JPH0392257A - Working method and device for optical element - Google Patents

Working method and device for optical element

Info

Publication number
JPH0392257A
JPH0392257A JP22576789A JP22576789A JPH0392257A JP H0392257 A JPH0392257 A JP H0392257A JP 22576789 A JP22576789 A JP 22576789A JP 22576789 A JP22576789 A JP 22576789A JP H0392257 A JPH0392257 A JP H0392257A
Authority
JP
Japan
Prior art keywords
processing
conductive
grinding
grindstone
tools
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22576789A
Other languages
Japanese (ja)
Other versions
JP2821913B2 (en
Inventor
Hisayuki Takei
久幸 武井
Akiyoshi Matsuzawa
松沢 昭美
Noriaki Takahashi
高橋 紀昭
Kiyoshi Oshiro
清志 大城
Hajime Tamura
始 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP1225767A priority Critical patent/JP2821913B2/en
Priority to DE4023730A priority patent/DE4023730C2/en
Priority to US07/558,814 priority patent/US5091067A/en
Publication of JPH0392257A publication Critical patent/JPH0392257A/en
Priority to KR94007613U priority patent/KR940006011Y1/en
Application granted granted Critical
Publication of JP2821913B2 publication Critical patent/JP2821913B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

PURPOSE:To machine various optical elements stably at a high speed by holding machining tools required for machining a work material on a purity of axes faced oppositely to the holding axis of the work material respectively. CONSTITUTION:An industrial work material 1 such as niter is held by a collet chuck 2. Then, electrolytic in-process-dressing rounding grinding, CG grinding, polishing, chamfering grinding, and cutting machining by means of machining tools 9, 30 required for forming the industrial work material 1 are continuously performed to the industrial work material 1.

Description

【発明の詳細な説明】 〔産業の利用分野〕 本発明はレンズ等の光学素子の加工方法および装置に関
するものである. 〔従来の技術〕 従来レンズ等の光学素子の生産工程例としては、光学工
業技術協会発行「光学素子加工技術」第197頁「5.
1レンズ生産工程」の項および昭和57年3月、財団法
人!l!械振興協会技術研究所発行「加工技術データフ
ァイルJ:1/6頁「0.6球面研削」の項等に記載さ
れている。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method and apparatus for processing optical elements such as lenses. [Prior Art] As an example of the conventional production process for optical elements such as lenses, see "Optical Element Processing Technology" published by the Optical Industry Technology Association, page 197, "5.
1 Lens Production Process” section and March 1981, Foundation! l! It is described in the ``0.6 spherical grinding'' section of page 1/6 of ``Processing Technology Data File J'' published by the Machinery Promotion Association Technical Research Institute.

しかして、前者の「レンズ生産工程」には、ガラス素材
を切断、幅決め、丸目の各加工による材料取、Rつけ、
面取の工程によるあらけずり、その後の各ガラス素材の
はりつけ、砂かけ、みがき、はがしおよび洗浄の工程に
よる研磨、さらに、心取、コート、接合等の各加工工程
を個別的に遂行する生産工程例が記載されており、後者
には、球面研削とその種類の記載があり、創戒球面研削
には、カップ型砥石による創威研削方式と、総形砥石に
よる研削方式の2種類の方式による研削に加えて、カッ
プ型砥石による創威研削方式にはカーフシェネレーク(
CC)によるガラスレンズについての研削方法の記載が
存在する. また、前記光学素材の研削工程における、電解インプロ
セスドレッシング研削法が、平底1年精密工学会春季大
会学術講演会論文集等において、発表されている。
However, the former "lens production process" involves cutting the glass material, determining the width, taking the material by rounding, rounding,
A production process in which each glass material is removed individually by chamfering, gluing, sanding, polishing, peeling, and cleaning, and each processing process is individually performed, such as centering, coating, and bonding. Examples are described, and the latter describes spherical grinding and its types, and Sokai spherical grinding involves two types of methods: the Soui grinding method using a cup-shaped grindstone, and the grinding method using a full-shaped grindstone. In addition to grinding, the Soei grinding method using a cup-shaped grinding wheel uses a kerf shene rake (
There is a description of a grinding method for glass lenses by CC). In addition, an electrolytic in-process dressing grinding method used in the grinding process of the optical material has been announced in the collection of academic lectures at the Spring Conference of the Japan Society for Precision Engineering, etc.

かかる研削法の原理を示すのが第5図aおよびbで、第
5図aは正面図、第5図bはその右側面図である。
The principle of such a grinding method is shown in FIGS. 5a and 5b, where FIG. 5a is a front view and FIG. 5b is a right side view.

しかして、第′5図aおよびbにて電解インプロセスド
レッシング研削法の原理について説明すると、ターニン
グセンタ60のチャソク6lによりシリコンインゴット
66を回転自在に保持するとともにこれに対して砥石6
2を回転軸63を介して前後動かつ回転自在に対向配設
し、かつ砥石62に給電ブラシ64を介して電源装置6
9より陽極を、前記砥石62に対向配設した電極65に
陰極をそれぞれ印加するとともに砥石62と電極65間
に加工用クーラントをノズル67および68より供給し
つつ研削することにより、加工中にインプロセスドレッ
シング効果を得る研削方法である. 〔発明が解決しようとする課題〕 さて、前述してきた従来の光学素子の加工方法において
は、あらずり、研磨、心取、コート、接合等の各加工工
程を個別的な装置によって加工しなければならず、例え
ばあらすり、研磨工程においても幅決め、丸目、面取、
砂かけおよびみがきの工程毎の加工機が個別的に分かれ
ておるために非常に生産効率が悪く、また光学素子の径
が多種となると、その都度、それを保持するコレソトチ
ャックを変更する等の段取りが要求され極めて非能率的
で、加工に長時間を要する等の問題点を有するものであ
った。
To explain the principle of the electrolytic in-process dressing grinding method with reference to FIGS.
2 are disposed facing each other so as to be movable back and forth and freely rotatable through a rotating shaft 63, and a power supply device 6 is connected to the grindstone 62 through a power supply brush 64.
By applying an anode to an electrode 9 and a cathode to an electrode 65 disposed opposite to the grinding wheel 62, and grinding while supplying processing coolant between the grinding wheel 62 and the electrode 65 from nozzles 67 and 68, the ink is removed during processing. This is a grinding method that produces a process dressing effect. [Problems to be Solved by the Invention] In the conventional optical element processing method described above, each processing step such as roughening, polishing, centering, coating, and bonding must be performed using separate equipment. For example, in the roughening, polishing process, width determination, rounding, chamfering, etc.
Production efficiency is very low because the processing machines for each process of sanding and polishing are separate, and when the diameters of optical elements vary, it is necessary to change the collet chuck that holds them each time. This method requires a lot of setup, is extremely inefficient, and has problems such as requiring a long time for processing.

また、インプロセスドレッシング効果を得る電解インプ
ロセスドレッシング研削法においては、ワークと電極が
干渉しない位置での配置が要求される等の制約を受ける
ものである. 因って、本発明は、上記従来の光学素子の加工方法にお
ける問題点を解決すべく開発されたもので、多種の光学
素子の加工を電解インプロセスドレソシング研削法の利
点を効果的に得つつ能率的に遂行し得る加工方法および
装置の提供を目的とするものである。
Furthermore, the electrolytic in-process dressing grinding method that obtains the in-process dressing effect is subject to limitations such as the requirement to place the workpiece in a position where the electrode does not interfere with the workpiece. Therefore, the present invention was developed to solve the problems in the conventional optical element processing methods described above, and effectively utilizes the advantages of the electrolytic in-process dressing method for processing various types of optical elements. The object of the present invention is to provide a processing method and apparatus that can be efficiently carried out while obtaining the desired results.

〔5Bを解決するための手段および作用〕第l図a乃至
第l図gは本発明の概念図である。
[Means and operations for solving problem 5B] FIGS. 1a to 1g are conceptual diagrams of the present invention.

被加工素材としての棒状の硝材1はスピンドル3に対し
てコレットチャック2を介して保持されるとともにモー
タ4にて回転されるスピンドル3により回転自在に、か
つサーボモータ5によるスピンドル3の前後動によって
保持軸上において移動自在に保持されている. また、この保持軸上に対向して、導電性CG砥石9およ
び導電性研磨砥石20を着脱自在に保持する加工軸とス
トレート砥石30の保持軸およびシリンダ37を介して
進退動自在に配設したレンズ受け36と、さらに前記導
電性CG砥石9および導電性研磨砥石20の加工面に所
定間隙lを在して配設した電極6を研削機ベース27上
側に設けることにより光学素子の加工装置が構或されて
いる.前記導電性CG砥石9および導電性研磨砥石20
の加工軸は、サーボモータ12の作動軸にスピンドルl
Oおよび回転駆動モータl1を装備することにより構威
されるとともに不図示のαのスイベル角制御部により、
任意の位置に、前記導電性CG砥石9および導電性研磨
砥石20を保持しつつ加工し得るようにtitcされて
いる。
A rod-shaped glass material 1 as a workpiece material is held on a spindle 3 via a collet chuck 2, and is rotatable by a spindle 3 rotated by a motor 4, and by the back and forth movement of the spindle 3 by a servo motor 5. It is held movably on the holding shaft. In addition, a processing shaft that removably holds the conductive CG grindstone 9 and the conductive polishing whetstone 20 and a straight whetstone 30 are disposed facing each other on the holding shaft so as to be movable forward and backward via the holding shaft and the cylinder 37. By providing the lens receiver 36 and the electrode 6 disposed above the grinding machine base 27 with a predetermined gap l between the processing surfaces of the conductive CG grindstone 9 and the conductive polishing grindstone 20, the optical element processing apparatus can be realized. It is structured. The conductive CG whetstone 9 and the conductive polishing whetstone 20
The processing axis is the operating axis of the servo motor 12 and the spindle l.
O and a rotational drive motor l1, and a swivel angle control section of α (not shown),
Titc is provided so that the conductive CG grindstone 9 and the conductive polishing grindstone 20 can be held at any position while being processed.

そして、前記導電性CG砥石9および導電性研磨砥石2
0の加工面間には前記電極6を保持腕6aを介してホル
ダー34にネジ35による調整によって所望間隙lを在
して保持するとともに電解電源l3の陽極を給電ブラシ
l4を介して導電性CG砥石9および導電性研磨砥石2
0に印加し、かつ陰極を電極6に印加するとともに供給
パイブ7より導電性CG砥石9および導電性研磨砥石2
0と電極6間に弱電性クーラントを供給して電解ドレッ
シングを行いつつ加工し得るように構威されている.さ
らに、前記導電性のストレート砥石30は回転駆動用モ
ータ3lの駆動軸に保持されるとともに回転駆動用モー
タ31を互いに直交方向に作動するサーボモータ32お
よび33に保持し、前記硝材1の保持軸と平行および直
交方向に移動自在に保持されている.(尚、図面につい
ては具体的に図示していないが、サーポモータ32およ
び33による回転駆動用モータ3lの移動は、サーボモ
ータ32および33の作動が互いに干渉されることなく
作動し得るように構成されている.例えば、XYテーブ
ルの一方のテーブルにモータ31を載置するとともにこ
のテーブルをサーボモータ32によってXYのうちの一
方に移動し、他方のテーブルをサーボモータ33により
他方向に移動する等の構戒から成る。)そして、回転駆
動用モータ31には保持腕6aを介して、ストレート砥
石30の加工面間に間隙lを在して電極6を配設すると
ともにストレート砥石30に電解電′R13の陽極を給
電ブラシ14を介して印加し、かつ′S極6に陰極を印
加するとともにストレート砥石30の加工面と電極6間
にバイプ7を介して弱電性クーラントを供給し、ストレ
ート砥石30による硝材1の加工中に電解ドレソシング
を行うことができるように構或されている。
The conductive CG whetstone 9 and the conductive polishing whetstone 2
The electrode 6 is held in the holder 34 via the holding arm 6a with a desired gap 1 between the machined surfaces of 0 by adjusting the screw 35, and the anode of the electrolytic power source 13 is connected to the conductive CG via the power supply brush 14. Grinding wheel 9 and conductive polishing grinding wheel 2
0 and a cathode is applied to the electrode 6, and the conductive CG grindstone 9 and the conductive polishing grindstone 2 are supplied from the supply pipe 7.
The structure is such that a weakly electrical coolant can be supplied between the electrode 0 and the electrode 6 to perform electrolytic dressing during processing. Further, the conductive straight grindstone 30 is held on the drive shaft of a rotational drive motor 3l, and the rotational drive motor 31 is held on servo motors 32 and 33 that operate in directions orthogonal to each other, and the holding shaft of the glass material 1 is It is held movable in parallel and orthogonal directions. (Although not specifically shown in the drawings, the movement of the rotational drive motor 3l by the servo motors 32 and 33 is configured so that the operations of the servo motors 32 and 33 can operate without interference with each other. For example, a motor 31 is placed on one of the XY tables, and the table is moved in one direction in the XY direction by the servo motor 32, and the other table is moved in the other direction by the servo motor 33. ) An electrode 6 is disposed on the rotary drive motor 31 via a holding arm 6a with a gap l between the machining surfaces of the straight grindstone 30, and an electrolytic voltage is applied to the straight grindstone 30. An anode of R13 is applied through the power supply brush 14, a cathode is applied to the S pole 6, and weakly electrical coolant is supplied between the machined surface of the straight grinding wheel 30 and the electrode 6 through the pipe 7, and the straight grinding wheel 30 The structure is such that electrolytic dressing can be carried out during the processing of the glass material 1.

前記構成の光学素子の加工装置において、第1図aに示
す如く、スピンドル3に回転自在かつサーポモータ5に
より前後動自在に保持される硝材1に対して、ストレー
ト砥石30により丸目研削を行う.この際の硝材1と砥
石30の加工位置の制御はサーボモータ5.32および
33によって制御され、かつ丸目径に対する加工制御は
サーボモータ32および33の制御により実施する。ま
た、同加工中には前記した溝威により電解ドレッシング
が行われ、ストレート砥石30の加工面が所望の加工面
に維持される。
In the optical element processing apparatus having the above configuration, as shown in FIG. 1A, a glass material 1 rotatably held by a spindle 3 and movable back and forth by a servo motor 5 is rounded by a straight grindstone 30. At this time, the machining positions of the glass material 1 and the grindstone 30 are controlled by servo motors 5, 32 and 33, and the machining control for the round diameter is performed by controlling the servo motors 32 and 33. Further, during the machining, electrolytic dressing is performed by the above-mentioned groove force, and the machining surface of the straight grindstone 30 is maintained at a desired machining surface.

しかる後、ストレート砥石3oを加工位置より退避する
のに関連して、サーボモータ12により導電性CG砥石
9を丸目研削加工後の硝材lとの加工位置に前進せしめ
αのスイベル角制御部にて制御しつつ加工する(第1回
b参照).また、このCG砥石9による研削加工中にも
CG砥石9の加工面を電解ドレッシングし、その加工面
の所望曲率が維持される. 次に、第l図Cに示す如く、前記第l図bにて、スピン
ドル10に保持していた導電性CG砥石9を外して、導
電性研磨砥石20を装着し、前記αのスイベル角制御部
を介して、第1図Cに示す揺動中心○を中心にθの範囲
における揺動運動を加えつつ研磨加工を行う.また、こ
の加工の際にも、導電性研磨砥石20の加工面が電解ド
レッシングされ、所望曲率が維持されることにより硝材
lの所望の研磨加工を的確に遂行し得る. その後、サーボモータ12を作動して、研磨砥石20を
加工位置より後退させつつ退避した後、再度サーボモー
タ32および33を作動しつつストレート砥石30を加
工位置に保持し、硝材1の面取加工を行う(第1図b参
照)。
After that, in conjunction with retracting the straight grindstone 3o from the processing position, the servo motor 12 advances the conductive CG grindstone 9 to the processing position with the glass material l after round grinding, and the swivel angle control section α Process while controlling (see Part 1 b). Also, during the grinding process using the CG grindstone 9, the machined surface of the CG grindstone 9 is electrolytically dressed to maintain the desired curvature of the machined surface. Next, as shown in FIG. 1C, the conductive CG grindstone 9 held on the spindle 10 in FIG. Polishing is performed while applying a rocking motion in the range of θ around the rocking center ○ shown in FIG. Also, during this processing, the processed surface of the conductive polishing whetstone 20 is electrolytically dressed and the desired curvature is maintained, so that the desired polishing process of the glass material 1 can be accurately performed. Thereafter, the servo motor 12 is activated to move the polishing whetstone 20 backward from the machining position, and then the servo motors 32 and 33 are activated again to hold the straight whetstone 30 at the machining position, thereby chamfering the glass material 1. (See Figure 1b).

さらに、その後、第1図eに示す如く、電解ドレソシン
グしながら、ストレート砥石30による高速切断を行う
のに関連して、レンズ受け36をシリンダー37により
前進して片面心取完了後のレンズ38を収納回収する。
Further, as shown in FIG. 1e, in conjunction with high-speed cutting using the straight grindstone 30 while electrolytically dressing, the lens receiver 36 is advanced by the cylinder 37 to remove the lens 38 after single-sided centering. Store and collect.

また、回収後レンズ受け36は元位置に退避し、これに
関連して、第1図gに示す如く、硝材1をコレットチャ
ック2を解放しつつ、所定ffigだけ突出して、次順
を加工に備え、以下前記と同様の加工順を経て、順次連
続したレンズ38の加工を遂行し得る. 従って、レンズの各加工を一台の加工装置により、電解
インプロセスドレッシング作用を得つつ高効率なレンズ
マシニングセンター加工を遂行し得る。
After collection, the lens receiver 36 is retracted to its original position, and in conjunction with this, as shown in FIG. After that, the lenses 38 can be sequentially processed through the same processing order as described above. Therefore, by using a single processing device for each lens processing, highly efficient lens machining center processing can be performed while obtaining an electrolytic in-process dressing effect.

〔実施例〕〔Example〕

以下本発明の実施例を図面とともに説明する.(第1実
施例) 第2図a − dは本発明の第1実施例示す説明図であ
る。
Examples of the present invention will be described below with reference to the drawings. (First Embodiment) FIGS. 2a to 2d are explanatory diagrams showing a first embodiment of the present invention.

そして、本実施例においても第1図示の構或から成る光
学素子の加工装置を適用して実施する実施例であって、
加工装置の全体構戒については、その図示と具体的な説
明を省略し、以下には第2図a〜dの各加工工程に従っ
た説明をすることにする。
This embodiment is also an embodiment in which the optical element processing apparatus having the structure shown in the first figure is applied.
As for the overall structure of the processing apparatus, illustrations and specific explanations thereof will be omitted, and the explanation will be given below in accordance with each of the processing steps shown in FIGS. 2a to 2d.

第2図aに示す如く、被加工素材たる光学素材となる棒
状の硝材lを保持軸であるスピンドル3にコレットチャ
ック2を介して保持するとともにスピンドル3の移動用
のサーボモータ5により保持軸40上を荊退せしめて、
ストレート砥石30との加工位置に硝材1をセット保持
し、これに関連してストレート砥石30を保持するサー
ボモータ32および33を手動制御しつつ前記硝材lと
の加工位置にストレート砥石30を移動セットする.し
かる後、前記硝材lとストレート砥石30の加工位置へ
のセット操作に関連してスピンドル3がモータ4により
回転駆動されるとともにストレート砥石30がモーク3
1にて回転駆動とされて、ストレート砥石30による硝
材lの所望径までの丸目研削加工が行われる. その際、ストレート砥石30は丸目径に対応する加工制
御がサーボモータ32および33に対して位置制御部(
不図示)より入力されることによって制御される. また、ストレート砥石30はダイヤモンド粉末等の砥粒
とC ul S n+ F e等の金属や導電性樹脂を
結合材にして形戒された導電性の砥石により横戒され、
このストレート砥石30に回転軸に摺接する給電ブラシ
l4を介して電解電i!!X13より陽極を印加すると
ともにストレート砥石30の加工面に対して間隙2を在
して配設された電極6に陰極を印加し、かつストレート
砥石30の加工面と電極6間に供給パイブ7より弱電性
クーラントを供給することにより前記ストレート砥石3
0による硝材lの丸目研削加工中において、ストレート
砥石30の加工面を常に電解ドレッシングすることがで
きる.従って、ストレート砥石30による硝材1に対す
る所望の丸目径に対応する取代置が大きくてもインプロ
セスで目立てができる結果、切れ味も良く、50ms/
win程度の高速加工を行うことも可能である. 従って、硝材lの棒の長さに応じて多種形状のレンズに
要求される丸目研削加工を連続して行うことができる. 次に、第2図bに示す如く、前記工程にて所望の丸目研
削加工後、RAの所望曲率加工上り面を持つ硝材1に対
向して硝材lの保持軸40に対して加工軸4lをαのス
イベル角上に配設した導電性CG砥石9をサーボモータ
l2を介して前進せしめつつ加工位置にセントする. 但し、この導電性CG砥石9の移動は、前記ストレート
砥石30の加工位置からの退避動作に関連して行われる
. しかして、導電性CG砥石9は硝材lのRAの所望曲率
加工上り面と同一形状に形威された加工面42を備え、
この加工面42を硝材1の被加工面に当接させつつ導電
性CG砥石9をモータ1lにて回転し、切込軌跡に従っ
て移動させながら硝材1の被加工面に対する球面創戒研
削加工を行うものである. また、かかる研削加工中においても、導電性CG砥石9
の加工面42は、電解によりドレッシングされ、所望の
曲率による研削加工面を常に維持し、連続した球面創戒
研削加工を可能ならしめ1}る.すなわち、導電性CG
砥石9には、給電プラシ14を介して電解電源13(電
解加工用あるいは放電加工用)より陽極(パルス電圧)
が印加されるとともに導電性CG砥石9の加工面42の
曲率RAと略同形状のRA−1の形状から或る電極6を
加工面42間に間隙!!.(好ましくは0.1〜0.2
a+a )を在して配設し、これに前記電解電源13の
陰極を印加し、かつ導電性CC砥石9の加工面42と電
極6間に供給パイブ7より弱電性クーラントを供給する
ことによって導電性CG砥石9の加工面42の電解ドレ
ソシングを行うものである. 第2図Cは、前記第2図bにおける導電性CG砥石9に
よる硝材1の球面創威研削加工後の導電性研磨砥石20
による研磨加工工程を示すものである。
As shown in FIG. 2a, a rod-shaped glass material l, which is an optical material to be processed, is held on a spindle 3, which is a holding shaft, via a collet chuck 2, and a holding shaft 40 is moved by a servo motor 5 for moving the spindle 3. Let the top fall back,
The glass material 1 is set and held in a processing position with the straight grindstone 30, and the straight grindstone 30 is moved and set to the processing position with the glass material 1 while manually controlling the servo motors 32 and 33 that hold the straight grindstone 30. do. Thereafter, the spindle 3 is rotationally driven by the motor 4 in connection with the setting operation of the glass material 1 and the straight whetstone 30 to the processing position, and the straight whetstone 30 is moved to the machining position.
1, the straight grindstone 30 performs round grinding of the glass material 1 to a desired diameter. At this time, the straight grindstone 30 has a position control unit (
(not shown). In addition, the straight whetstone 30 is made of a conductive whetstone made of abrasive grains such as diamond powder and a metal such as CulSn+Fe or a conductive resin as a bonding material.
Electrolytic electricity i! ! An anode is applied from X13, a cathode is applied to the electrode 6 which is arranged with a gap 2 to the machined surface of the straight grindstone 30, and a supply pipe 7 is applied between the machined surface of the straight grindstone 30 and the electrode 6. By supplying a weakly electric coolant, the straight grinding wheel 3
During the round grinding process of the glass material 1 with 0, the machined surface of the straight grindstone 30 can always be electrolytically dressed. Therefore, even if the straight grindstone 30 has a large removal distance corresponding to the desired round diameter for the glass material 1, sharpening can be done in-process, resulting in good sharpness and 50ms/
It is also possible to perform high-speed machining on a win level. Therefore, the round grinding process required for lenses of various shapes can be continuously performed depending on the length of the rod of the glass material l. Next, as shown in FIG. 2b, after the desired round grinding process in the above step, the machining shaft 4l is set against the holding shaft 40 of the glass material 1, facing the glass material 1 having the desired curvature-machined upward surface of RA. The conductive CG grindstone 9 placed on the swivel angle α is moved forward via the servo motor l2 and centered at the processing position. However, this movement of the conductive CG grindstone 9 is performed in conjunction with the retraction operation of the straight grindstone 30 from the processing position. Therefore, the conductive CG grindstone 9 has a processed surface 42 shaped in the same shape as the desired curvature processed surface of the RA of the glass material 1,
The conductive CG grindstone 9 is rotated by the motor 1l while the processing surface 42 is brought into contact with the processing surface of the glass material 1, and the spherical grinding process is performed on the processing surface of the glass material 1 while moving it along the cutting locus. It is something. Moreover, even during such grinding process, the conductive CG grindstone 9
The machined surface 42 of the machine is electrolytically dressed to maintain a ground surface with a desired curvature at all times, making continuous spherical grinding possible. That is, conductive CG
The grinding wheel 9 is supplied with an anode (pulse voltage) from an electrolytic power source 13 (for electrolytic machining or electrical discharge machining) via a power supply brush 14.
is applied, and from the shape of RA-1 which is approximately the same as the curvature RA of the processed surface 42 of the conductive CG grindstone 9, a certain electrode 6 is placed between the processed surfaces 42 with a gap! ! .. (preferably 0.1 to 0.2
a+a), the cathode of the electrolytic power source 13 is applied to this, and a weakly conductive coolant is supplied from the supply pipe 7 between the machining surface 42 of the conductive CC grinding wheel 9 and the electrode 6. This process performs electrolytic dressing of the machined surface 42 of the CG grindstone 9. FIG. 2C shows the conductive polishing whetstone 20 after the spherical groove grinding of the glass material 1 with the conductive CG whetstone 9 in FIG. 2B.
This figure shows the polishing process.

すなわち、サーボモータ12を作動して、前記導電性C
G砥石9を加工位置より後退するとともに後退後のスピ
ンドル10より導電性CG砥石9を取り外し、これに導
電性研磨砥石20を装着する.しかる後、再度サーボモ
ータl2を作動して導電性研磨砥石20を前進し、これ
を硝材lとの加工位置にセントするとともにモータl1
回転駆動し、かつα(第l図b参照)のスイベル角制御
部(不図示)により揺動中心○を中心に揺動角θの範囲
内における1工動運動を行いつつ導電性研磨砥石20の
研磨加工面によって硝材1の研磨加工を行う.また、前
記導電性CG砥石9と同様に導電性研磨砥石20の加工
面についても、電解ドレッシングしつつ硝材lの加工面
上り面の面粗さがRs+ax <0.01pmになるよ
うに研磨加工が行うことができるように構威されている
That is, by operating the servo motor 12, the conductive C
The G grindstone 9 is moved back from the processing position, and the conductive CG grindstone 9 is removed from the spindle 10 after the retreat, and the conductive polishing grindstone 20 is attached to it. After that, the servo motor l2 is operated again to move the conductive polishing wheel 20 forward and place it in the processing position with the glass material l, and the motor l1
The conductive polishing whetstone 20 is rotated and is rotated, and while performing one movement within the range of the swing angle θ around the swing center ○ by a swivel angle control unit (not shown) of α (see Fig. 1b). Glass material 1 is polished using the polished surface. Similarly to the conductive CG grindstone 9, the processed surface of the conductive polishing grindstone 20 is also polished while being electrolytically dressed so that the surface roughness of the upper surface of the processed surface of the glass material 1 becomes Rs+ax <0.01 pm. It is structured so that it can be done.

その後、さらに第2図dに示す如く、前記導電性研磨砥
石20による研磨加工後の硝材lの45゜面取り加工を
ストレート砥石30にて行う。
Thereafter, as shown in FIG. 2d, the glass material 1, which has been polished by the conductive polishing wheel 20, is chamfered at 45 degrees using a straight grindstone 30.

すなわち、導電性研磨砥石20を、サーボモータ12に
より加工位置より後退せしめるとともにこれの後退動作
に関連して、サーボモータ32および33の作動制御に
よってストレート砥石30を硝材1の加工位置にセット
し、45@面取り加工を行う。
That is, the conductive polishing grindstone 20 is moved back from the processing position by the servo motor 12, and in conjunction with this retreating operation, the straight grindstone 30 is set at the processing position for the glass material 1 by controlling the operation of the servo motors 32 and 33. 45 @ Perform chamfering.

この加工においても、前記第2図aにおける丸目研削加
工時と同様に電解ドレソシングを行いつつ加工する。
In this process as well, electrolytic dressing is performed in the same manner as in the round grinding process shown in FIG. 2a.

しかして、前記面取り加工後、硝材1の加工完了部分と
ともに硝材1を、所望厚さに、ストレート砥石30によ
り、電解ドレソシングを行いつつ高速切断する. また、この切断加工に関連して、シリンダー37を前進
せしめて、切断後の加工完了後のレンズ38をレンズ受
け36に回収する。さらにこの回収作業に関連して硝材
1は、コレ・冫トチャック2の解放動作により、所定i
tgだけ突出した位置に保持セットされ第2図aの加工
工程に備えられる.但し、前記切断後のレンズ38の回
収と硝材1の所定Ngの突出による順次の加工工程への
準備作業は第l図fおよびgと同様の操作により実施さ
れる.因って、以下第2図の各加工工程により硝材1に
対する加工が連続して遂行される. また、以上の説明から明らかな通り、本実施例の光学素
子の加工装置によれば、硝材lに対する各加工はインプ
ロセスで電解ドレッシングすることにより加工工具の目
詰まりの無い安定した高速加工が行なえるとともに光学
素子の加工に要求される各加工具を備える一台の加工装
置により硝材lの研削から切断まで一貫した光学素子の
高効率加工を行うことができる. (第2実施例) 第3図aからdは本発明の第2実施例を示す説明図であ
る. 本実施例は硝材1に対する平面加工の実施例を示すもの
で、第3図bに示す如く、導電性CG砥石9の加工面4
2を平面に形成するとともに導電性研磨砥石20につい
ても、第3図Cに示す如く、平面の研磨砥石により形威
し、かつ同研磨砥石2oの揺動運動は回転軸と直角方向
のθ方向に揺動しつつ研磨する構成となっている。
After the chamfering process, the glass material 1 together with the processed portion of the glass material 1 is cut to a desired thickness using a straight grindstone 30 at high speed while being electrolytically dressed. In addition, in connection with this cutting process, the cylinder 37 is moved forward to collect the lens 38 after the cutting process is completed into the lens receiver 36. Further, in connection with this recovery operation, the glass material 1 is released to a predetermined i by the release operation of the glass chuck 2.
It is held and set in a position where it protrudes by tg and is prepared for the machining process shown in Figure 2a. However, the recovery of the lens 38 after cutting and the preparation for the sequential processing steps by protruding the glass material 1 by a predetermined Ng are carried out by the same operations as shown in FIG. 1 f and g. Therefore, the glass material 1 is processed continuously through each processing step shown in FIG. 2 below. Furthermore, as is clear from the above explanation, according to the optical element processing apparatus of this embodiment, stable high-speed processing without clogging of processing tools can be performed by in-process electrolytic dressing for each processing of the glass material l. At the same time, it is possible to perform high-efficiency processing of optical elements, from grinding to cutting of the glass material, using a single processing device equipped with the various processing tools required for processing optical elements. (Second Embodiment) FIGS. 3a to 3d are explanatory diagrams showing a second embodiment of the present invention. This embodiment shows an example of plane processing on a glass material 1, and as shown in FIG.
2 is formed into a flat surface, and the conductive polishing wheel 20 is also formed into a flat polishing wheel, as shown in FIG. The structure is such that polishing is performed while swinging.

第3図aはストレート砥石30による丸目研削加工工程
を示すとともに第3図dはストレート砥石30による面
取り加工工程を示すものである。
3a shows a round grinding process using the straight grindstone 30, and FIG. 3d shows a chamfering process using the straight grindstone 30.

尚、面取り加工後の片面完了レンズの高速切断および切
断後の回収並びに硝材1の次順の加工に必要な所定5t
gの突出操作は第1実施例と同様に実施し、以下前記と
同様の各工程の加工を順次連続して行うものである。
In addition, the predetermined 5t required for high-speed cutting of a single-sided lens after chamfering, recovery after cutting, and subsequent processing of glass material 1.
The ejection operation g is carried out in the same manner as in the first embodiment, and the following processing steps similar to those described above are successively carried out.

従って、前記各工程の加工中には、第1実施例同様に電
解による各加工具の加工面のドレッシングを行いつつ加
工し、第1実施例と同様の作用効果を得つつ硝材lの平
面レンズ加工を高効率にて連続に行うことができる. (第3実施例) 第4図a − rは本発明の第3実施例を示す説明図で
ある。
Therefore, during the processing of each of the above-mentioned steps, the processing is performed while dressing the processing surface of each processing tool by electrolysis as in the first embodiment, and the flat lens of the glass material L is processed while obtaining the same effect as in the first embodiment. Processing can be performed continuously with high efficiency. (Third Embodiment) FIGS. 4 a to 4 are explanatory diagrams showing a third embodiment of the present invention.

本実施例の場合には第2実施例における硝材1の平面加
工において、ストレート砥石30を導電性研磨砥石20
に一体に構成した実施例を示すものである。
In the case of this embodiment, in the planar processing of the glass material 1 in the second embodiment, the straight grindstone 30 is replaced by the conductive grindstone 20.
This figure shows an embodiment in which the two are integrated.

すなわち、第4図aに示す如く、第2実施例における導
電性研磨砥石20の回転軸20aにストレート砥石30
を固着することにより構或したものである。
That is, as shown in FIG. 4a, a straight grinding wheel 30 is attached to the rotating shaft 20a of the conductive grinding wheel 20 in the second embodiment.
This is constructed by fixing the .

また、これに準じて、ストレート砥石30の電解ドレソ
シング用の電極6および弱電性クーラントの供給パイプ
7については、第4図aおよびd(但し、第4図Cの加
工説明図においては省略されている。)に示す如く、回
転軸20aに固着されたストレート砥石30の加工面に
対して所要配設位置に配設し得るように措威する.但し
、第4図Cに示す如く、導電性研磨砥石20による研磨
加工中にも保持腕6aを介してTi極6が加工面に対し
て所要位置に配設されるとともに供給パイブ7を介して
弱電性クーラントが供給されるように構戒されるもので
、それぞれの加工に支障をきたさないように考慮した構
戒とする。
In addition, in accordance with this, the electrode 6 for electrolytic dressing of the straight grinding wheel 30 and the supply pipe 7 for the weakly electric coolant are shown in FIGS. ), the straight grinding wheel 30 fixed to the rotating shaft 20a is arranged at the required position with respect to the machining surface. However, as shown in FIG. 4C, even during the polishing process using the conductive polishing wheel 20, the Ti pole 6 is placed at a desired position with respect to the processing surface via the holding arm 6a, and the Ti pole 6 is also provided via the supply pipe 7. Care is taken to ensure that a weakly electrical coolant is supplied, so that it does not interfere with each process.

また、サーボモークl2および駆動モータl1を装備す
るスピンドル10の構戒から戒る加工軸については、研
削機ベース27上側における配設状態を、硝材1の保持
軸40に対して対向配設するとともにサーボモータ12
を介して、対向方向に移動自在に配設するIjlItc
に加えて、加工軸側を不図示の位置制御部を介して、第
4図Cに示す硝材lの保持軸40との直角方向であるθ
方向への揺動運動を行えるとともに第4図aの丸目研削
加工時の丸目径に対応する切り込み量等の加工に要求さ
れる制御および第4図dの面取り加工に要求される制御
、さらにはストレート砥石30の加工面の加工位置とこ
れからの退避時の移動制御を行うことができるように構
成されている. さらに、第2実施例における独立したストレート砥石3
0を排除して、前記t!或とした関係上、加工軸に対す
る導電性CG砥石9とストレート砥石30を固着した導
電性研磨砥石20の装着順序は第2実施例と異にする. その他の構威および加工方法は、前記第2実施例と同様
であるので、各図中には同−tl威部分については同一
番号を付し、その説明を省略する.〔発明の効果〕 本発明によれば、硝材等の被加工素材の保持軸上におけ
るワンチャックにより、加工すべき光学素材の形成に要
求される各加工具による電解インプロセスドレッシング
丸目研削、CG研削、研磨、面取り研削および切断加工
を連続して遂行することができ、多種の光学素子を安定
かつ高速にて加工し得る利点を有する.
Furthermore, regarding the machining axis, which should be avoided due to the structure of the spindle 10 equipped with the servo motor l2 and the drive motor l1, the arrangement state on the upper side of the grinding machine base 27 is changed to face the holding axis 40 of the glass material 1, and the servo motor motor 12
IjlItc, which is movably arranged in the opposite direction via
In addition, the machining axis side is controlled via a position control unit (not shown) to θ, which is a direction perpendicular to the holding axis 40 of the glass material l shown in FIG.
The control required for processing such as the amount of cut corresponding to the round diameter during the round grinding process shown in Fig. 4a, and the control required for the chamfering process shown in Fig. 4d, and furthermore, It is configured to be able to control the processing position of the processing surface of the straight grindstone 30 and its movement during retraction. Furthermore, the independent straight grindstone 3 in the second embodiment
Excluding 0, the above t! For certain reasons, the order in which the conductive CG whetstone 9 and the conductive polishing whetstone 20 to which the straight whetstone 30 is fixed to the processing shaft is different from that of the second embodiment. The rest of the structure and processing method are the same as those of the second embodiment, so the same numbers are given to the same parts in each figure, and the explanation thereof will be omitted. [Effects of the Invention] According to the present invention, electrolytic in-process dressing round grinding and CG grinding using various processing tools required for forming the optical material to be processed can be performed by one chuck on the holding shaft of the workpiece material such as glass material. It has the advantage of being able to perform polishing, chamfering, and cutting in succession, and can process a wide variety of optical elements stably and at high speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a乃至第1図gは本発明の概念図、第2図a−d
は本発明の第1実施例を示す説明図、第3図a −y 
dは本発明の第2実施例を示す説明図、第4図awfは
本発明の第3実施例を示す説明図、第5図aおよびbは
電解インプロセスドレッシング研削法の原理説明図であ
る。 1・・・硝材 2・・・コレノトチャソク 3.10・・・スピンドル 4,11.31・・・モータ 5,12.32.33・・・サーボモータ6・・・電極 7・・・弱電性クーラントの供給パイブ9・・・導電性
CC砥石 l3・・・電解電源 l4・・・給電ブラシ 20・・・導電性@磨砥石 27・・・研削機ベース 30・・・導電性ストレート砥石 34・−・ホルダー 35・・・ネジ 36・・・レンズ受け 37・・・シリンダー 38・・・レンズ 39・・・保持皿 40・・・保持軸 4l・・・加工軸 42・・・加工面
Figures 1a to 1g are conceptual diagrams of the present invention, Figures 2a to d
are explanatory diagrams showing the first embodiment of the present invention, and Fig. 3 a-y
d is an explanatory diagram showing the second embodiment of the present invention, Fig. 4 awf is an explanatory diagram showing the third embodiment of the invention, and Figs. 5 a and b are diagrams explaining the principle of the electrolytic in-process dressing grinding method. . 1...Glass material 2...Korenotochasoku 3.10...Spindle 4, 11.31...Motor 5, 12.32.33...Servo motor 6...Electrode 7...Weakly electric coolant Supply pipe 9... Conductive CC grindstone l3... Electrolytic power supply l4... Power supply brush 20... Conductive @ polishing whetstone 27... Grinding machine base 30... Conductive straight grindstone 34.-・Holder 35...Screw 36...Lens holder 37...Cylinder 38...Lens 39...Holding plate 40...Holding shaft 4l...Processing shaft 42...Processing surface

Claims (4)

【特許請求の範囲】[Claims] (1)1軸上に回転自在に被加工素材を保持するととも
に前記被加工素材の保持軸に対向する複数の軸上に、前
記被加工素材の加工に要求される加工具をそれぞれ保持
し、前記被加工素材の加工に要求される各加工具によっ
て、外径研削、球面または平面創成研削、球面または平
面研磨、面取研削、切断加工等の加工を連続して行うこ
とにより光学素子を加工する光学素子の加工方法。
(1) Holding a workpiece material rotatably on one axis, and holding processing tools required for processing the workpiece material on a plurality of axes facing the holding axis of the workpiece material, respectively, Optical elements are processed by successively performing processes such as outer diameter grinding, spherical or plane generating grinding, spherical or plane polishing, chamfering grinding, and cutting using each processing tool required for processing the workpiece material. A method for processing optical elements.
(2)前記各加工具を導電性工具にて形成するとともに
各加工具の加工面に所定距離を在して電極を配設し、か
つ前記各導電性工具に電解電源より陽極を、前記各電極
に陰極をそれぞれ印加するとともに前記各導電性工具と
各電極間に弱電性クーラントを供給しつつ加工する請求
項1記載の光学素子の加工方法。
(2) Each of the processing tools is formed of a conductive tool, and an electrode is arranged at a predetermined distance on the processing surface of each of the processing tools, and an anode is connected to each of the conductive tools from an electrolytic power supply. 2. The method of processing an optical element according to claim 1, wherein the processing is performed while applying a cathode to each electrode and supplying a weakly conductive coolant between each of the conductive tools and each electrode.
(3)被加工素材を回転自在に保持する保持軸と、この
保持軸に対向する複数の軸上に配設した、前記被加工素
材の加工に要求される複数の加工具とから成る光学素子
の加工装置。
(3) An optical element consisting of a holding shaft that rotatably holds a workpiece material, and a plurality of processing tools required for processing the workpiece material, which are arranged on a plurality of axes facing the holding shaft. processing equipment.
(4)前記各加工具は導電性工具から成るとともに各導
電性工具の加工面に所定距離を在して配設した電極と、
前記各導電性工具に陽極、前記各電極に陰極をそれぞれ
印加する電解電源と、前記各導電性工具と各電極間に弱
電性クーラントを供給する供給部を具備する請求項3記
載の光学素子の加工装置。
(4) Each of the processing tools is composed of a conductive tool, and an electrode is arranged at a predetermined distance from the processing surface of each conductive tool;
4. The optical element according to claim 3, further comprising an electrolytic power source that applies an anode to each of the conductive tools and a cathode to each of the electrodes, and a supply unit that supplies a weakly conductive coolant between each of the conductive tools and each electrode. Processing equipment.
JP1225767A 1989-07-26 1989-08-31 Method and apparatus for processing optical element Expired - Fee Related JP2821913B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1225767A JP2821913B2 (en) 1989-08-31 1989-08-31 Method and apparatus for processing optical element
DE4023730A DE4023730C2 (en) 1989-07-26 1990-07-26 Method and device for processing optical components
US07/558,814 US5091067A (en) 1989-07-26 1990-07-26 Method and an apparatus for machining optical components
KR94007613U KR940006011Y1 (en) 1989-07-26 1994-04-13 Device for machining spherical surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1225767A JP2821913B2 (en) 1989-08-31 1989-08-31 Method and apparatus for processing optical element

Publications (2)

Publication Number Publication Date
JPH0392257A true JPH0392257A (en) 1991-04-17
JP2821913B2 JP2821913B2 (en) 1998-11-05

Family

ID=16834485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1225767A Expired - Fee Related JP2821913B2 (en) 1989-07-26 1989-08-31 Method and apparatus for processing optical element

Country Status (1)

Country Link
JP (1) JP2821913B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928293U (en) * 1972-06-12 1974-03-11
JPS6080551A (en) * 1983-10-05 1985-05-08 Nippon Kogaku Kk <Nikon> Spherical creative machine supplied with rod-shaped glass material
JPS6374269U (en) * 1986-10-31 1988-05-18

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928293U (en) * 1972-06-12 1974-03-11
JPS6080551A (en) * 1983-10-05 1985-05-08 Nippon Kogaku Kk <Nikon> Spherical creative machine supplied with rod-shaped glass material
JPS6374269U (en) * 1986-10-31 1988-05-18

Also Published As

Publication number Publication date
JP2821913B2 (en) 1998-11-05

Similar Documents

Publication Publication Date Title
CN103770006A (en) Method for finishing diamond grinding wheel by utilizing electric spark, as well as disc-shaped electrode and device adopted
JP3344558B2 (en) Electric dressing grinding method and apparatus
JPH0343145A (en) Grinding device
JP3463796B2 (en) Plasma discharge truing apparatus and micromachining method using the same
US5091067A (en) Method and an apparatus for machining optical components
JPH08197425A (en) Grinding method and grinding device
JP2821913B2 (en) Method and apparatus for processing optical element
JP2002001657A (en) Elid grinding device for fine shape processing
JPS63283861A (en) On-machine electric discharge truing/dressing for metal bond grindstone
JPH0392268A (en) Electro-chemical machining for optical element and its equipment
JPH0122095B2 (en)
JP2565385B2 (en) Combined processing method and apparatus of electrolytic dressing grinding method and polishing method using conductive whetstone as tool
JP2666197B2 (en) Turning center with discharge truing / dressing device
JPH08132341A (en) Method and device for grinding spherical surface of lens
JPH0691437A (en) Dressing method for cutting tool, dressing method for grinding tool, and cutting tool and grinding tool
JP3194624B2 (en) Grinding method and apparatus
JPH06344254A (en) Grinding method and apparatus
Peng et al. Grinding and dressing tools for precision machines
JPH07328907A (en) Spherical surface creative processing method and device thereof
JPH06218630A (en) Working method for nut screw groove and device therefor
JPH0224047A (en) Grinding method for internal surface
KR940006010Y1 (en) Grinding device
JP3078404B2 (en) Electrolytic dressing grinding method
JPH0435869A (en) Grinding device
JPH0360974A (en) Method and device for simultaneously electrolytic grinding two surfaces

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080904

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees