JPH039013Y2 - - Google Patents

Info

Publication number
JPH039013Y2
JPH039013Y2 JP5240484U JP5240484U JPH039013Y2 JP H039013 Y2 JPH039013 Y2 JP H039013Y2 JP 5240484 U JP5240484 U JP 5240484U JP 5240484 U JP5240484 U JP 5240484U JP H039013 Y2 JPH039013 Y2 JP H039013Y2
Authority
JP
Japan
Prior art keywords
coil
magnetic field
ultrasonic
detection
ultrasonic generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5240484U
Other languages
Japanese (ja)
Other versions
JPS60163305U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5240484U priority Critical patent/JPS60163305U/en
Publication of JPS60163305U publication Critical patent/JPS60163305U/en
Application granted granted Critical
Publication of JPH039013Y2 publication Critical patent/JPH039013Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、縦波電磁超音波発生検出器、特に該
検出器を構成する超音波発生用コイル及び検出コ
イルの構造改良に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a longitudinal wave electromagnetic ultrasonic generation detector, and particularly to structural improvements of an ultrasonic generation coil and a detection coil constituting the detector.

(従来技術) 電磁超音波の発生原理は、導電性材料の表面近
傍に磁界を形成すると共に、コイルを配置し、こ
れに高周波パルス電流を流して、材料表面に渦電
流を発生させ、該磁界と渦電流との相互作用によ
り材料中に超音波を透入させるものであり、ま
た、材料中の超音波と磁界との相互作用により、
材料表面に生じた渦電流を電磁誘導の法則により
コイルよつて検出するものである。
(Prior art) The principle of generation of electromagnetic ultrasonic waves is to form a magnetic field near the surface of a conductive material, place a coil, and pass a high-frequency pulse current through it to generate an eddy current on the material surface. Ultrasonic waves penetrate into the material due to the interaction between the
Eddy currents generated on the surface of a material are detected using a coil using the law of electromagnetic induction.

この材料中での超音波伝播時間を測定すること
によつて、材料の厚みや内部欠陥検出を行うこと
は、通常の超音波探傷技術と同様でるが、原理的
に材料に非接触であることから、その利点を活用
した適用が広まつている。
Detecting material thickness and internal defects by measuring the ultrasonic propagation time in the material is similar to normal ultrasonic flaw detection technology, but in principle there is no contact with the material. Since then, it has been widely used to take advantage of its advantages.

従来、この電磁超音波・縦波の発生検出につい
ては、特開昭54−95288(第1図aに示す電磁超音
波発生検出器を参照)に記載されているように、
外部磁界を利用しないで超音波を発生する場合
と、特開昭52−92781及び特開昭54−28163(第1
図b及びcに示す電磁超音波発生検出器を参照)
に記載の、外部磁界を利用して超音波を発生する
方法がある。
Conventionally, regarding the generation and detection of electromagnetic ultrasonic waves and longitudinal waves, as described in Japanese Patent Application Laid-Open No. 54-95288 (see the electromagnetic ultrasonic generation detector shown in Fig. 1a),
When generating ultrasonic waves without using an external magnetic field, and the case of generating ultrasonic waves without using an external magnetic field,
(See electromagnetic ultrasonic generation detector shown in figures b and c)
There is a method of generating ultrasonic waves using an external magnetic field, as described in .

第1図で1は導電性の測定対象材例えば鋼材で
あり、2,2′,2″は電磁超音波発生検出器であ
る。これらの検出器はマグネツトコアー3,3′,
3″、該コアーに装着された磁界発生用コイル4,
4′,4″、超音波発生用コイル5,5′,5″、及
び検出コイル6,6′,6″を有する。7はパルス
磁界、8,8″,8″は渦電流、9,9′,9″はこ
れらにより生じる振動力つまり超音波、10,1
0′,10″はその発生した超音波の進行方向を示
す。11,11′,11″は他面で反射して戻つて
きた超音波の進行方向を示し、12,12′,1
2″は反射超音波による振動力、13,13′,1
3″は静磁界、14,14′,14″は該振動力と
静磁界により発生する渦電流である。15,1
5′は回転対称軸を示す。超音波発生、検出動作
は既知の通りであるから詳細な説明は省略する。
In Fig. 1, 1 is a conductive material to be measured, such as steel, and 2, 2', 2'' are electromagnetic ultrasonic generation detectors.
3″, a magnetic field generating coil 4 attached to the core,
4', 4'', ultrasonic generation coils 5, 5', 5'', and detection coils 6, 6', 6''. 7 is a pulse magnetic field, 8, 8'', 8'' are eddy currents, 9, 9′, 9″ are the vibration forces generated by these, that is, ultrasonic waves, 10, 1
0', 10'' indicate the traveling direction of the generated ultrasonic wave. 11, 11', 11'' indicate the traveling direction of the ultrasonic wave reflected from the other surface, and 12, 12', 1
2″ is the vibration force due to reflected ultrasound, 13, 13′, 1
3'' is a static magnetic field, and 14, 14', 14'' are eddy currents generated by the vibration force and the static magnetic field. 15,1
5' indicates the axis of rotational symmetry. Since the ultrasonic wave generation and detection operations are well known, detailed explanations will be omitted.

これらの方法では、マグネツトコアーの近傍の
非常に制限された領域に、超音波発生用コイル、
検出コイルを近接配置し、かつ、測定対象材に対
向して両コイルを平面的に配置する必要がある。
従つて、超音波発生用コイルに流れる高周波パル
ス電流によつて生ずる過大な誘導信号が検出コイ
ルによつて検出される。第2図はその検出信号波
形の模式図であり、6は送信パルスによる誘導ノ
イズ17,17′,17″は測定対象材内を伝播
し、底面で反射した底面反射エコーである。この
検出信号の送信パルス、即ち、誘導ノイズの占め
る時間域tDは、不感帯といわれ、検出しようとす
る反射エコーが、この時間領域に入ると検出不可
となる。第2図の18は該不感帯を示し、19,
19′,19″は伝播時間を示す。
In these methods, an ultrasonic generating coil,
It is necessary to arrange the detection coils close to each other and to arrange both coils in a plane facing the material to be measured.
Therefore, an excessively large induced signal generated by the high-frequency pulse current flowing through the ultrasonic generating coil is detected by the detection coil. Figure 2 is a schematic diagram of the detection signal waveform, and reference numeral 6 indicates the bottom surface reflection echoes in which the induced noise 17, 17', 17'' due to the transmitted pulse propagates within the material to be measured and is reflected at the bottom surface.This detection signal The time region tD occupied by the transmitted pulse, that is, the induced noise, is called a dead zone, and if the reflected echo to be detected falls within this time region, it cannot be detected. 18 in FIG. 2 indicates the dead zone, 19,
19' and 19'' indicate propagation time.

しかし、第1図a,b,cの電磁超音波発生検
出器では、この不感帯18がいづれの場合も大き
くなる欠点がある。また、制限された領域に配置
される超音波発生用コイル、検出コイルのコイル
サイズは大きく制約を受ける。このコイルサイズ
は発生する超音波の周波数やその検出感度に直接
影響を与えることから、適正なコイルサイズを選
択する必要がある。だが、使用する超音波周波数
が一定であれば、コイルサイズは大きい方が検出
感度は向上すると考えてよい。
However, the electromagnetic ultrasonic generation detectors shown in FIGS. 1a, b, and c have the disadvantage that the dead zone 18 becomes large in all cases. Further, the coil sizes of the ultrasonic generation coil and the detection coil arranged in the restricted area are greatly restricted. Since this coil size directly affects the frequency of the generated ultrasonic waves and its detection sensitivity, it is necessary to select an appropriate coil size. However, if the ultrasonic frequency used is constant, it can be considered that the larger the coil size, the better the detection sensitivity.

(考案の目的) そこで、本考案では外部磁界を利用しない方法
で、渦巻状の超音波発生用コイルと直線状の検出
コイルを重ね合わせることによつて形成される超
音波発生・検出コイルを用い、不感帯を減少し、
かつ、コイル配置スペースを拡げることにより、
検出感度、S/N共に良好な縦波電磁超音波発生
検出器を提供するものである。
(Purpose of the invention) Therefore, the present invention uses an ultrasonic generation/detection coil formed by overlapping a spiral ultrasonic generation coil and a linear detection coil, without using an external magnetic field. , reduce the dead zone,
In addition, by expanding the coil placement space,
The present invention provides a longitudinal wave electromagnetic ultrasonic generation detector with good detection sensitivity and S/N.

(考案の構成) 以下、実施例を用いて詳細に説明する。(Structure of the idea) Hereinafter, a detailed explanation will be given using examples.

第3図aは、本考案による縦波電磁超音波発
生、検出の原理を示す概略図であり、第3図b及
びcは本考案における超音波発生用コイル及び検
出コイル形式の概略図を示す。
Figure 3a is a schematic diagram showing the principle of generating and detecting longitudinal electromagnetic ultrasound according to the present invention, and Figures 3b and 3c are schematic diagrams showing the types of ultrasonic generation coils and detection coils according to the present invention. .

第3図aにおいて、導電性測定対象材1の近傍
に磁界発生用コイル20ならびに、マグネツトコ
アー21を配置して、磁界発生用電源22から磁
界発生用コイル20に電圧を印加すると、導電性
測定対象材1内に点線矢印で示す静磁界23が発
生する。一方、渦巻状の超音波発生用コイル24
に高周波パルス電源25により高周波パルス電流
を流すと、導電性材料1内には誘導により渦電流
26,26′が誘起されると同時にパルス磁界2
7,27′が発生する。この渦電流26,26と
パルス磁界27,27′は相互作用して、フレミ
ングの左手の法則によつて矢印で示す方向のパル
ス状振動力28,28′を生ずる。この渦電流2
6,26′の生ずる方向は逆であるが、パルス磁
界27,27′の方向も互いに逆であるので、振
動力28,28′は図示すように同じ方向となる。
この振動力28,28′は以後電磁超音波として
矢印29,29′の方向に進行する。この電磁超
音波は、導電性測定対象材1の他面に達すると反
射されて矢印30の方向に戻つてくる。矢印30
の方向の電磁超音波は、測定対象材表面近くに達
すると振動力31として、前もつて形成された静
磁界23と相互作用して、フレミングの右手の法
則により誘導電流32が発生する。この誘導電流
32は直線状の検出コイル33によつて検出さ
れ、増幅器34によつて増幅され、表示器35に
表示される。この表示される検出信号の例を第2
図に示したが、この信号波形における反射エコー
間隔tを測定すれば、別途測定された測定対象材
の超音波伝播速度vとの積によつて、対象材の板
厚dを求めることができる。
In FIG. 3a, when a magnetic field generating coil 20 and a magnet core 21 are placed near the conductivity measurement target material 1 and a voltage is applied to the magnetic field generating coil 20 from the magnetic field generating power supply 22, the conductive A static magnetic field 23 indicated by a dotted arrow is generated within the material 1 to be measured. On the other hand, the spiral ultrasonic generation coil 24
When a high-frequency pulsed current is applied by the high-frequency pulsed power source 25 to
7,27' occurs. The eddy currents 26, 26 and the pulsed magnetic fields 27, 27' interact to produce pulsed vibrating forces 28, 28' in the direction indicated by the arrows according to Fleming's left hand rule. This eddy current 2
Although the directions of the magnetic fields 6 and 26' are opposite, the directions of the pulsed magnetic fields 27 and 27' are also opposite to each other, so the vibration forces 28 and 28' are in the same direction as shown.
These vibration forces 28, 28' then proceed as electromagnetic ultrasonic waves in the directions of arrows 29, 29'. When this electromagnetic ultrasonic wave reaches the other surface of the conductive measurement target material 1, it is reflected and returns in the direction of the arrow 30. arrow 30
When the electromagnetic ultrasonic wave in the direction reaches near the surface of the material to be measured, it interacts with the previously formed static magnetic field 23 as a vibration force 31, and an induced current 32 is generated according to Fleming's right-hand rule. This induced current 32 is detected by a linear detection coil 33, amplified by an amplifier 34, and displayed on a display 35. This example of the displayed detection signal is shown in the second example.
As shown in the figure, by measuring the reflected echo interval t in this signal waveform, the plate thickness d of the target material can be determined by multiplying it by the separately measured ultrasonic propagation velocity v of the target material. .

次に、本考案の構成によつて、第2図に示す誘
導ノイズ16が消去される原理について、第3図
a,b,cを参照しながら説明する。超音波発生
用コイル24および検出コイル33とは、第3図
aに示ように、導電性測定対象材1の面に垂直な
方向に近接して積層される如く配設される。第3
図bに超音波発生用コイル24を、また第3図c
に検出コイル33を示す。超音波発生用コイル2
4は、面内で電流の方向が逆になる2つの部分を
もつように渦巻状に構成される。従つて、超音波
発生用コイル24に、高周波パルス電流を流す
と、一側および他側のコイル電流36とコイル電
流36′は、互に逆方向に流れる。検出コイル3
3は、一つの面内では、一方向に電流が流れるよ
うに、第3図cに示すように構成される。
Next, the principle by which the induced noise 16 shown in FIG. 2 is eliminated by the configuration of the present invention will be explained with reference to FIGS. 3a, b, and c. As shown in FIG. 3a, the ultrasonic wave generating coil 24 and the detection coil 33 are arranged so as to be stacked close to each other in a direction perpendicular to the surface of the conductive material 1 to be measured. Third
Figure b shows the ultrasonic generation coil 24, and Figure 3 c.
The detection coil 33 is shown in FIG. Ultrasonic generation coil 2
4 is spirally configured to have two parts in which the direction of current is opposite within the plane. Therefore, when a high frequency pulse current is passed through the ultrasonic generating coil 24, the coil currents 36 and 36' on one side and the other side flow in opposite directions. Detection coil 3
3 is constructed as shown in FIG. 3c so that current flows in one direction within one plane.

超音波発生用コイル24と検出コイル33は、
導電性測定対象材1の面に垂直な方向に近接して
積層される如く配設されているから超音波発生用
コイル24に流された互に逆方向に流れる電流3
6,36′によつて検出コイル33に誘導電流3
7,37′が誘起される。検出コイル33に誘起
される誘導電流37,37′は、大きさが等しく
向きが逆であるからほぼ相殺される。
The ultrasonic generation coil 24 and the detection coil 33 are
Since they are arranged so as to be stacked close to each other in a direction perpendicular to the surface of the conductive material 1 to be measured, currents 3 flowing in mutually opposite directions flow through the ultrasonic wave generating coil 24.
6, 36' induces an induced current 3 in the detection coil 33.
7,37' is induced. The induced currents 37 and 37' induced in the detection coil 33 are equal in magnitude and opposite in direction, and therefore almost cancel each other out.

従つて、検出コイル33によつて検出される誘
導信号、即ち第2図に示す送信パルスによる誘導
ノイズ16は非常に小さくなり、誘導ノイズ16
によつて占められる不感帯18は顕著に減少す
る。一方、コイル電流36,36′によつて導電
性材料1の表面に誘起される渦電流26,26′
と同時に生ずるパルス磁界27,27′の発生方
向も各々逆方向となり(第3図a参照)、渦電流
26,26′とパルス磁界27,27′は各々相互
作用して、同方向の振動力28,28′を生じる。
即ち同位相、同方向の電磁超音波となつて材料内
を進行する。この超音波が反射されて材料表面近
傍に戻り、静磁界23と相互作用して生ずる誘導
電流32も同位相、同方向であるから、直線状の
検出コイル33にて完全に検出できることにな
る。故に、検出コイル33による検出信号の送信
パルス16によつて占められる不感帯18(tD
は小さく、材料中を伝播した反射超音波エコーは
良好な検出感度で検出されることになり、検出信
号のS/Nも著しく向上する。
Therefore, the induced signal detected by the detection coil 33, that is, the induced noise 16 caused by the transmission pulse shown in FIG. 2 becomes very small, and the induced noise 16
The dead zone 18 occupied by is significantly reduced. On the other hand, eddy currents 26, 26' induced on the surface of the conductive material 1 by the coil currents 36, 36'
The directions of generation of the pulsed magnetic fields 27, 27' that occur at the same time are also opposite to each other (see Fig. 3a), and the eddy currents 26, 26' and the pulsed magnetic fields 27, 27' interact with each other to generate vibrational forces in the same direction. 28, 28'.
That is, they become electromagnetic ultrasonic waves with the same phase and direction and travel within the material. This ultrasonic wave is reflected back to the vicinity of the material surface, and the induced current 32 generated by interacting with the static magnetic field 23 is also in the same phase and direction, so that it can be completely detected by the linear detection coil 33. Therefore, the dead zone 18 (t D ) occupied by the transmission pulse 16 of the detection signal by the detection coil 33
is small, and the reflected ultrasonic echoes propagated through the material are detected with good detection sensitivity, and the S/N of the detection signal is also significantly improved.

なお、第3図b,cに示す超音波発生用コイル
24と検出コイル33は重ね合せた後、超音波発
生用コイル24を測定対象側に向けて配置される
ため、従来の制約されたマグネツト磁極間であつ
ても、コイルサイイズは約2倍の自由度をもたせ
ることができるから、コイルサイズに基づく検出
感度の向上も併せて得ることができる。
Note that the ultrasonic wave generating coil 24 and the detection coil 33 shown in FIGS. 3b and 3c are placed one on top of the other, and then placed with the ultrasonic wave generating coil 24 facing the measurement target side, which eliminates the need for the conventional restricted magnet. Even between the magnetic poles, the coil size can have about twice the degree of freedom, so it is also possible to improve the detection sensitivity based on the coil size.

実施例として、マグネツトコアー30〓、磁路
長280mm、磁極ギヤツプ15mmとし、磁界発生用コ
イルに起磁力12000ATを加えたところ導電性材
料の表面域に5KGの磁界が得られ高周波パルス
電源からの出力電圧を10KVとし、これにコンデ
ンサー容量0.001〜0.01μFと、一対の放電電極を
有するスパークギヤツプと、超音波発生用コイル
とを、放電時に直列となるよう回路構成したとこ
ろ、電磁超音波の周波数として1.0〜4.0MHzが得
られ、鋼材の板厚測定に適用すると、板厚3.0〜
250mmの測定対象について、実用上十分な検出感
度を得ることができた。測定精度も0.1mm以下と
良好であつた。
As an example, a magnetic core of 30mm, a magnetic path length of 280mm, and a magnetic pole gap of 15mm were used, and when a magnetomotive force of 12000AT was applied to the magnetic field generation coil, a magnetic field of 5KG was obtained on the surface area of the conductive material, and a magnetic field from a high frequency pulse power source was obtained. When the output voltage was set to 10 KV, a capacitor capacity of 0.001 to 0.01 μF, a spark gap with a pair of discharge electrodes, and an ultrasonic generation coil were configured in a circuit so as to be connected in series during discharge, the frequency of electromagnetic ultrasonic waves was 1.0 to 4.0MHz can be obtained, and when applied to steel plate thickness measurement, plate thicknesses of 3.0 to 4.0MHz can be obtained.
For a measurement target of 250 mm, we were able to obtain a practically sufficient detection sensitivity. The measurement accuracy was also good at less than 0.1 mm.

(考案の効果) 以上のように、本考案による渦巻状超音波発生
用コイルと直鎖状検出コイルを重ね合わせてなる
超音波発生、検出コイルを用いた電磁超音波発生
検出器を利用すれば、不感帯の小さい、かつ、検
出感度良好な縦波電磁超音波発生検出器を提供す
ることが可能である。
(Effects of the invention) As described above, if the electromagnetic ultrasonic generation detector using the ultrasonic generation and detection coil formed by superimposing the spiral ultrasonic generation coil and the linear detection coil according to the invention is used, , it is possible to provide a longitudinal wave electromagnetic ultrasonic generation detector that has a small dead zone and good detection sensitivity.

なお、実施例では、超音波発生、検出コイル共
に平面状として示しているが、測定対象表面が、
例えば鋼管のように曲面であれば、超音波発生・
検出コイルを測定対象材に合わせて湾曲させれば
よい。また、超音波発生、検出コイルのコイルサ
イズや、使用する超音波周波数を変化しても、本
考案の効果は変らない。信号検出に必要な静磁界
発生用マグネツトは、測定対象材表面近傍に適正
な水平方向磁界を形成するものであれば、その形
状を制約しない。また、その水平磁界は、信号を
検出するタイミングに形成されていればよいの
で、静磁界でもパルス磁界でもよく、その磁界発
生用マグネツトは、電磁石、永久磁石を問わな
い。
In the examples, both the ultrasonic generation and detection coils are shown as flat, but the surface to be measured is
For example, if the surface is curved like a steel pipe, ultrasonic waves can be generated.
The detection coil may be curved to match the material to be measured. Moreover, even if the coil sizes of the ultrasonic generation and detection coils and the ultrasonic frequency used are changed, the effects of the present invention do not change. The shape of the magnet for generating a static magnetic field necessary for signal detection is not limited as long as it forms an appropriate horizontal magnetic field near the surface of the material to be measured. Further, since the horizontal magnetic field only needs to be formed at the timing of signal detection, it may be a static magnetic field or a pulsed magnetic field, and the magnetic field generating magnet does not matter whether it is an electromagnet or a permanent magnet.

更に、実施例では反射法を用いて説明したが、
超音波発生コイルを測定対象の一面に配置し、検
出コイル及び、磁界発生用マグネツトを他面に配
置する透過法でも同様な効果が得られる。
Furthermore, although the embodiment was explained using a reflection method,
A similar effect can be obtained by a transmission method in which an ultrasonic wave generation coil is placed on one side of the object to be measured, and a detection coil and a magnetic field generation magnet are placed on the other side.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは外部磁界を使用しない電磁超音波発
生検出器の概略図と原理を示す。第1図b及びc
は、外部磁界を使用する電磁超音波発生検出器の
概略図と原理を示す。第2図は電磁超音波・検出
信号波形の模式図を示す。第3図aは本考案によ
る縦波電磁超音波発生検出器の概略図と原理を示
す。第3図b及びcは、本考案による超音波発生
用コイル及び検出コイルの概略図を示す。 1:導電性測定対象材、2,2′,2″:電磁超
音波発生検出器、3,3′,3″:マグネツトコア
ー、4,4′,4″:磁界発生用コイル、5,5′,
5″:超音波発生用コイル、6,6′,6″:検出
コイル、7:パルス磁界、8,8′,8″:渦電
流、9,9′,9″:振動力、10,10′,1
0″:発生超音波進行方向、11,11′,1
1″:反射超音波進行方向、12,12″:振動
力、13,13′,13″:静磁界、14,1
4″:渦電流、15,15″:回転対称軸、16:
誘導ノイズ、17,17′,17″:底面反射エコ
ー、18:不感帯、19,19′,19″:伝播時
間、20:磁界発生用コイル、21:マグネツト
コアー、22:磁界発生用電源、23:静磁界、
24:超音波発生用コイル、25:高周波パルス
電源、26,26′:渦電流、27,27′:パル
ス磁界、28,28′:振動力、29,29′:発
生超音波進行方向、30:反射超音波進行方向、
31:振動力、36,36′:コイル電流、37,
37′:誘導電流、33:検出コイル、32:誘
導電流、34:増幅器、35:表示器。
FIG. 1a shows a schematic diagram and principle of an electromagnetic ultrasonic generation detector that does not use an external magnetic field. Figure 1 b and c
presents a schematic diagram and principle of an electromagnetic ultrasound generation detector using an external magnetic field. FIG. 2 shows a schematic diagram of the electromagnetic ultrasound/detection signal waveform. FIG. 3a shows a schematic diagram and principle of a longitudinal wave electromagnetic ultrasonic generation detector according to the present invention. Figures 3b and 3c show schematic diagrams of the ultrasonic generation coil and detection coil according to the present invention. 1: Conductivity measurement target material, 2, 2', 2'': Electromagnetic ultrasonic generation detector, 3, 3', 3'': Magnetic core, 4, 4', 4'': Coil for magnetic field generation, 5, 5',
5": Ultrasonic generation coil, 6, 6', 6": Detection coil, 7: Pulse magnetic field, 8, 8', 8": Eddy current, 9, 9', 9": Vibration force, 10, 10 ',1
0″: direction of propagation of generated ultrasound, 11, 11′, 1
1″: Reflected ultrasound traveling direction, 12, 12″: Vibration force, 13, 13′, 13″: Static magnetic field, 14, 1
4″: Eddy current, 15,15″: Rotational symmetry axis, 16:
Induction noise, 17, 17', 17'': bottom reflection echo, 18: dead zone, 19, 19', 19'': propagation time, 20: magnetic field generation coil, 21: magnetic core, 22: magnetic field generation power supply, 23: static magnetic field,
24: Coil for ultrasonic generation, 25: High frequency pulse power source, 26, 26': Eddy current, 27, 27': Pulse magnetic field, 28, 28': Vibration force, 29, 29': Direction of propagation of generated ultrasound, 30 : Reflected ultrasound traveling direction,
31: Vibration force, 36, 36': Coil current, 37,
37': induced current, 33: detection coil, 32: induced current, 34: amplifier, 35: indicator.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 導電性の測定対象近傍に設けられる磁界発生装
置と、渦電流を測定対象に発生させる超音波発生
用コイルと、測定対象からの反射超音波により励
起される渦電流を検出する検出コイルと、前記超
音波発生用コイルに高周波パルス電流を流す高周
波パルス電源とよりなる電磁超音波発生検出器に
おいて、前記超音波発生用コイルを渦巻状とし、
検出コイルを直線状として、両コイルを重ね合わ
せた構造をもたせてなる縦波電磁超音波発生検出
器。
a magnetic field generator disposed near the conductive object to be measured, an ultrasonic generation coil that generates eddy currents in the object to be measured, a detection coil that detects eddy currents excited by ultrasound reflected from the object to be measured; In an electromagnetic ultrasonic generation detector comprising a high-frequency pulse power source that passes a high-frequency pulse current through an ultrasonic generation coil, the ultrasonic generation coil is spiral-shaped,
A longitudinal wave electromagnetic ultrasonic generation detector with a linear detection coil and a structure in which both coils are overlapped.
JP5240484U 1984-04-10 1984-04-10 Longitudinal wave electromagnetic ultrasonic generation detector Granted JPS60163305U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5240484U JPS60163305U (en) 1984-04-10 1984-04-10 Longitudinal wave electromagnetic ultrasonic generation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5240484U JPS60163305U (en) 1984-04-10 1984-04-10 Longitudinal wave electromagnetic ultrasonic generation detector

Publications (2)

Publication Number Publication Date
JPS60163305U JPS60163305U (en) 1985-10-30
JPH039013Y2 true JPH039013Y2 (en) 1991-03-06

Family

ID=30572328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5240484U Granted JPS60163305U (en) 1984-04-10 1984-04-10 Longitudinal wave electromagnetic ultrasonic generation detector

Country Status (1)

Country Link
JP (1) JPS60163305U (en)

Also Published As

Publication number Publication date
JPS60163305U (en) 1985-10-30

Similar Documents

Publication Publication Date Title
JP2020509388A (en) Electromagnetic ultrasonic transducer (EMAT) for corrosion mapping
JPH039013Y2 (en)
US7395715B2 (en) Electromagnetic ultrasound probe
JPS623900B2 (en)
JPH11125622A (en) Sh wave electromagnetic ultrasonic transducer and measuring method
JPS636678Y2 (en)
JPS6261884B2 (en)
Ohtsuka et al. P2E-6 New design of electromagnetic acoustic transducer for precise determination of defect
JP2976726B2 (en) Electromagnetic ultrasonic flaw detector
JPS60105960A (en) Electromagnetical ultrasonic transducer
JPH0334562B2 (en)
JPH0239252Y2 (en)
JPS6242440B2 (en)
JPS6333440Y2 (en)
JPH0612489Y2 (en) Electromagnetic ultrasonic probe
JPH0216874B2 (en)
JPS6256857A (en) Electromagnetic ultrasonic wave transducer for transverse wave using high frequency magnetic core
JPS60205358A (en) Measuring method of anisotropy
JP4286980B2 (en) Electromagnetic ultrasonic sensor
SU1377716A1 (en) Electromagnetic-sonic flaw detector
JPH0694684A (en) Electromagnetic ultrasonic flaw detector
JP2552587Y2 (en) Device for measuring the amount of gas in liquid
JPS61245056A (en) Plate wave trasducer
JPH0147742B2 (en)
JPS582743A (en) Ultrasonic probe