JPH0390549A - Production of hard aluminum alloy sheet excellent in formability - Google Patents

Production of hard aluminum alloy sheet excellent in formability

Info

Publication number
JPH0390549A
JPH0390549A JP22674689A JP22674689A JPH0390549A JP H0390549 A JPH0390549 A JP H0390549A JP 22674689 A JP22674689 A JP 22674689A JP 22674689 A JP22674689 A JP 22674689A JP H0390549 A JPH0390549 A JP H0390549A
Authority
JP
Japan
Prior art keywords
temperature
strength
hot
formability
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22674689A
Other languages
Japanese (ja)
Inventor
Takashi Inaba
隆 稲葉
Tsuneji Mori
森 常治
Hideyoshi Usui
碓井 栄喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP22674689A priority Critical patent/JPH0390549A/en
Publication of JPH0390549A publication Critical patent/JPH0390549A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a hard Al alloy sheet excellent in formability as well as in strength by subjecting an ingot of an Al-Mn-Fe-Mg alloy with a specific composition to homogenizing treatment and then to hot rolling under specific conditions, and then subjecting a coil of the resulting hot rolled plate to continuous annealing under specific conditions and to cold rolling at a specific draft. CONSTITUTION:An ingot of an Al alloy which has a composition consisting of, by weight, 0.5-1.0% Mn, 0.5-1.2% Fe, 0.5-2.0% Mg, and the balance Al or further containing one or >=2 kinds among 0.1-0.7% Si, 0.05-0.5% Cu, and 0.05-1.0% Zn and having a relationship represented by Fe+1.07XMn<=1.81% between Fe content and Mn content is subjected to homogenizing heat treatment at 500-600 deg.C for >=1hr. After the ingot is hot-rolled under the condition of >=280 deg.C finishing temp. and worked into a hot rolled plate of 1.5-2.5mm thickness, a coil of the hot rolled plate is held at 200-300 deg.C and the hot rolled plate is held at 400-600 deg.C for >=10min and cooled down to <=150 deg.C in an annealing furnace having no accumulator under the conditions of >100 deg.C/min heating and cooling rate to undergo annealing treatment, followed by cold rolling at >=80% cold draft.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はアルミニウム合金硬質板に関し、更に詳しくは
、特に飲料缶胴材として、塗装・印刷、(ベーキング)
後の成形(ネック・フランジ)性に優れるアルミニウム
合金硬質板を生産性よ<堤侃できる製造法に関するもの
である。 (従来の技術) 従来より、ビール及び炭酸飲料用等の飲料缶体や食缶缶
体用には、材料としてAl−Mn−Mg系の3004合
金硬質板が用いられているが、近年の缶軽量化では高強
度高成形性化の要望が強くなっている。 そのため、本発明者らは、先に析出硬化型の高強度缶体
用アルミニウム材料を開発した(特公昭61−7465
号他)。この素材の高強度化は主として缶底部の薄肉化
に寄与している。 しかしながら、更に缶の軽量化を考えた場合、缶体全部
の薄肉化が必要となってくる。したがって、今後缶体の
軽量化を図るためには缶壁の薄肉化ができる材料が必要
となり、その要望が強くなってきている。 一方、缶体用材料の製造法は、前述の3004合金の鋳
塊に均質化熱処理、熱間圧延と、冷間圧延及び中間焼鈍
を組み合せて施す方法であり、特に最近では、素材の高
強化と共に生産性向上を目的に連続焼鈍炉(CAL:コ
イルを巻きはとしながら急速加熱冷却の短時間焼鈍)が
用いられ始めており、例えば、特公昭61−7465号
、同62−37705号、同62−6740 y、同6
2−13421号等が提案されている。但し、これらの
技術においても、現状では加熱前の熱延コイル温度は低
温でなければならない。それは、アルミニウム材の場合
、CALに必須のアキュムレーターとしてゴムロールが
使用されているためであり、ゴムの性能上、コイル温度
は150℃以下である必要がある。 (発明が解決しようとする課題) このように3004合金等を用いて缶体用材料を製造し
、缶壁の薄肉化を図る場合、以下に示すような問題点が
ある。 第1に、前述の如く、缶体の軽量化には缶体全体の薄肉
化が必要であり、従来技術では缶底部のみの薄肉化が図
れる素材の高強度化が進められてきたところであるが、
素材の高強度化は缶壁部の高強度化にもつながり、缶の
軸方向座屈強度(充填時に必要な強度)に対してはプラ
スに働くが。 残念ながら、ネック及びフランジ加工に対してはマイナ
スとなり、必然的に缶壁、特にネック・フランジ部の薄
肉化を困難にさせていた。 第2に、3004合金はJIS規格おいて第1表の上段
に示す組成範囲のものとして制定されているが、実用上
は下段に示す組成範囲が用いられている。
(Industrial Application Field) The present invention relates to an aluminum alloy hard plate, and more particularly, it can be used as a body material for beverage cans, for painting, printing, (baking), etc.
This invention relates to a manufacturing method that allows for highly productive aluminum alloy hard plates with excellent subsequent formability (neck flange). (Prior art) Al-Mn-Mg based 3004 alloy hard plates have been used as materials for beverage can bodies and food can bodies for beer and carbonated beverages, etc., but in recent years In order to reduce weight, there is a growing demand for high strength and high formability. Therefore, the present inventors first developed a precipitation hardening type high-strength aluminum material for can bodies (Japanese Patent Publication No. 61-7465
No. etc.). The increased strength of this material primarily contributes to the thinner wall of the can bottom. However, in order to further reduce the weight of the can, it becomes necessary to reduce the thickness of the entire can body. Therefore, in order to reduce the weight of can bodies in the future, materials that can make can walls thinner will be needed, and the demand for such materials is increasing. On the other hand, the manufacturing method for can body material is a method in which the above-mentioned 3004 alloy ingot is subjected to a combination of homogenization heat treatment, hot rolling, cold rolling, and intermediate annealing. Along with this, continuous annealing furnaces (CAL: short-time annealing with rapid heating and cooling while winding and unwinding the coil) have begun to be used for the purpose of improving productivity. -6740y, same 6
No. 2-13421 etc. have been proposed. However, even in these technologies, the temperature of the hot-rolled coil before heating must be low at present. This is because in the case of aluminum material, a rubber roll is used as an essential accumulator for CAL, and due to the performance of the rubber, the coil temperature needs to be 150° C. or lower. (Problems to be Solved by the Invention) When manufacturing a can body material using 3004 alloy or the like in order to reduce the thickness of the can wall, there are the following problems. First, as mentioned above, to reduce the weight of the can body, it is necessary to make the entire can body thinner, and in the prior art, progress has been made to make materials with higher strength so that only the bottom part of the can can be made thinner. ,
Increasing the strength of the material also leads to increasing the strength of the can wall, which has a positive effect on the axial buckling strength of the can (the strength required during filling). Unfortunately, this has a negative effect on neck and flange processing, which inevitably makes it difficult to thin the can wall, especially the neck and flange portions. Second, although the 3004 alloy is specified in the JIS standard as having a composition within the composition range shown in the upper row of Table 1, in practice, the composition range shown in the lower row is used.

【以下余白1 すなわち、3004合金は比較的強度が高く、工1つ缶
体の製造法であるDI(絞り・しごき)加工における加
工性に優れていることから、従来から多用されているが
、特に3004合金のポイントはしごき加工性に優れる
Al−Mn−Fe系品出物が適正に分布していることに
ある。しかし、Al−Fe−Mn系の晶出物を適正に分
布させるには、JIS制定範囲は広いものの、他成分(
Mg、 Cu他)との関係による強度、成形性及び巨大
品出物の形成の観点から、実用面では狭い範囲にコン1
−ロールせざるを得なかった。 第3に、従来の焼鈍方法(例えば、CAI、)でコイル
を焼鈍する場合には、熱延コイルの温度は150℃以下
、好ましくは50℃以下である。したがって、熱延コイ
ルが所定の温度に冷却されるまでの時間的ロスが生じ、
因みにコイルが50℃以下になるには(0〜15時間が
必要である等、生産外の向ヒの障害となっている。 本発明は、上記従来技術の欠点を解消し1缶体全体の薄
肉化を可能とするil’li強度高成形性のアルミニウ
ム合金硬質板を高い生産性にて製造し得る方法を提供す
ることを目的とするものである。 (課題を解決するための手段) ■ まず、前記課題に鑑みて、本発明者らは、缶体の強
度、晶出物分布に対する成分組成及び製造条件の影響に
関して詳細に調査した。その結果、いずれに対してもF
e及びMnの影響が大きいことが判明し、これを成分組
成及び製造条件の適正化により解決するに至った。 すなわち、缶壁の強度低下という課題に対しては、Al
−Fe−Mn系の晶出物を比較的大きく。 且つ多量に分散させ、更に製品板厚までの冷間圧延率を
大きくすることにより、ベーキング後の軟化(缶壁強度
の低下)を大きくできる。但し、巨大品出物を抑制する
ためにはFeとMnの量をコン1〜ロールする必要があ
る。更に、缶底部の高強度化(素材の高強度化)に対し
ては製造条件(熱間正延。 冷間圧延、中間焼鈍)を適正にすることにより満足でき
ることを見い出したものである。 ■ また、熱延コイルを高温のまま(200℃以上)、
連続焼鈍ラインに通板した場合には、アキュムレーター
(ゴムロール)の性能上、板表面に焼付きが発生するが
、これに関しては特殊なwJ製ロールと形状を選定する
ことによって解決できることを先の出願にて提案した(
特願昭63−63173.486号)。 しかし、更に研究を重ねた結果、板表面の焼付きの問題
に対しては効果的であるものの、アキュムレーターには
多数のロールが配列されているので、通板による温度低
下の問題が生じてきた。この温度低下はエネルギーのロ
スをもたらす他、焼鈍温度のバラツキによる材料特性の
変化及び微細析出物形成に伴なう成形性低下を招く。こ
の対策について本発明者らが鋭意研究を重ねた結果、ア
キュムレーター不要の連続焼鈍ラインの開発によりこれ
を解決した。 すなわち、従来はコイル間接続のためにアキュムレータ
ーにより時間を調整していたのに対し、本発明者らは、
アキュムレーターを使用せずとも、例えば、コイル先端
をライン中に高速で引き込む継ぎ平方式であれば、アキ
ュムレーター(多数のロール使用が必須)が不要となり
、アキュムレーター使用に起因する温度低下の問題を解
決できることを見い出した。 以上の知見により、ここに成形性に優れたアルミニウム
合金硬質板を高生産性のもとで製造できる方法を発明し
たものである。 すなわち、本発明は、Mn:0.5〜1.0%、Fe:
0.5〜1.2%及びMg:0.5〜2.0%を、Fe
+1.07×Mn≦■、81%の関係を満足するように
含有し、更にSi:0.1〜0.7%、Cu:0゜05
〜0.5%及びZn:0.05〜1..O%のうちの1
種又は2種以上を含有し、残部がAlと不可避的不純物
からなるアルミニウ11合金鋳塊に500〜600℃の
温度で1時間以上の均゛質化熱処理を施した後、熱間圧
延を、終了板n1.5〜2.5ff111.終了温度2
80℃以上で行い、その後、この熱間圧延コイルを20
0℃以下の温度に下げることなしに、アキュムレーター
を備えない形式の焼鈍炉を用い、かつ、加熱冷却速度1
00℃/+iin以上、板温度400〜600℃に10
分以内の保持、更に冷却に関しては板温度が150℃以
下になる条件の連続焼鈍を施した後、冷間圧延率80%
以上の冷間圧延を施すことを特徴とする成形性に優れた
アルミニウム合金硬質板の製造法を要旨とするものであ
る。 以下に本発明を更に詳述する。 (作用) まず1本発明における化学成分の限定理由は次のとおり
である。 Mn: Mnは強度の向上、Al−Fe−Mn系品出物の適正生
成によるしごき加工性の向上1缶壁強度の軟化に効果の
ある元素である。しかし、0.5%未満ではいずれの効
果も小さく、また1、0%を超えると強度が高くなりす
ぎて成形性の低下を招き、更にはFe量との関係から、
Al−Fe−Mn系の巨大品出物の形成による加工不具
合を招くので好ましくない。したがって、M n fi
lは0.5〜1゜0%の範囲とする。 Fe: FeはMnとの関係でAl−Fe−Mn系品出物の適正
生成によるしごき加工性の向上、缶壁強度の軟化に効果
のある元素である。しかし、0.5%未満では缶壁強度
の軟化に対する効果が小さく、また1、2%を超えると
巨大品出物を形成し、加工不具合を招く。したがって、
Fe量は0.5〜1゜2%の範囲とする。 但し、MnとFeは巨大品出物の生成に大きく関与する
元素であり、本発明者らが詳細な研究を重ねた結果、F
e+1.07×Mnが1.81%を超える場合に巨大品
出物が形成され、加工不具合を拍くことが明らかとなっ
た。したがって、Mn及びFeは、上記範囲の他に1次
式 %式% の関係を満足する必要がある。 なお、好ましい範囲としては、Mn:0.6〜0゜8%
、Fe:0.6〜0.95%で、且つ、Fe+1゜07
×Mn≦1.7%である。 Mg: Mgは強度向上に効果のある元素であり、特にCuとの
組合せにより、ベーキング時にAl−Cu−Mg系析出
物による析出硬化を示し、缶底部の高強度化に有効であ
る。しかし、0.5%未満ではその効果は小さく、また
2、0%を超えると強度が高くなりすぎ、成形性の低下
を招く。したがって、Mg量は0.5〜2.0%の範囲
とする。 以上の各元素を必須成分とするが、更には以下に説明す
るSL、Cu及びZnのうちの1種又は2種以上を適量
で含有させる必要がある。 Si: SiはAl−Fe−Mn系の晶出物に相変態を生しさせ
、いわゆるA Q −Fe−Mn −Si系のα相を形
成させる元素であり、α相は硬度が高く、特にしごき加
工性の向上に効果がある。しかし、0゜1%未満ではそ
の効果は小さく、また0、7%を超えると圧延時に耳割
れを生じ、製造上に問題を招く。したがって、Si量は
0.1〜0.7%の範囲とする。 Cu: CuはMgと同様の効果を示す元素であり、Al−Cu
−Mg系析出物による析出硬化を示し1缶底部の強度向
上に有効である。しかし、0.05%未満ではその効果
は小さく、またQ 、 5%を超えると強度が高くなり
すぎて成形性の低下を招く。 したがって、Cu量は0.05〜0.5%の範囲とする
。 zn: Znは絞り及びしごき加工性、並びにその後のフランジ
成形性の向上に効果のある元素である。 しかし、0.05%未満ではその効果が小さく、また1
、0%を超えると、特に問題はないものの、耐食性が低
下する傾向となり、またコスト的に不利である。したが
って、Zn量は0.05〜1.0%の範囲とする。 なお、不純物については、本発明の効果を損なわない限
度で許容でき、例えば、Cr<0.3%、Ti<0.2
%、B<0.05%、Zr<O,t%である。 次に本発明の製造法について説明する。 上記化学成分を有するアルミニウム合金は常法により溶
解、鋳造し、得られた鋳塊は熱間圧延前に均質化熱処理
が施される。 この熱処理はその後の熱間圧延性の向上や、先に述べた
α相形成による成形性の向上並びに深絞り加工時に形成
される耳率抑制に効果がある。しかし、500℃未満で
はいずれの効果も小さく、また6 00 ℃を超える場
合にはバーニング等による板表面の性能低下を招く。な
お、保持時間は温度により異なるが、550℃未満では
]、hr以上、550 ℃以上では保持時間はなくても
よい。したがって、均質化熱処理は、500〜600℃
の温度でlhr以上の条件とする。なお、均質化熱処理
は2度行ってもよい。 引き続き行われる熱間圧延では、粗圧延(厚さ10mm
以上)と仕上圧延とに分かれるものの、連続工程である
。 粗圧延は均質化熱処理後に行なわれるが、開始温度は4
50℃以上が好ましい。 更に粗圧延後、仕上圧延にてコイル状に巻きヒげるが、
その際、終了時の板厚と温度が重要である。これらを適
正に規制することは、製品板での適正強度、DI加工後
のベーキングによる軟化並びに深絞り加工時の耳率抑制
に効果がある。 すなわち、終了板厚が1.5mm未満では耳率抑制には
効果があるが、強度及びDI加工後のベーキングによる
軟化が不足し、また2、5n+mを超える場合には強度
が高くなりすぎることによる成形性の低下と耳率アップ
による加工不具合を招くので、終了板厚は1.5〜2.
5mmとする。更に、終了温度は特に深絞り耳に大きく
影響し、280℃未満では大幅な耳率アップを招くので
、280°C以上とする。 更に、熱延上リコイルについては、連続焼鈍に供される
が、その条件は次のとおりである。 すなわち、コイル状の熱延板(以下、「ホットコイル」
トイウ)ハ、280℃JJ、上(連相、300〜350
℃)で巻き上げられ、冷却されるが5適宜は放冷され、
場合によってはファン冷却される。 この際、上記組成のホットコイルには、200 ℃以下
の温度領域にて、熱延中に固溶されていた元素が析出し
てくる。これら析出物はその後の熱処理においても固溶
され難く、製品板における成形性低下を招く。またこの
放冷は熱及び時間の無駄である他、その後の焼鈍におけ
る材質のバラツキの原因となる。したがって、本発明で
は、ホットコイルを200℃以下に下げることなく、熱
処理(連続焼鈍)を行うようにしたものであり、新しい
焼鈍方式ということができる。この点、従来の熱処理炉
では、前述の如く熱処理前に温度を下げる必要があるが
1本発明では、ホットコイルを200℃以下に下げるこ
となく、連続的に加熱する熱処理を施すことができる。 更に、熱間圧延コイルを直ちに連続焼鈍ラインに装入す
るが、連続焼鈍炉はアキュムレーターを備えていない形
式を適用する。この態様としては、連続焼鈍ラインの能
力を大きくする場合と、そうでない場合(通常はこの態
様が採用される)とがあるが、後者の場合には、コイル
温度が200℃以下に下げない保温加熱が必要である。 すなわち、保温加熱温度が200℃以下では前述の如く
成形性の低下を招き、また300℃を超えると比較的大
きな析出物が形成され、これもまた成形性の低下を促す
ので、200〜300℃の温度範囲に保持加熱すること
が必要である。なお、保持加熱炉は簡単な構造でよく、
300℃までの加熱能力があればよい。 次に焼鈍条件について説明する。 焼鈍は製品板(特に缶底部)での高強度化に重要な工程
であり、製缶工程中のベーキングにおいて析出硬化する
Mg及びCuを充分に固溶させることを目的とする熱処
理である。しかし、冷却速度が100℃/win未満で
は冷却途中に析出が生じて固溶量が減少し、また加熱と
冷却は同一ライン内にあり、生産性の点からライン速度
は速いほどよい。したがって、加熱冷却速度は100℃
/min以上とする。 また、加熱温度は、再結晶と同様にMg及びCuの溶体
化に重要な条件であるが、400℃未満ではいずれにも
不充分であ゛す、また600℃を超えるとバーニングの
問題を招く。更に保持時間は温度により異なり、高温(
例えば、500 ℃以上)の場合には保持なしでも充分
に満足されるが、低温(例えば、400℃)の場合には
10u+in程度必要である。したがって、到達温度4
00〜600℃に10m1n以内の保持を行う。なお、
生産上好ましい加熱温度範囲は450〜550℃である
。 更に、最終工程の冷間圧延は、連続焼鈍後施され、製品
板での強度向上及びDI加工後のベーキングによる軟化
に効果がある。しかし、冷間圧延率が80%未満ではそ
の効果が小さいことから、冷間圧延率は80%以上とす
る。なお、冷間圧延後、缶底成形性の向上のために仕上
げ焼鈍(100〜200℃X1hr以上)を施す場合も
ある。 (実施例) 次に本発明の実施例を示す。 失巖鮭よ 第2表に示す化学成分を有するアルミニウム合金に58
0℃X4hrの均質化熱処理後を施し、熱間圧延(終了
温度300℃)により2.0mm厚の熱延板を得た。そ
の直後、中間焼鈍として、アキュムレーターなしの連続
焼鈍炉を用いて加熱冷却速度300℃/akin、板温
度500℃×10sの加熱を行い、続いて0.30mm
厚まで冷間圧延を行った。 得られた製品について、圧延上り強度及びベーキング(
200℃X 20m1n)後強度を調査すると共に、耳
率、成形性(エリクセン値(Er値)、限界絞り比(L
 D R)、限界しごき率(L I R)、ネック成形
成功率)、ネッキ部の軟化量を調べた。それらの結果を
第3表に示す。 なお、耳率の測定、エリクセン値(Er値)及び限界絞
り比(LDR)の調査にはエリクセン社製試験機を使用
した。耳率は33φポンチ、ブランク径55φ(絞り4
!40%)にて求めた。Er値はエリクセン試験A法に
より求めた。また、LDRは33φポンチを用い、ブラ
ンク径を変化させて、L D R= ((ブランク径)
−(ポンチ径))/(ポンチ径)X100(%)の式に
て絞り加工できる限界を求めて評価した。 更に350cc缶体を製造する設備により、限界しごき
率(LIR)、DIでのベーキング前後の軟化量及びネ
ック成形成功率を求めた。ここで、製缶する設備につい
て説明すると、まず絞り加工は45tonクランクプレ
スにて行なわれ(ブランク径140φ、ポンチ径87φ
)、MいてDI実機(能力1oton)にて、350c
cDI缶(66φ×12511)とされる。 すなわち、限界しごき率(L I R)はしごきダイス
の内fiを変化させ、しごきダイス通過前後の肉厚変化
ff1((tx−to)/lo X 100%:tl、
は通過前肉厚、t□は通過後肉厚)にて限界を求めた。 更にベーキング前後の軟化量は、缶上端から円周方向に
JISS号試験片を採取し、引張り強さの強度差で評価
した。またネック成形成功率は45tonクランクプレ
スを用いて3段ネック加工ができる比率とした。 第3表より明らかなように、本発明例のNG 2〜Nn
4は、適正な強度及び晶出物分布により、Na 1の従
来例の高強度材に比べ、成形性が全般的に優れ、特にネ
ック部の軟化が大きいことによりネック成功率が高くな
っている。 一方、比較例のうち、Nα5〜NQ6はネック部の軟化
量は大きいものの、巨大品出物が形成される量のFeと
Mn(F e+ 1 、07 X Mnの値がNci 
5では2.16%、Nα6では2.03%)を含有する
ため、LDR及びLIRの低下が認められるほか、DI
缶には一部ピンホールが観察された。 比較例のNα8.9は、Cu及びMg量の増大による成
形性の低下のほか、ネック部の軟化量不足によるネック
成功率の低下が認められた。 【以下余白1 矢10狙え 第2表に示したNα1及びNa 3のアルミニウム合金
鋳塊を用いて、熱間圧延後の条件を変化させて冷延板(
製品)を製作した。なお、熱間圧延条件、中間焼鈍条件
及び冷間圧延条件は第4表に示す条件とし、製品の材料
特性は実施例■の評価と同様に行い、第5表に示す結果
を得た。 第5表より明らかなように、本発明例の3B及び3Cは
、いずれの特性も従来例及び比較例に比べて優れている
。 なお、比較例の3Aは、かなり優れた特性を示している
ものの、これと同一組成について第3表に示した比較例
Nα3と比較すると、本発明工程による比較例Ha 3
の方が材料特性が優れており、また生産性についても優
れている。 【以下余白】 UN−観1 第2表に示したNα3のアルミニウム合金鋳塊を用いて
、第6表に示す製造条件で冷延板(製品)を製作すると
共に、実施例1の場合と同様の要領にて材料評価を行い
、第7表に示す結果を得た。 第7表より分かるように、本発明条件によるI及びH工
程材は、高強度(耐圧強度の観点からベーキング耐力が
重要である)、低耳率、高成形性を右している。 これに対し、比較例の■工程材は、均熱温度が低いため
、高耳率、低LIRを示している。 比較例の■工程材も、熱延板厚が厚すぎるため、II工
程材と同じ挙動を示している。 また、比較例の■工程材は、熱延終了温度が低いため、
高耳率であり、比較例■〜■工程材は、Cu及びMgの
固溶量不足或いは冷間圧延量不足のため、ベーキング後
耐力が低く、素材の六q肉化に対して不適当である。 【以下余白j (発明の効果) 以上詳述したように、本発明によれば、高強度、高成形
性のアルミニウム合金硬質板を提供することができ、各
種用途の缶体全体の軽量化に貢献すると共に、素材板の
製造において生産性の向上に寄生するところが顕著であ
る。
[Margin 1 below] In other words, 3004 alloy has been widely used for a long time because it has relatively high strength and has excellent workability in DI (drawing and ironing) processing, which is a method for manufacturing can bodies. In particular, the point of the 3004 alloy is that the Al-Mn-Fe type products, which have excellent ironing workability, are appropriately distributed. However, in order to properly distribute Al-Fe-Mn crystallized substances, other components (
From the viewpoint of strength, formability, and formation of huge products due to the relationship with Mg, Cu, etc., in practical terms, it is difficult to
-I had to roll. Third, when annealing the coil using conventional annealing methods (eg, CAI), the temperature of the hot rolled coil is below 150°C, preferably below 50°C. Therefore, there is a time loss until the hot-rolled coil is cooled to a predetermined temperature,
Incidentally, it takes 0 to 15 hours for the coil to cool down to below 50°C, which poses a problem for non-manufacturers. The purpose of the present invention is to provide a method for manufacturing an aluminum alloy hard plate with high strength and high formability with high productivity. (Means for solving the problem) ■ First, In view of the above-mentioned problems, the present inventors conducted a detailed investigation on the influence of component composition and manufacturing conditions on can strength and crystallized material distribution.As a result, F
It was found that e and Mn had a large influence, and this problem was solved by optimizing the component composition and manufacturing conditions. In other words, to solve the problem of reduced strength of the can wall, Al
-Fe-Mn system crystallized substances are relatively large. By dispersing it in a large amount and increasing the cold rolling rate up to the thickness of the product, it is possible to increase the softening after baking (reduction in can wall strength). However, in order to suppress large-sized products, it is necessary to control the amounts of Fe and Mn from 1 to 1. Furthermore, it has been found that increasing the strength of the can bottom (increasing the strength of the material) can be achieved by optimizing the manufacturing conditions (hot rolling, cold rolling, intermediate annealing). ■Also, if the hot-rolled coil is kept at high temperature (200℃ or higher),
When the sheet is passed through a continuous annealing line, seizure occurs on the surface of the sheet due to the performance of the accumulator (rubber roll), but as previously explained, this can be resolved by selecting a special wJ roll and shape. Proposed in the application (
Patent Application No. 63-63173.486). However, as a result of further research, it was found that although it is effective against the problem of sheet surface seizure, the accumulator has a large number of rolls arranged, so there is a problem of temperature drop due to sheet threading. Ta. This temperature drop not only causes energy loss, but also changes in material properties due to variations in annealing temperature and decreases in formability due to the formation of fine precipitates. As a result of intensive research by the present inventors regarding this countermeasure, the problem was solved by developing a continuous annealing line that does not require an accumulator. In other words, while conventionally the time was adjusted using an accumulator for connection between coils, the present inventors
Even if you do not use an accumulator, for example, if you use a spliced square type in which the tip of the coil is drawn into the line at high speed, an accumulator (which requires the use of many rolls) is not necessary, and the problem of temperature drop caused by the use of an accumulator can be avoided. We found that we can solve the problem. Based on the above findings, we have now invented a method for manufacturing aluminum alloy hard plates with excellent formability at high productivity. That is, in the present invention, Mn: 0.5 to 1.0%, Fe:
0.5-1.2% and Mg: 0.5-2.0%, Fe
Contains so as to satisfy the relationship of +1.07×Mn≦■, 81%, and furthermore, Si: 0.1 to 0.7%, Cu: 0°05
~0.5% and Zn: 0.05~1. .. 1 out of 0%
After homogenizing an aluminum 11 alloy ingot containing one or more species and the remainder consisting of Al and unavoidable impurities at a temperature of 500 to 600°C for one hour or more, hot rolling is performed. End plate n1.5-2.5ff111. End temperature 2
The hot rolled coil was heated to 80°C or higher, and then the hot rolled coil was heated to 20°C.
Using an annealing furnace without an accumulator, without lowering the temperature to 0°C or less, and with a heating and cooling rate of 1
00℃/+iin or more, plate temperature 400-600℃ 10
After continuous annealing under the condition that the plate temperature is 150℃ or less, the cold rolling rate is 80%.
The gist of the present invention is a method for manufacturing an aluminum alloy hard plate with excellent formability, which is characterized by performing the above-described cold rolling. The present invention will be explained in further detail below. (Function) First, the reasons for limiting the chemical components in the present invention are as follows. Mn: Mn is an element that is effective in improving strength, improving ironing workability by properly forming Al-Fe-Mn products, and softening can wall strength. However, if it is less than 0.5%, both effects are small, and if it exceeds 1.0%, the strength becomes too high, leading to a decrease in formability, and furthermore, due to the relationship with the Fe content,
This is not preferable because it causes processing defects due to the formation of giant Al--Fe--Mn products. Therefore, M n fi
l is in the range of 0.5 to 1°0%. Fe: In relation to Mn, Fe is an element that is effective in improving ironing workability and softening can wall strength by properly forming Al-Fe-Mn products. However, if it is less than 0.5%, the effect on softening the can wall strength will be small, and if it exceeds 1 or 2%, giant pieces will be formed, leading to processing defects. therefore,
The amount of Fe is in the range of 0.5 to 1.2%. However, Mn and Fe are elements that are greatly involved in the formation of giant products, and as a result of detailed research by the present inventors, F
It has been revealed that when e+1.07×Mn exceeds 1.81%, giant pieces are formed, leading to processing defects. Therefore, in addition to the above ranges, Mn and Fe must satisfy the relationship of the linear formula %. In addition, as a preferable range, Mn: 0.6 to 0°8%
, Fe: 0.6 to 0.95%, and Fe+1°07
×Mn≦1.7%. Mg: Mg is an element that is effective in improving strength, and especially in combination with Cu, it exhibits precipitation hardening due to Al-Cu-Mg-based precipitates during baking, and is effective in increasing the strength of the can bottom. However, if it is less than 0.5%, the effect is small, and if it exceeds 2.0%, the strength becomes too high, leading to a decrease in moldability. Therefore, the Mg amount is in the range of 0.5 to 2.0%. Although each of the above elements is an essential component, it is also necessary to contain one or more of SL, Cu, and Zn in an appropriate amount as described below. Si: Si is an element that causes phase transformation in Al-Fe-Mn system crystallized substances to form the so-called AQ-Fe-Mn-Si system α phase, and the α phase has high hardness, especially Effective in improving ironing workability. However, if it is less than 0.1%, the effect is small, and if it exceeds 0.7%, edge cracking occurs during rolling, causing problems in manufacturing. Therefore, the amount of Si is set in the range of 0.1 to 0.7%. Cu: Cu is an element that exhibits the same effect as Mg, and Al-Cu
- Shows precipitation hardening due to Mg-based precipitates and is effective in improving the strength of the bottom of a can. However, if Q is less than 0.05%, the effect will be small, and if Q exceeds 5%, the strength will become too high, leading to a decrease in moldability. Therefore, the amount of Cu is set in the range of 0.05 to 0.5%. Zn: Zn is an element that is effective in improving drawing and ironing workability as well as subsequent flange formability. However, if it is less than 0.05%, the effect is small;
If it exceeds 0%, there is no particular problem, but corrosion resistance tends to decrease and it is disadvantageous in terms of cost. Therefore, the amount of Zn is set in the range of 0.05 to 1.0%. Note that impurities are permissible as long as they do not impair the effects of the present invention; for example, Cr<0.3%, Ti<0.2
%, B<0.05%, Zr<O, t%. Next, the manufacturing method of the present invention will be explained. An aluminum alloy having the above chemical components is melted and cast by a conventional method, and the resulting ingot is subjected to homogenization heat treatment before hot rolling. This heat treatment is effective in improving subsequent hot rolling properties, improving formability through the formation of the α phase mentioned above, and suppressing the selvage rate formed during deep drawing. However, if the temperature is less than 500°C, neither effect is small, and if the temperature exceeds 600°C, the performance of the plate surface deteriorates due to burning, etc. Note that the holding time varies depending on the temperature, but if the temperature is less than 550°C, the holding time may be hr or more, and if the temperature is 550°C or higher, there may be no holding time. Therefore, the homogenization heat treatment is performed at 500-600℃
The conditions are set at a temperature of 1hr or more. Note that the homogenization heat treatment may be performed twice. In the subsequent hot rolling, rough rolling (thickness 10 mm)
Although it is divided into (above) and finish rolling, it is a continuous process. Rough rolling is performed after homogenization heat treatment, and the starting temperature is 4
The temperature is preferably 50°C or higher. After further rough rolling, it is rolled into a coil shape in finishing rolling.
In this case, the plate thickness and temperature at the end are important. Appropriate regulation of these is effective in controlling the appropriate strength of the product board, softening due to baking after DI processing, and selvage during deep drawing. In other words, if the finished plate thickness is less than 1.5 mm, it is effective in suppressing the selvage rate, but the strength and softening due to baking after DI processing is insufficient, and if it exceeds 2.5 nm+m, the strength becomes too high. The finished plate thickness should be 1.5 to 2.5 mm, as this will lead to processing defects due to decreased formability and increased selvage.
The length shall be 5 mm. Furthermore, the finishing temperature has a great effect on the deep-drawn selvage in particular, and if it is less than 280°C, the selvage rate will increase significantly, so it is set at 280°C or higher. Furthermore, the hot-rolled recoil is subjected to continuous annealing under the following conditions. In other words, a coiled hot-rolled sheet (hereinafter referred to as "hot coil")
280℃JJ, upper (continuous phase, 300-350
℃) and cooled, but if appropriate, leave to cool.
In some cases, it is fan-cooled. At this time, in the hot coil having the above composition, elements that were dissolved in solid solution during the hot rolling precipitate out in a temperature range of 200° C. or lower. These precipitates are difficult to dissolve even in the subsequent heat treatment, resulting in a decrease in formability in the product sheet. Further, this cooling is a waste of heat and time, and also causes variations in material quality during subsequent annealing. Therefore, in the present invention, heat treatment (continuous annealing) is performed without lowering the temperature of the hot coil to 200° C. or lower, and it can be said to be a new annealing method. In this regard, in conventional heat treatment furnaces, it is necessary to lower the temperature before heat treatment as described above, but in the present invention, heat treatment can be performed by continuously heating the hot coil without lowering the temperature to 200° C. or lower. Furthermore, the hot rolled coil is immediately charged into the continuous annealing line, but the continuous annealing furnace is of a type not equipped with an accumulator. There are two ways to do this: one is to increase the capacity of the continuous annealing line, and the other is to not (usually this is the case). Heating is required. That is, if the insulation heating temperature is 200°C or lower, the formability will decrease as mentioned above, and if it exceeds 300°C, relatively large precipitates will be formed, which also promotes a decrease in the formability. It is necessary to maintain and heat the product within a temperature range of . Note that the holding and heating furnace may have a simple structure;
It only needs to have heating ability up to 300°C. Next, annealing conditions will be explained. Annealing is an important process for increasing the strength of the product plate (particularly the can bottom), and is a heat treatment aimed at sufficiently dissolving Mg and Cu, which are precipitation hardened during baking during the can manufacturing process. However, if the cooling rate is less than 100° C./win, precipitation will occur during cooling and the amount of solid solution will decrease, and since heating and cooling are performed in the same line, the faster the line speed, the better from the viewpoint of productivity. Therefore, the heating and cooling rate is 100℃
/min or more. In addition, heating temperature is an important condition for solutionizing Mg and Cu as in recrystallization, but temperatures below 400°C are insufficient for both, and temperatures exceeding 600°C may cause burning problems. . Furthermore, the retention time varies depending on the temperature;
For example, if the temperature is 500°C or higher, it is sufficient without holding, but if the temperature is low (eg, 400°C), about 10 u+in is required. Therefore, the reached temperature 4
The temperature is maintained within 10 m1n at 00 to 600°C. In addition,
The preferred heating temperature range for production is 450 to 550°C. Furthermore, the final cold rolling process is performed after continuous annealing, and is effective in improving the strength of the product sheet and softening it by baking after DI processing. However, if the cold rolling rate is less than 80%, the effect is small, so the cold rolling rate is set to 80% or more. In addition, after cold rolling, finish annealing (100-200 degreeC x 1 hr or more) may be performed in order to improve can bottom formability. (Example) Next, an example of the present invention will be shown. The aluminum alloy with the chemical composition shown in Table 2 is 58
After homogenization heat treatment at 0°C for 4 hours, a hot rolled sheet with a thickness of 2.0 mm was obtained by hot rolling (finishing temperature: 300°C). Immediately after that, as intermediate annealing, heating was performed using a continuous annealing furnace without an accumulator at a heating and cooling rate of 300°C/akin and a plate temperature of 500°C for 10 seconds, followed by 0.30 mm
Cold rolling was performed until the thickness was reached. The resulting product was tested for rolling strength and baking (
In addition to investigating the strength after heating at 200℃
D R), limit ironing rate (L I R), neck molding success rate), and the amount of softening of the neck portion were investigated. The results are shown in Table 3. A testing machine manufactured by Erichsen was used to measure the selvage ratio and investigate the Erichsen value (Er value) and limit drawing ratio (LDR). Ear rate is 33φ punch, blank diameter 55φ (aperture 4
! 40%). The Er value was determined by Erichsen test A method. Also, for LDR, use a 33φ punch and change the blank diameter to obtain LDR= ((blank diameter)
- (Punch diameter))/(Punch diameter) x 100 (%) The limit that can be drawn was determined and evaluated. Furthermore, the limit ironing rate (LIR), the amount of softening before and after baking in DI, and the neck forming success rate were determined using equipment for manufacturing 350 cc can bodies. Here, to explain the equipment for making cans, first, the drawing process is performed using a 45-ton crank press (blank diameter 140φ, punch diameter 87φ).
), M and DI actual machine (capacity 1 ton), 350c
It is assumed to be a cDI can (66φ x 12511). That is, by changing the limit ironing rate (L I R) and the inner fi of the ironing die, the wall thickness change ff1 ((tx-to)/lo x 100%: tl,
The limit was determined by the thickness before passing, and t□ the thickness after passing. Furthermore, the amount of softening before and after baking was evaluated by taking JISS test pieces in the circumferential direction from the upper end of the can, and evaluating the difference in tensile strength. In addition, the neck forming success rate was defined as the ratio at which three-stage neck forming could be performed using a 45 ton crank press. As is clear from Table 3, NG 2 to Nn of the examples of the present invention
Due to appropriate strength and crystallized material distribution, 4 has overall superior formability compared to the conventional high-strength material of Na 1, and the neck success rate is particularly high due to large softening of the neck part. . On the other hand, among the comparative examples, Nα5 to NQ6 have a large softening amount at the neck part, but the amount of Fe and Mn (F e+ 1 , 07
2.16% for Nα5 and 2.03% for Nα6), a decrease in LDR and LIR was observed, as well as a decrease in DI.
Some pinholes were observed on the can. In the comparative example with Nα8.9, in addition to a decrease in formability due to an increase in the amounts of Cu and Mg, a decrease in neck success rate was observed due to an insufficient amount of softening in the neck portion. [Blank 1 Aim for arrow 10 Using the Nα1 and Na3 aluminum alloy ingots shown in Table 2, we changed the conditions after hot rolling to create a cold-rolled sheet (
product) was manufactured. The hot rolling conditions, intermediate annealing conditions, and cold rolling conditions were as shown in Table 4, and the material properties of the products were evaluated in the same manner as in Example (2), and the results shown in Table 5 were obtained. As is clear from Table 5, inventive examples 3B and 3C are superior in both characteristics to the conventional examples and comparative examples. Although Comparative Example 3A shows considerably excellent properties, when compared with Comparative Example Nα3 shown in Table 3 with the same composition, Comparative Example Ha 3 according to the process of the present invention
has better material properties and productivity. [Left below] UN-view 1 Using the Nα3 aluminum alloy ingot shown in Table 2, a cold-rolled plate (product) was manufactured under the manufacturing conditions shown in Table 6, and in the same manner as in Example 1. Material evaluation was conducted in accordance with the procedure described in Table 7, and the results shown in Table 7 were obtained. As can be seen from Table 7, the I and H process materials according to the conditions of the present invention have high strength (baking yield strength is important from the viewpoint of compressive strength), low selvage ratio, and high formability. On the other hand, the comparative example (1) process material exhibits a high selvage rate and low LIR because the soaking temperature is low. The comparative example (1) process material also exhibits the same behavior as the II process material because the hot rolled plate thickness is too thick. In addition, the comparative example ■ process material has a low hot rolling finish temperature, so
The process materials of Comparative Examples ■ to ■ ■ have low yield strength after baking due to insufficient solid solution amount of Cu and Mg or insufficient cold rolling amount, and are unsuitable for 6q thickening of the material. be. [Margin below j (Effects of the invention) As detailed above, according to the present invention, it is possible to provide a hard aluminum alloy plate with high strength and high formability, and it is possible to reduce the weight of the entire can body for various uses. In addition to contributing to this, it is also noticeable that it is parasitic to improving productivity in the production of blank plates.

Claims (2)

【特許請求の範囲】[Claims] (1)重量%(以下、同じ)で、Mn:0.5〜1.0
%、Fe:0.5〜1.2%及びMg:0.5〜2.0
%を、Fe+1.07×Mn≦1.81%の関係を満足
するように含有し、更にSi:0.1〜0.7%、Cu
:0.05〜0.5%及びZn:0.05〜1.0%の
うちの1種又は2種以上を含有し、残部がAlと不可避
的不純物からなるアルミニウム合金鋳塊に500〜60
0℃の温度で1時間以上の均質化熱処理を施した後、熱
間圧延を、終了板厚1.5〜2.5mm、終了温度28
0℃以上で行い、その後、この熱間圧延コイルを200
℃以下の温度に下げることなしに、アキュムレーターを
備えない形式の焼鈍炉を用い、かつ、加熱冷却速度10
0℃/min以上、板温度400〜600℃に10分以
内の保持、更に冷却に関しては板温度が150℃以下に
なる条件の連続焼鈍を施した後、冷間圧延率80%以上
の冷間圧延を施すことを特徴とする成形性に優れたアル
ミニウム合金硬質板の製造法。
(1) In weight% (the same applies hereinafter), Mn: 0.5 to 1.0
%, Fe: 0.5-1.2% and Mg: 0.5-2.0
% to satisfy the relationship of Fe+1.07×Mn≦1.81%, and Si: 0.1 to 0.7%, Cu
Zn: 0.05 to 0.5% and Zn: 0.05 to 1.0%, and the remainder is Al and inevitable impurities.
After homogenization heat treatment for 1 hour or more at a temperature of 0°C, hot rolling is performed to a finished plate thickness of 1.5 to 2.5 mm and a finished temperature of 28.
The hot rolled coil was heated to 200°C or higher.
Using an annealing furnace without an accumulator, without lowering the temperature to below ℃, and at a heating and cooling rate of 10
After continuous annealing at 0°C/min or more, holding the plate temperature at 400 to 600°C for less than 10 minutes, and cooling the plate temperature to 150°C or less, cold rolling with a cold rolling rate of 80% or more. A method for manufacturing aluminum alloy hard plates with excellent formability, which involves rolling.
(2)前記熱延コイルを200〜300℃の温度範囲に
保持することを特徴とする請求項1に記載の方法。
(2) The method according to claim 1, characterized in that the hot rolled coil is maintained at a temperature range of 200 to 300°C.
JP22674689A 1989-09-01 1989-09-01 Production of hard aluminum alloy sheet excellent in formability Pending JPH0390549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22674689A JPH0390549A (en) 1989-09-01 1989-09-01 Production of hard aluminum alloy sheet excellent in formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22674689A JPH0390549A (en) 1989-09-01 1989-09-01 Production of hard aluminum alloy sheet excellent in formability

Publications (1)

Publication Number Publication Date
JPH0390549A true JPH0390549A (en) 1991-04-16

Family

ID=16849959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22674689A Pending JPH0390549A (en) 1989-09-01 1989-09-01 Production of hard aluminum alloy sheet excellent in formability

Country Status (1)

Country Link
JP (1) JPH0390549A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036089A (en) * 2011-08-09 2013-02-21 Furukawa-Sky Aluminum Corp Aluminum-alloy sheet for boiler drum and manufacturing method of the same, and boiler-drum resin-coated aluminum-alloy sheet and manufacturing method of the same
JP2014084473A (en) * 2012-10-19 2014-05-12 Mitsubishi Alum Co Ltd Aluminum alloy sheet for can body and production method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036089A (en) * 2011-08-09 2013-02-21 Furukawa-Sky Aluminum Corp Aluminum-alloy sheet for boiler drum and manufacturing method of the same, and boiler-drum resin-coated aluminum-alloy sheet and manufacturing method of the same
JP2014084473A (en) * 2012-10-19 2014-05-12 Mitsubishi Alum Co Ltd Aluminum alloy sheet for can body and production method thereof

Similar Documents

Publication Publication Date Title
US4645544A (en) Process for producing cold rolled aluminum alloy sheet
US9546411B2 (en) Aluminum-alloy sheet and method for producing the same
JPH11181558A (en) Production of aluminum alloy sheet for low and positive pressure can body
JP2009235477A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP3600022B2 (en) Manufacturing method of aluminum base alloy sheet for deep drawing
JP2006283113A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP4257135B2 (en) Aluminum alloy hard plate for can body
JP2933501B2 (en) Method for producing aluminum alloy sheet excellent in formability of DI can bottom
JP3409195B2 (en) Aluminum alloy hard plate for forming and manufacturing method thereof
JPH0390549A (en) Production of hard aluminum alloy sheet excellent in formability
JP4771726B2 (en) Aluminum alloy plate for beverage can body and manufacturing method thereof
JPH0222446A (en) Manufacture of high formability aluminum alloy hard plate
JP2005076041A (en) Method for manufacturing hard aluminum alloy sheet for can body
JPH02267242A (en) Low carbon aluminum killed cold rolled steel sheet having excellent workability, roughening resistance on the surface and earing properties and its manufacture
JPH0617141A (en) Production of cold rolled steel sheet excellent in workability and shape
JP7235634B2 (en) Aluminum alloy plate for can body
JPH08127850A (en) Production of aluminum alloy sheet for forming low in edge ratio
JP7355994B2 (en) High carbon steel plate and its manufacturing method
CN113950536B (en) Steel sheet for can and method for producing same
CN110506135B (en) Steel sheet, method for producing same, bottle cap, and DRD can
JPH0617140A (en) Production of cold rolled steel sheet for deep drawing
CN110462089B (en) Method for manufacturing steel sheet
JPH08283863A (en) Production of hard steel sheet for can excellent in uniformity of material
JPH03173733A (en) Aluminum alloy soft material for supporting substrate and its manufacture
JPH04214845A (en) Manufacture of aluminum alloy sheet excellent in formability