮光部材であり、遮光部材6は第1の検出部の
前面、すなわち、放射線の入剣面である測定対象物に面
する端面を覆っている。
Reference numeral 6 denotes a light shielding member, and the light shielding member 6 covers the front surface of the first detection section, that is, the end surface facing the measurement object, which is the entrance surface of the radiation.

符号10は前述の放射線入射端面を除く他の部分(周壁
や端面)を覆う放躬FI1遮蔽部材であり、周囲の散乱
放射線による外乱を防ぐために設けられた鉛の遮蔽であ
る。
Reference numeral 10 is a radiation FI1 shielding member that covers other parts (peripheral wall and end face) other than the aforementioned radiation incident end face, and is a lead shield provided to prevent disturbances caused by surrounding scattered radiation.

尚、この検出において、放射線遮蔽材2、シンチレーシ
ョン・プラスチック・光ファイバ3、多素子型光電変換
素子4、及び、遮蔽部制6は先に説明した第1図の放射
線検出器に準ずるので詳しい説明【よ省略する。
In this detection, the radiation shielding material 2, scintillation plastic optical fiber 3, multi-element photoelectric conversion element 4, and shielding system 6 are similar to the radiation detector shown in FIG. 1 described above, so a detailed explanation will be provided. [Omitted.]

光軸屈折部拐8については、前述の検出部(9a及び9
b)に用いるシンチレーション・ブ10 ラスチック・光ファイバ3の貫通した柱状の放射線連蔽
月2を9ノ断面が45度の角度になるように切断面仕上
げし、第3図に図示するファイバ・オブディク・プレー
ト{商品名}の場合と同様に光軸が直角に変換される如
く切断面を突き合せ密着するこどによって達成できる。
Regarding the optical axis refraction section 8, the above-mentioned detection section (9a and 9
Scintillation block 10 used for b) A columnar radiation coupling moon 2 penetrated by a plastic optical fiber 3 is cut so that the cross section of the 9th section is at an angle of 45 degrees, and the fiber obdic shown in Fig. 3 is prepared.・Similar to the case of the plate {trade name}, this can be achieved by butting the cut surfaces and bringing them into close contact so that the optical axis is converted to a right angle.

また、細径の光ファイバを密に束ねて形成された浜松小
1一二クス株式会社(浜松市冫製のファイバ・オブティ
ク・プレー1・(商品名)を光軸が直角に変換できるよ
うに45度の角度に面仕上げし、これらを突き合せ密着
させて光軸を直角方向に変換ずるこどもでぎる。
In addition, the optical axis of Fiber Obtik Play 1 (product name) manufactured by Hamamatsu Elementary School 12X Co., Ltd. (Hamamatsu City Medical Co., Ltd.), which is formed by tightly bundling small diameter optical fibers, can be converted to a right angle. The surfaces are finished at a 45-degree angle, and the pieces are butted against each other to convert the optical axis to a right angle.

第4図は、前述の検出部をタンデム配置した放射線検出
器の原理説明図であり、測定対象物に面したFtS1の
検出部9aのある特定部位におCプる計測範囲(スポッ
ト)がaであるのに対し、後段の第2の検出部9bのそ
れはbの範囲となる。
FIG. 4 is an explanatory diagram of the principle of a radiation detector in which the above-mentioned detection sections are arranged in tandem. On the other hand, that of the second detecting section 9b at the subsequent stage is within the range b.

従って、bの範囲については第1の検出部9aによる情
報と合せて二重の情報を得るこどができるので、このス
ボッ1〜の中の情報の多重化により、11 高精度の放射線目測が可能となる。
Therefore, for the range b, it is possible to obtain double information together with the information from the first detection unit 9a, so by multiplexing the information in subboxes 1 to 11, highly accurate radiation visual measurement is possible. It becomes possible.

以上、β線、T線、X線等の目測を目的どした放射線検
出について説明したが、本発明者らの実験によれは、前
記検出器の遮光部材に替えて.紫外線を選択的に透過す
るフィルタ、例えば(』透過用黒色ガラスフィルタまた
は赤吸収用青色ガラスフィルタを使用することによって
、紫外線の空間分布も計測し得ることが判った..,従
って、この知見に1jtづ【プば、フィルタの選択によ
っ゛C紫外線より波長が短くX線よりも波長の長い真2
紫外線もこのシンチレーション・プラスチック・光フノ
・イバと光電素子を用いて光電変換し訓測し得ることは
容易に類推できる。
The above describes radiation detection for the purpose of visual measurement of β-rays, T-rays, X-rays, etc. However, according to the experiments of the present inventors, it is possible to replace the light-shielding member of the detector. It was found that by using a filter that selectively transmits ultraviolet rays, such as a black glass filter for transmission or a blue glass filter for red absorption, the spatial distribution of ultraviolet rays can also be measured. 1) Depending on the selection of the filter, the wavelength of the ultraviolet rays is shorter than that of ultraviolet rays and longer than that of X-rays.
It can be easily inferred that ultraviolet light can also be measured by photoelectric conversion using scintillation, plastic, optical tubes, and photoelectric elements.

[発明の効果] このように、この発明の放射線検出器では、測定対象物
からの放躬線を放射線遮蔽材を貫通づるシンチレーショ
ン・プラスチック・光ファイバによりコリメートするの
で、従来の鉛コリメータと比較し軽量化を図るこどがで
き、しかも、複数の12 シンチレーション・プラスチック・光ファイバによる多
重情報の取得(1検知情報の多重化)が達成されるので
、検出領域か拡大され、走査計測時間の短縮化を図るこ
とかでぎる。
[Effects of the Invention] As described above, in the radiation detector of the present invention, the radiation radiation from the object to be measured is collimated by the scintillation plastic optical fiber that passes through the radiation shielding material, so compared to the conventional lead collimator. The weight can be reduced, and since multiple information acquisition (multiplexing of one detection information) is achieved using multiple scintillation, plastic, and optical fibers, the detection area is expanded and the scanning measurement time is shortened. It is important to try to make it more effective.

また、検出部のlffl・コンパクi〜化が可能となる
ことから、検出部を多重化(タンデム配置)することに
より検出精度を向上することができる。
Further, since it is possible to make the detection section lffl/compact i~, the detection accuracy can be improved by multiplexing the detection sections (tandem arrangement).

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a>はこの允明の一実施例に係わる放射線検出
器の概念図、第1図(b)は第1図(a)におけるA−
A部断面図、第2図は他の実施例に係わる板状の放射線
遮蔽材を用いた放射線検出器の概念図、第3図は検出部
をタイデム配置した放射線検出器の概念図、及び第4図
は検出をタイデム配置した第3図の放射線検出器の原理
説明図である。 1・・・放劃線検出器、 2・・・放射線遮蔽材、3・
・・シンチレーション・プラスチック・光ファイ13 バ、
Fig. 1(a) is a conceptual diagram of a radiation detector according to one embodiment of this Masaki, and Fig. 1(b) is A- in Fig. 1(a).
2 is a conceptual diagram of a radiation detector using a plate-shaped radiation shielding material according to another embodiment; FIG. 3 is a conceptual diagram of a radiation detector in which detection parts are arranged in a timed manner; FIG. 4 is an explanatory diagram of the principle of the radiation detector of FIG. 3 in which detection is arranged in a timed manner. 1... Radiation detector, 2... Radiation shielding material, 3...
... Scintillation plastic optical fiber 13 bar,

Claims (3)

【特許請求の範囲】[Claims] (1)板若しくは柱状の放射線遮蔽材の厚み方向に貫通
配設された複数のシンチレーション・プラスチック・光
ファイバと、前記複数のシンチレーシヨン・プラスチッ
ク・光ファイバの一端面を包含する前記放射線遮蔽材の
端面に装着された磁気シールド付の多素子型光電変換素
子と、前記複数のシンチレーシヨン・プラスチック・光
ファイバのもう一方の端面を遮光する遮光部材とからな
る放射線検出器
(1) A plurality of scintillation plastic optical fibers disposed through the plate or columnar radiation shielding material in the thickness direction, and the radiation shielding material including one end surface of the plurality of scintillation plastic optical fibers. A radiation detector comprising a multi-element photoelectric conversion element with a magnetic shield attached to an end face, and a light shielding member that shields light from the other end face of the plurality of scintillation plastic optical fibers.
(2)柱状の放射線遮蔽材の軸方向に貫通配設された複
数のシンチレーシヨン・プラスチック・光ファイバと、
一端面が前記複数のシンチレーション・プラスチック・
光ファイバ及び放射線遮蔽材の一端面に密着して配設さ
れ、もう一方の端面に多素子型光電変換素子が装着され
た光軸屈折部材とからなる第1の検出部と、前記第1の
検出部に直列配置された前記第1の検出部と同一構成の
第2の検出部と、前記第1の検出部の放射線入射端面に
設けられた遮光部材と、前記放射線入射端面を除く他の
周壁・端面すべてを覆う放射線遮蔽部材とからなる放射
線検出器
(2) a plurality of scintillation plastic optical fibers disposed through the columnar radiation shielding material in the axial direction;
One end surface is made of the plurality of scintillation plastics.
a first detection section comprising an optical axis refraction member disposed in close contact with one end surface of an optical fiber and a radiation shielding material, and a multi-element photoelectric conversion element mounted on the other end surface; a second detection section arranged in series with the detection section and having the same configuration as the first detection section; a light shielding member provided on the radiation entrance end surface of the first detection section; A radiation detector consisting of a radiation shielding member that covers all the peripheral walls and end faces.
(3)前記光軸屈折部材は、複数のシンチレーション・
プラスチック・光ファイバを軸方向に貫通配設した柱状
の放射線遮蔽材を角度45度の面に切断面仕上げし、光
軸が直角に変換される如く突合せ密着させるか、若しく
は、角度45度に面仕上げしたファイバ・オプティク・
プレートを光軸が直角に変換される如く突合せ密着して
なる特許請求の範囲第2項記載の放射線検出器
(3) The optical axis refracting member includes a plurality of scintillation
A column-shaped radiation shielding material with plastic/optical fibers inserted through it in the axial direction is finished with a cut surface at a 45-degree angle, and the optical axis is butted closely together so that the optical axis is converted to a right angle, or the surface is cut at a 45-degree angle. Finished fiber optic
A radiation detector according to claim 2, in which the plates are abutted and brought into close contact so that the optical axis is converted to a right angle.
JP22980189A 1989-09-05 1989-09-05 Radiation detector Pending JPH0392789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22980189A JPH0392789A (en) 1989-09-05 1989-09-05 Radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22980189A JPH0392789A (en) 1989-09-05 1989-09-05 Radiation detector

Publications (1)

Publication Number Publication Date
JPH0392789A true JPH0392789A (en) 1991-04-17

Family

ID=16897884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22980189A Pending JPH0392789A (en) 1989-09-05 1989-09-05 Radiation detector

Country Status (1)

Country Link
JP (1) JPH0392789A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010025658A (en) * 2008-07-17 2010-02-04 Denso Corp Radiation probe, and radiation measuring device using the same
JP2013195320A (en) * 2012-03-22 2013-09-30 Hitachi-Ge Nuclear Energy Ltd Radiation measurement apparatus and measurement method thereof
WO2013179970A1 (en) * 2012-05-31 2013-12-05 株式会社クラレ Cable and radiation measuring apparatus
CN103901462A (en) * 2014-03-21 2014-07-02 上海大学 Totally-closed optical fiber radiation detection sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010025658A (en) * 2008-07-17 2010-02-04 Denso Corp Radiation probe, and radiation measuring device using the same
JP2013195320A (en) * 2012-03-22 2013-09-30 Hitachi-Ge Nuclear Energy Ltd Radiation measurement apparatus and measurement method thereof
WO2013179970A1 (en) * 2012-05-31 2013-12-05 株式会社クラレ Cable and radiation measuring apparatus
JPWO2013179970A1 (en) * 2012-05-31 2016-01-21 株式会社クラレ Cable and radiation measuring device
US9557425B2 (en) 2012-05-31 2017-01-31 Kuraray Co., Ltd. Cable and radiation measurement apparatus
CN103901462A (en) * 2014-03-21 2014-07-02 上海大学 Totally-closed optical fiber radiation detection sensor

Similar Documents

Publication Publication Date Title
Griener et al. Helium line ratio spectroscopy for high spatiotemporal resolution plasma edge profile measurements at ASDEX Upgrade
JP3327602B2 (en) Radiation detection optical transmission device
US5780856A (en) Radiation detector and method of detecting radiation
US3011057A (en) Radiation image device
US6021341A (en) Surgical probe for laparoscopy or intracavitary tumor localization
US5905263A (en) Depth dose measuring device
US7326933B2 (en) Radiation or neutron detector using fiber optics
US5629515A (en) Radiation measuring system having scintillation detectors coupled by optical fibers for multipoint measurement
JP4159052B2 (en) Radiation direction detector, radiation monitoring method and apparatus
US5424546A (en) Scintillation counter having two scintillation fibers provided in series and which emit at different wavelengths
US5155366A (en) Method and apparatus for detecting and discriminating between particles and rays
US10073048B2 (en) Apparatus and method for scanning a structure
JPH0274890A (en) Coupling type scintillator
JPH0392789A (en) Radiation detector
GB2194334A (en) An apparatus for optically measuring a three-dimensional object
JP6338108B2 (en) Radiation perception device
US4542290A (en) Apparatus for recording emissions from a rapidly generated plasma from a single plasma producing event
JP3415328B2 (en) X-ray analyzer
CN106772550B (en) Fibre-optical bending disappears mold device, method
JPH03108687A (en) Radiation detector of radiation measuring apparatus
JP3462871B2 (en) Radiation detection optical transmission device
JPS62124443A (en) Device for obtaining information on inside of body with light
JP2650420B2 (en) Radioactive contamination measurement device
ITRM20120201A1 (en) DIRECTIONAL SCREEN PRINTING DETECTOR
JPH0566275A (en) Directional variable radiation detector