JPH0390577A - Microwave plasma treating device - Google Patents

Microwave plasma treating device

Info

Publication number
JPH0390577A
JPH0390577A JP22737789A JP22737789A JPH0390577A JP H0390577 A JPH0390577 A JP H0390577A JP 22737789 A JP22737789 A JP 22737789A JP 22737789 A JP22737789 A JP 22737789A JP H0390577 A JPH0390577 A JP H0390577A
Authority
JP
Japan
Prior art keywords
microwave
plasma
magnetic field
chamber
uniform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22737789A
Other languages
Japanese (ja)
Inventor
Satoru Todoroki
轟 悟
Masahiro Tanaka
政博 田中
Kunihiko Watanabe
邦彦 渡辺
Mitsuo Nakatani
中谷 光雄
Kazuo Suzuki
和夫 鈴木
Tadashi Sonobe
園部 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HESCO
Hitachi Ltd
Original Assignee
HESCO
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HESCO, Hitachi Ltd filed Critical HESCO
Priority to JP22737789A priority Critical patent/JPH0390577A/en
Publication of JPH0390577A publication Critical patent/JPH0390577A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the device capable of build-up and etching of a thin film uniform in film thickness and film quality and has a simple structure by constituting a means for leading microwave to a plasma generating chamber from a generation source of a circularly polarized wave means incorporating dielectric substance. CONSTITUTION:Microwave propagated through a circular waveguide 12 from a microwave generating means 11 is passed through a circularly polarized wave means 13 incorporating dielectric substance e.g. a fluororesin plate or a quartz glass plate connected to the waveguide 12. This microwave is introduced into a discharge chamber 15 via a platelike, semispherical or conical discharge tube 14 made of quartz glass. A uniform magnetic field is formed by a magnetic field impressing means 16 to the inside of the discharge chamber 15. Plasma of discharge gas introduced through a supply port 17 is formed by utilizing electronic cyclotron resonance due to microwave and the magnetic field. A gaseous raw material is decomposed which has been introduced into a vacuum chamber 18 through a supply port 19. The surface of the material 20 to be treated is treated. Thereby a uniform microwave electric field is obtained on the material 20 to be treated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はマイクロ波プラズマ処理装置にかかわり、特に
、被処理物の表面に均一な薄膜の形成やエツチング等の
処理を行うのに好適で、しかも簡便な構造を有するマイ
クロ波プラズマ処理装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a microwave plasma processing apparatus, and is particularly suitable for forming a uniform thin film on the surface of an object to be processed, etching, etc. Moreover, the present invention relates to a microwave plasma processing apparatus having a simple structure.

〔従来の技術〕[Conventional technology]

近年、アモルファスシリコンや窒化シリコン等の薄膜形
成、シリコン膜エツチング技術の一つとして、電子サイ
クロトロン共鳴(以下、ECRと記す)現象を利用した
マイクロ波プラズマ技術が登場している。この技術は、
一般に良く知られている高周波プラズマ技術あるいはス
パッタ技術等と比較して、イオンエネルギー分布が20
〜30eVと小さく、基板に損傷を与えずに処理ができ
ること、中性ラジカルの生成低減およびイオン化効率の
向上により、低温で高速処理が可能であること等の特長
を有し、半導体プロセスのキーテクノロジーとなりつつ
ある。第3図に、例えば特開昭56−155535号公
報に記載されたような、従来のECRプラズマ装置の概
略構成図を示す。第3図のECRプラズマ装置を説明す
ると、電磁コイル2のつくる磁場の中に置かれたプラズ
マ生成室1は空胴共振器構造をなし、マグネトロン発振
器(図示せず)から導波管3で運ばれてきたマイクロ波
が、石英ガラス板4を介して中に導入される。
In recent years, microwave plasma technology that utilizes the electron cyclotron resonance (hereinafter referred to as ECR) phenomenon has appeared as one of the technologies for forming thin films of amorphous silicon, silicon nitride, etc. and etching silicon films. This technology is
Compared to generally well-known high-frequency plasma technology or sputtering technology, the ion energy distribution is 20%
It is a key technology for semiconductor processing, with features such as being as low as ~30eV, allowing processing without damaging the substrate, and enabling high-speed processing at low temperatures by reducing the generation of neutral radicals and improving ionization efficiency. It is becoming. FIG. 3 shows a schematic diagram of a conventional ECR plasma apparatus as described in, for example, Japanese Unexamined Patent Publication No. 56-155535. To explain the ECR plasma device shown in FIG. 3, a plasma generation chamber 1 placed in a magnetic field created by an electromagnetic coil 2 has a cavity resonator structure, and is operated by a waveguide 3 from a magnetron oscillator (not shown). The exposed microwaves are introduced into the interior through the quartz glass plate 4.

プラズマ生成室1と接続して設けた処理室5の中には、
処理ガス導入口6と裁板7とが配設されており、プラズ
マ生成室1と処理室5とは真空に排気される。この第3
図の装置では、プラズマ生成室1内のイオンは電磁コイ
ル2の形成する発散磁界によって処理室5内へ引き出さ
れ加速される。
In the processing chamber 5 connected to the plasma generation chamber 1,
A processing gas inlet 6 and a cutting board 7 are provided, and the plasma generation chamber 1 and processing chamber 5 are evacuated to a vacuum. This third
In the illustrated apparatus, ions in a plasma generation chamber 1 are drawn into a processing chamber 5 by a divergent magnetic field formed by an electromagnetic coil 2 and accelerated.

そして、途中で、前述の処理ガス導入口6から噴出する
シランなどの処理ガスを解離し、基板7の上に、アモル
ファスシリコンなどを堆積させるものである。しかしな
がら、この装置では、膜厚の分布や膜質の分布など、基
板上の処理の分布に関して十分とはいえず、特にマイク
ロ波導波管の径に対する基板上の堆積面積が大きくなる
と、旦板上の処理が不均一となる傾向は顕著である。こ
れは、以下に説明する2つの理由による。すなわち。
During the process, a processing gas such as silane ejected from the processing gas inlet 6 is dissociated, and amorphous silicon or the like is deposited on the substrate 7. However, this device cannot be said to be sufficient in terms of the distribution of processing on the substrate, such as the distribution of film thickness and film quality. There is a marked tendency for non-uniform processing. This is due to two reasons explained below. Namely.

第1の理由は、電磁コイルのつくる発散磁界では、プラ
ズマ中の円運動電子は反磁性を示すために、磁界の強さ
の勾配によって磁界の発散方向である基板方向に向かっ
て加速されるが、プラズマ生成室と基板との間で電気的
中性条件を満たすためにへオンも加速される。ところが
、基板の面上の磁界強度は、基板の周辺方向に向かって
減少し、またそれに対応して負電位も増加するため、基
板表面におけるプラズマの入射速度やプラズマ密度に差
を生じ、これら両者の差による相乗作用によって、基板
の表面処理に大きな差を生じさせることである。また、
第2の理由は、マイクロ波導波管を通してプラズマ生成
室に導入したマイクロ波は、プラズマ生成室の内表面を
伝播するが、導波管とプラズマ生成室またはプラズマ生
成室と真空室の接続部において、マイクロ波による電界
によって異常放電を生じたり、あるいはまた、プラズマ
生成室表面への被処理物の堆積等に起因する表面インピ
ーダンスの変化によって、マイクロ波の伝播モードが変
ったりすることにより、空間的に均一なプラズマ生成に
対し大きな影響を及ぼすことである。
The first reason is that in the diverging magnetic field created by the electromagnetic coil, circularly moving electrons in the plasma exhibit diamagnetic properties, so they are accelerated toward the substrate, which is the divergent direction of the magnetic field, due to the gradient of the magnetic field strength. , heons are also accelerated in order to satisfy the electrical neutrality condition between the plasma generation chamber and the substrate. However, the magnetic field strength on the surface of the substrate decreases toward the periphery of the substrate, and the negative potential also increases correspondingly, resulting in a difference in the plasma incidence speed and plasma density at the substrate surface, causing a difference between the two. The synergistic effect caused by the difference in the two causes a large difference in the surface treatment of the substrate. Also,
The second reason is that the microwave introduced into the plasma generation chamber through the microwave waveguide propagates on the inner surface of the plasma generation chamber, but at the connection between the waveguide and the plasma generation chamber or between the plasma generation chamber and the vacuum chamber. , abnormal discharge occurs due to the electric field generated by the microwave, or the propagation mode of the microwave changes due to a change in surface impedance caused by the accumulation of materials on the surface of the plasma generation chamber, etc. This has a large effect on uniform plasma generation.

上記の問題点を解決する方法として1例えば特開昭63
−43324号公報または特開昭62−70569 %
公報に記載された方法がある。この方法は、第4図に示
すように、処理室5の周辺部に電磁コイルからなる補助
コイル2a(以下、補助コイル)を設け、基板表面上で
の発散磁界による不均一磁界を補正する方法である。い
ずれの方法においても、補助コイル2aのつくる磁界の
方向が発散磁界の方向と反対になるように、磁界を発生
させる。そして、この補助コイルによる磁界が、基板表
面の中心位置における発散磁界の磁界強度を大きく弱め
、その中心位置から遠ざかるに従って小さく弱めていき
、基板面上における発散磁界の強度を広い範囲に亘って
均一にする。また。
As a method to solve the above problems, for example, JP-A-63
-43324 publication or JP-A-62-70569%
There is a method described in the official gazette. In this method, as shown in FIG. 4, an auxiliary coil 2a (hereinafter referred to as an auxiliary coil) consisting of an electromagnetic coil is provided around the processing chamber 5, and a non-uniform magnetic field due to a divergent magnetic field on the substrate surface is corrected. It is. In either method, the magnetic field is generated such that the direction of the magnetic field created by the auxiliary coil 2a is opposite to the direction of the divergent magnetic field. The magnetic field generated by this auxiliary coil greatly weakens the magnetic field strength of the divergent magnetic field at the center position of the substrate surface, and gradually weakens as it moves away from the center position, making the strength of the divergent magnetic field uniform over a wide range on the substrate surface. Make it. Also.

この均一な磁界によって、基板面上の電位も広い範囲に
亘って均一となり、前記した第1の問題点を解決できる
と思われる。しかしながら、第2の問題点、すなわちマ
イクロ波が導波管から真空室へ伝播する過程で発生する
マイクロ波伝播モードの変化に起因する電界強度の不均
一によって起こる膜厚あるいは膜質の不均一に対しては
、むんら考慮されていない。
This uniform magnetic field makes the potential on the substrate surface uniform over a wide range, and it is thought that the first problem mentioned above can be solved. However, the second problem, that is, the non-uniformity of the film thickness or film quality caused by the non-uniformity of the electric field strength due to the change in the microwave propagation mode that occurs during the process of microwave propagation from the waveguide to the vacuum chamber, However, this has not been taken into consideration.

〔発明が解法しようとする課題〕[Problem that the invention attempts to solve]

上記従来技術は、前述のように、マイクロ波が導波管か
ら真空室へ伝播する過程で発生するマイクロ波伝播モー
ドの変化に起因する電界強度の不均一について配慮がな
されておらず、そのため。
As mentioned above, the above-mentioned conventional technology does not take into consideration the non-uniformity of the electric field intensity caused by the change in the microwave propagation mode that occurs during the process of microwave propagation from the waveguide to the vacuum chamber.

電界強度の不均一による膜厚あるいは膜質の不均一、エ
ツチングの不均一が生じる恐れがあった。
There is a fear that non-uniformity in film thickness or film quality or non-uniform etching may occur due to non-uniformity in electric field strength.

本発明の目的は、被処理物の表面上で均一なマイクロ波
電界を形成し、膜厚および膜質の均一な半導体や絶縁膜
の堆積もしくはエツチングを行うのに好適な、簡便な構
造を有するマイクロ波プラズマ処理装置を提供すること
にある。
An object of the present invention is to form a uniform microwave electric field on the surface of an object to be processed, and to provide a microelectronic device having a simple structure suitable for depositing or etching a semiconductor or insulating film with uniform film thickness and quality. An object of the present invention is to provide a wave plasma processing device.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記目的を達成するため、マイクロ波を発生
源からプラズマ生成室へ導くマイクロ波導波手段の少な
くとも一部を、誘電体物質を内蔵した円偏波手段で構成
し、マイクロ波の進行方向に垂直な平面内で回転する回
転電界を得るようにしたものである。
In order to achieve the above object, the present invention configures at least a part of the microwave waveguide means for guiding the microwave from the generation source to the plasma generation chamber with a circularly polarized wave means having a built-in dielectric material, and the progress of the microwave. This is to obtain a rotating electric field that rotates within a plane perpendicular to the direction.

〔作用〕[Effect]

マグネトロン発振器から発生したマイクロ波が中空の円
形導波管内を伝播する場合、マクスウェルの方程式理論
によって、電界と磁界とは互いに垂直であって、マイク
ロ波の伝播方向をなす平面内を進行する。すなわち、−
様な誘電率(−殻間には空気の誘電率E。)を有する自
由空間を伝播するマイクロ波は、その伝播方向と電界方
向とによって定まる面(偏波面)が時間的に変化しない
直線偏波である。一方、第2図に示すごとく、円形導波
管の内部に、電磁界の方向に対して0/2なる角度で、
空気の誘電率ε。とは異なるLi r、K 3+Cεを
有する物質を押入すると、位相が互いにOだけずれた2
つの直線偏波によってつくられる合成電界を形成するこ
とになる。この合I戊電界は、θ=π/2のとき、以下
述べるように、マイクロ波の進行方向に垂直な平面内を
回転する回転電界となる。すなわち、電界、磁界および
その進行方向をそれぞれX+3’およびZ軸方向にと九
ば、2=0におけるx −z平面およびy−z平面の電
界ex、e、は、 e、= 1./T Ex cos ωte、=J Ey
cos  (ωt−0)となる。ここで、特殊な場合と
して、θ=π/2で、かつEx=Ey=Eoとすれば、
合成電界は、半径がσEoの円を時計方向に回転する円
偏波となる。
When microwaves generated from a magnetron oscillator propagate in a hollow circular waveguide, according to Maxwell's equation theory, the electric and magnetic fields are perpendicular to each other and propagate in a plane that is in the direction of microwave propagation. That is, −
Microwaves propagating in free space with a dielectric constant (-the dielectric constant E of air between shells) are linearly polarized, with a plane (polarization plane) determined by the direction of propagation and the direction of the electric field that does not change over time. It's a wave. On the other hand, as shown in Figure 2, inside the circular waveguide, at an angle of 0/2 with respect to the direction of the electromagnetic field,
Dielectric constant ε of air. When a material with Li r, K 3 + Cε different from 2 is injected, the phase of 2
This results in the formation of a composite electric field created by the two linearly polarized waves. When θ=π/2, this combined electric field becomes a rotating electric field that rotates in a plane perpendicular to the direction of propagation of the microwave, as described below. That is, assuming that the electric field, the magnetic field, and their traveling directions are in the X+3' and Z-axis directions, respectively, the electric fields ex and e on the x-z plane and the y-z plane when 2=0 are as follows: e,=1. /T Ex cos ωte, = J Ey
cos (ωt-0). Here, as a special case, if θ=π/2 and Ex=Ey=Eo, then
The combined electric field becomes a circularly polarized wave that rotates clockwise around a circle with a radius of σEo.

上記の構成により、被処理物表面での電界分布がマイク
ロ波の伝播する導体表面の不連続性等によって不均一と
なり、その結果、被処理物表面での処理に不均一を生じ
るような場合でも、前記回転電界によって修正され、被
処理物の表面上でのマイクロ波電界の均一性を得ること
ができる。
With the above configuration, even if the electric field distribution on the surface of the workpiece becomes non-uniform due to discontinuities in the conductor surface through which microwaves propagate, resulting in non-uniform processing on the workpiece surface, , modified by the rotating electric field to obtain uniformity of the microwave electric field on the surface of the object to be treated.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面を用いて説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は該実施例のマイクロ波プラズマ処理装置の構成
の概略を示したもので、マイクロ波発生手段↓1から放
射されたマイクロ波(周波数2.45C;)Iz)は、
円形導波管12を伝播する。前記マイクロ波は、前記円
形導波管12に接続して設けた、誘電体物質、例えばフ
ン素樹脂板または石英ガラス板を内蔵した円偏波手段1
3を通り、石英ガラスでつくられた甲板状または半球状
または円錐状の放電管14を介して放電室15の中に導
入される。放電室15の外側には、均一な磁場を放電室
15の内部に形成する磁場印加手段16か共備されてお
り、マイクロ波と磁場とによる電子サイクロトロン共鳴
を利用して放電ガス0(結目17から導入した放電ガス
、例えば水素ガス、窒素ガス、酸素ガス等のプラズマを
、放電室15内に形成する。前記放電室15に接続して
設けたf〔空室18内には、シランヤホスフィンなどの
原料ガスを導入するための原料ガス供給口19と、被処
理物20を支持するホルダ21が配設されている。1)
f記放電室15で生成された放電ガスのプラズマは、磁
場印加手段16によって形成された発散磁界により、ホ
ルダ21の方向に輸送される。
FIG. 1 shows the outline of the configuration of the microwave plasma processing apparatus of this embodiment, and the microwave (frequency 2.45C;)Iz) emitted from the microwave generation means ↓1 is as follows:
It propagates through the circular waveguide 12. The microwave is transmitted through circularly polarized wave means 1 connected to the circular waveguide 12 and incorporating a dielectric material such as a fluorine resin plate or a quartz glass plate.
3 and is introduced into the discharge chamber 15 via a deck-shaped, hemispherical or conical discharge tube 14 made of quartz glass. A magnetic field applying means 16 for forming a uniform magnetic field inside the discharge chamber 15 is also provided outside the discharge chamber 15, and uses electron cyclotron resonance caused by microwaves and the magnetic field to reduce the discharge gas to 0 (knots). Plasma of a discharge gas such as hydrogen gas, nitrogen gas, oxygen gas, etc. introduced from the discharge chamber 17 is formed in the discharge chamber 15. A source gas supply port 19 for introducing a source gas such as phosphine, and a holder 21 that supports a workpiece 20 are provided.1)
The plasma of the discharge gas generated in the discharge chamber 15 is transported toward the holder 21 by the divergent magnetic field formed by the magnetic field application means 16.

そして、途中で、前記原料ガス4J(結目19から導入
された原料ガスを分解し、被処理物20の表面を処理す
る。なお、前記真空室18内は、あらかじめ、図示して
いないターボ分子ポンプ等の排気手段により、0.1〜
10mTorr程度の高真空に排気されている。
Then, on the way, the raw material gas 4J (the raw material gas introduced from the knot 19) is decomposed and the surface of the workpiece 20 is treated. 0.1~ by exhaust means such as a pump
It is evacuated to a high vacuum of about 10 mTorr.

ところで、円偏波手段13の内部には、訪電1.iがさ
なる物質22、例えばフッ素樹脂板または石英ガラス板
が、n、 2−y (ここで、n:整数、λg:εによ
り決まるマイクロ波の波長)の長さで、マイクロ波の進
行方向に、かつ、第2図に示すごとく、雷磁界方向に対
してπ/4の角度(つまり、θ=7)をもって配置しで
ある。前述のように1円偏波手段13を伝播するマイク
ロ波の′磁界は1位相が互いに0だけずれた2つの直線
偏波の合成された偏波面をもつ。電界、磁界およびその
進行方向をそれぞれX+yおよびZ軸方向にとれば、2
=0におけるX−Z平面およびy−z平面の電界は、a
x= J”E Ex cos (11t 。
By the way, inside the circularly polarized wave means 13, there are 1. A substance 22, for example, a fluororesin plate or a quartz glass plate, where i is a fluororesin plate or a quartz glass plate, has a length of n, 2-y (where n: an integer, λg: the wavelength of the microwave determined by ε), and a length of the microwave in the direction of propagation of the microwave. and, as shown in FIG. 2, is arranged at an angle of π/4 (that is, θ=7) with respect to the direction of the lightning magnetic field. As described above, the magnetic field of the microwave propagating through the circularly polarized wave means 13 has a polarization plane that is a composite of two linearly polarized waves whose phases are shifted by 0 from each other. If the electric field, magnetic field, and their traveling directions are taken in the X+y and Z-axis directions, respectively, 2
The electric field in the X-Z plane and the y-z plane at =0 is a
x= J”E Ex cos (11t.

e、=−JX Ey■S (ωを一部)となるが、特殊
な場合として、Ex=Ey=Eo、θ=π/2とすれば
、合成電界は半径fi E oの円が時計方向に回転す
る円偏波となる。従って、上記のように、物質22をπ
/4の角度をもって配置することにより、回転電界を得
ることができる。
e, = -JX Ey■S (ω is a part), but as a special case, if Ex = Ey = Eo, θ = π/2, the combined electric field will be such that the circle with radius fi E o is in the clockwise direction. It becomes a circularly polarized wave that rotates. Therefore, as mentioned above, the substance 22 is π
By arranging them at an angle of /4, a rotating electric field can be obtained.

ところで、円偏波手段13の径を、マイクロ波(波長2
4.5GHz)のしゃ断層波数で決まる径程度、例えば
93mm、とすれば、マイクロ波はTE□□基本モード
のみが伝播する。しかしながら、円形導波管12のわず
かな変形、または円形導波管12と円偏波手段13との
接続不連続、または円偏波手段13と放電室15もしく
は真空室18との間の不連続、またはそれらの壁面にお
ける伝播インピーダンスの変化が存在すると、前記TE
1□基本モード以外のモードが発生し、各々独立に伝播
することになる。このような場合、従来技術では被処理
物20の表面における電界分布は不均一となり、被処理
物20に堆積する膜の膜厚や膜質に大きな影響を及ぼす
ことになる。しかし、本実施例では、上述した円導波手
段13による回転電界の形成により、マイクロ波のTE
よ、基本モードについては勿論、発生した基本モード以
外のモードについても、電界が回転運動をしながら被処
理物方向に伝播する。その結果、被処理物表面での電界
分布はこれらすべての伝播モードについての電界の平均
化されたものとなり、電界分布の均一性が改善される。
By the way, the diameter of the circularly polarized wave means 13 is determined by microwave (wavelength 2
If the diameter is determined by the wave number of the cutoff layer (4.5 GHz), for example, 93 mm, only the TE□□ fundamental mode of the microwave propagates. However, slight deformation of the circular waveguide 12, or discontinuity in the connection between the circular waveguide 12 and the circular polarization means 13, or discontinuity between the circular polarization means 13 and the discharge chamber 15 or the vacuum chamber 18 , or in the presence of changes in propagation impedance at their walls, the TE
1□ Modes other than the fundamental mode will occur and each will propagate independently. In such a case, in the conventional technique, the electric field distribution on the surface of the object 20 to be processed becomes non-uniform, which greatly affects the thickness and quality of the film deposited on the object 20 to be processed. However, in this embodiment, by forming the rotating electric field by the circular waveguide means 13 described above, the TE of the microwave is
In addition to the fundamental mode, the electric field also propagates in the direction of the object to be processed while rotating in other modes than the generated fundamental mode. As a result, the electric field distribution on the surface of the object to be processed becomes an average of the electric fields for all these propagation modes, and the uniformity of the electric field distribution is improved.

従って、発散磁界と回転電界との相互作用により、被処
理物20の広い範囲に亘って、均一な膜厚および膜質の
薄膜を形成することができる。
Therefore, due to the interaction between the divergent magnetic field and the rotating electric field, a thin film with uniform thickness and quality can be formed over a wide range of the object 20 to be processed.

なお、上記実施例では、処理として薄膜を形成する場合
について説明したが、エツチング等の他の処理にも本発
明を適用して、同様な原理を利用した処理ができること
は勿論である。
In the above embodiments, the case where a thin film is formed as a process has been described, but it goes without saying that the present invention can be applied to other processes such as etching and processes using the same principle.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、マイクロ波導波手段の少なくとも一部
を、誘電体物質を内蔵した円偏波手段とすることにより
、被処理物の表面上で均一なマイクロ波電界が得られる
ので、被処理物表面の広い範囲に亘り、均一性の良いプ
ラズマ処理が実現できる。
According to the present invention, by using at least a part of the microwave waveguide means as a circularly polarized wave means containing a dielectric material, a uniform microwave electric field can be obtained on the surface of the object to be processed. Plasma treatment with good uniformity can be achieved over a wide range of the object surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるマイクロ波プラズマ処理装置の一
実施例の概略構成図、第2図は本発明で用いる円導波手
段の説明図、第3図は従来のマイクロ波プラズマ処理装
置の概略構成図、第4図は従来の別のマイクロ波プラズ
マ処理装置の概略構成図である。 11・・・マイクロ波発生手段、 12・・・円形導波管、 13・・・円導波手段、 14・・・放電管、 15・・・放電室、 16・・・磁場印加手段、 17・・・放電ガス4J(結目。 18・・・真空室、 19・・・原料ガス供給口、 20・・・被処理物。 21・・・ホルダ。 22・・・誘電率さなる物質。 第 I 図 7r:1フィクロ浪Z生ヶP更 12:円わ導:X管 13;円偏退午殴 /4:狡東曹 /タ:族を笠 /6:應場f四〇ケ杖 放電σλ企胎口 員堂! 、矛、イ千η゛スイん袷口 a嬰遁物 爪ルフ゛ 乃 図 ま /3 馬偏si手殴 Z 誘電子εTJる狗實 拓 図 ↓ 1: プラス゛マ生成室− 2:宅ぶ露フイJし 3:碑浪管 4: 1石英ノTフス不入 5:拠王里! 6: スみチ里、η゛ス4へ口 基坏瓦 策 図 、3 2閃 孝渇肋コAル
FIG. 1 is a schematic diagram of an embodiment of a microwave plasma processing apparatus according to the present invention, FIG. 2 is an explanatory diagram of a circular waveguide used in the present invention, and FIG. 3 is a schematic diagram of a conventional microwave plasma processing apparatus. FIG. 4 is a schematic diagram of another conventional microwave plasma processing apparatus. 11... Microwave generation means, 12... Circular waveguide, 13... Circular waveguide means, 14... Discharge tube, 15... Discharge chamber, 16... Magnetic field application means, 17 . . . Discharge gas 4J (knot. 18. Vacuum chamber, 19. Raw material gas supply port, 20. Object to be processed. 21. Holder. 22. Substance with dielectric constant. Part I Figure 7r: 1 Fikuro Nami Z Iga P further 12: Enwa guide: Discharge σλ planning mouth member hall!, Spear, I thousand η ゛ switch in the mouth of the mouth a the claw of the tongue Luffy / 3 Horse bias SI hand punch Z induction electron εTJ dog reality drawing ↓ 1: Plasma generation room - 2: House building, 3: Monument control 4: 1 Quartz no T-fuss not included 5: Juori! 6: Sumichiri, η゛S 4 mouth base plan, 3 2 Senko Souko Koru A

Claims (4)

【特許請求の範囲】[Claims] 1. 電子サイクロトロン共鳴を利用して放電ガス供給
口から導入した放電ガスのプラズマ放電を行い、プラズ
マを発生させるプラズマ放電室と、該プラズマ放電室内
に均一磁場を形成する磁場印加手段と、マイクロ波を発
生するマイクロ波発生手段と、発生したマイクロ波を前
記プラズマ放電室に導き放射するマイクロ波導波手段と
を備え、前記プラズマ放電室と接続して設けた真空室内
の被処理物を、原料ガス供給口から導入した原料ガスを
分解してプラズマ処理するマイクロ波プラズマ処理装置
において、前記マイクロ波導波手段の少なくとも一部が
、誘電体物質を内蔵した円偏波手段で構成されたことを
特徴とするマイクロ波プラズマ処理装置。
1. A plasma discharge chamber that generates plasma by performing plasma discharge of discharge gas introduced from a discharge gas supply port using electron cyclotron resonance, a magnetic field application means that forms a uniform magnetic field within the plasma discharge chamber, and generates microwaves. and a microwave waveguide means for guiding and radiating the generated microwaves to the plasma discharge chamber, and the workpiece in a vacuum chamber connected to the plasma discharge chamber is connected to the raw material gas supply port. A microwave plasma processing apparatus that decomposes and plasma-processes a raw material gas introduced from a microwave, characterized in that at least a part of the microwave waveguide means is constituted by a circularly polarized wave means containing a dielectric material. Wave plasma treatment equipment.
2. 請求項1に記載のマイクロ波プラズマ処理装置に
おいて、円偏波手段が、誘電体物質として板状のものを
用い、これをマイクロ波の進行方向に、かつ電磁界方向
に対してπ/4の角度をなして配置したものであること
を特徴とするマイクロ波プラズマ処理装置。
2. In the microwave plasma processing apparatus according to claim 1, the circularly polarized wave means uses a plate-shaped dielectric material, and polarizes it in the direction of propagation of the microwave and at a angle of π/4 with respect to the direction of the electromagnetic field. A microwave plasma processing apparatus characterized in that the apparatus is arranged at an angle.
3. 請求項1または2に記載のマイクロ波プラズマ処
理装置において、被処理物の処理が、該被処理物表面へ
の薄膜の堆積であることを特徴とするマイクロ波プラズ
マ処理装置。
3. 3. The microwave plasma processing apparatus according to claim 1, wherein the processing of the object to be processed is the deposition of a thin film on the surface of the object.
4. 請求項1または2に記載のマイクロ波プラズマ処
理装置において、被処理物の処理が、該被処理物表面へ
のエッチングであることを特徴とするマイクロ波プラズ
マ処理装置。
4. 3. The microwave plasma processing apparatus according to claim 1, wherein the processing of the object to be processed is etching of the surface of the object to be processed.
JP22737789A 1989-09-04 1989-09-04 Microwave plasma treating device Pending JPH0390577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22737789A JPH0390577A (en) 1989-09-04 1989-09-04 Microwave plasma treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22737789A JPH0390577A (en) 1989-09-04 1989-09-04 Microwave plasma treating device

Publications (1)

Publication Number Publication Date
JPH0390577A true JPH0390577A (en) 1991-04-16

Family

ID=16859857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22737789A Pending JPH0390577A (en) 1989-09-04 1989-09-04 Microwave plasma treating device

Country Status (1)

Country Link
JP (1) JPH0390577A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992022085A1 (en) * 1991-05-24 1992-12-10 Lam Research Corporation Window for microwave plasma processing device
EP1079423A1 (en) * 1998-04-09 2001-02-28 Tokyo Electron Limited Apparatus for gas processing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992022085A1 (en) * 1991-05-24 1992-12-10 Lam Research Corporation Window for microwave plasma processing device
US5234526A (en) * 1991-05-24 1993-08-10 Lam Research Corporation Window for microwave plasma processing device
EP1079423A1 (en) * 1998-04-09 2001-02-28 Tokyo Electron Limited Apparatus for gas processing
EP1079423A4 (en) * 1998-04-09 2005-06-08 Tokyo Electron Ltd Apparatus for gas processing

Similar Documents

Publication Publication Date Title
US4877509A (en) Semiconductor wafer treating apparatus utilizing a plasma
US4101411A (en) Plasma etching apparatus
JP3217274B2 (en) Surface wave plasma processing equipment
US5162633A (en) Microwave-excited plasma processing apparatus
JP2631650B2 (en) Vacuum equipment
JP4173679B2 (en) ECR plasma source and ECR plasma apparatus
JPH0499876A (en) Control method for plasma, plasma treatment and device therefor
KR930005012B1 (en) Microwave plasma etching method and apparatus
US6225592B1 (en) Method and apparatus for launching microwave energy into a plasma processing chamber
TW202141562A (en) Plasma treatment device
JPH03191074A (en) Microwave plasma treating device
JPH0390577A (en) Microwave plasma treating device
JPH07135093A (en) Plasma processing device and processing method
JPH0917598A (en) Ecr plasma working device and ecr plasma generating method
JPH09293599A (en) Plasma treating method and device
WO2000001003A1 (en) Device and method for plasma processing
JPH01134926A (en) Plasma producing source and plasma processor using the same
JPS63301517A (en) Dry type thin film processor
JPS6267822A (en) Plasma processor
JP3082331B2 (en) Semiconductor manufacturing apparatus and semiconductor device manufacturing method
JPH1074599A (en) Plasma treating method and device
JP2727747B2 (en) Microwave plasma generator
JP3085143B2 (en) Plasma processing method and apparatus
JPH04141594A (en) Method and device for plasma treatment
JPH1140394A (en) Plasma processing device