JPH0389921A - Treatment using ceramic membrane - Google Patents

Treatment using ceramic membrane

Info

Publication number
JPH0389921A
JPH0389921A JP22617689A JP22617689A JPH0389921A JP H0389921 A JPH0389921 A JP H0389921A JP 22617689 A JP22617689 A JP 22617689A JP 22617689 A JP22617689 A JP 22617689A JP H0389921 A JPH0389921 A JP H0389921A
Authority
JP
Japan
Prior art keywords
membrane
substrate
ceramic membrane
substrate solution
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22617689A
Other languages
Japanese (ja)
Inventor
Naohito Wajima
尚人 輪島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP22617689A priority Critical patent/JPH0389921A/en
Publication of JPH0389921A publication Critical patent/JPH0389921A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To prevent plugging of a membrane and improve cleaning efficiency by adjusting the pH of a substrate solution or a cleaning liquid to be more acidic or alkalline than the isoelectric point of a ceramic membrane composing material or the substrate. CONSTITUTION:A substrate solution (l) is supplied to a membrane module 2 and circulated to a tank 1 so as to lead a permeated liquid out of a system, and the membrane module 2 is cleaned during this process. The membrane module 2 is composed of a nonsymmetric membrane and the composing material of the thin membrane in a primary side is SnO2, TiO2, ZrO2, or Al2O3. The pH of the substrate solution (l) or a cleaning liquid is adjusted to be either more acidic or alkalline than the isoelectric point of the composing material of the thin membrane and the substrate. Electric charge of the thin membrane composing material and the substrate becomes the same and thus they repel each other, and the substrate adhering to the membrane is separated easily and electrostatically. As a result, plugging of the membrane becomes hard to be caused, cleaning efficiency of the membrane is improved and the recovery of the membrane function is quick.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は限外濾過法等によって基質溶液(原液)中から
目的とする物質を取出したり、目的とする物質以外の物
質を除去する方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for extracting a target substance from a substrate solution (undiluted solution) or removing substances other than the target substance by ultrafiltration or the like. .

(従来の技術) 食品や医薬品工業における溶液の分離や濃縮、工場排水
や下水の膜分離IA理においては従来から、比較的大径
の粒子からなる支持体の基質溶液流入側の面に小径の粒
子からなる薄膜を形成した非対称膜等のセラミック膜を
用いている。
(Prior art) Conventionally, in the separation and concentration of solutions in the food and pharmaceutical industries, and in the membrane separation IA process of industrial wastewater and sewage, small-diameter particles are placed on the substrate solution inflow side of a support made of relatively large-diameter particles. A ceramic membrane such as an asymmetric membrane formed of a thin film made of particles is used.

斯かるセラ主ツタ膜を用いて長時間分離運転を行うとセ
ラミック膜の表面に溶質(主として基質)の粒子が(=
j着し、目詰まりを起こして膜性能の低下を来たす。
When a long-term separation operation is performed using such a ceramic main ivy membrane, solute (mainly substrate) particles are deposited on the surface of the ceramic membrane (=
This will lead to clogging and deterioration of membrane performance.

このため従来から膜面流速や膜間差圧を変えたり、逆洗
浄を行ったり更には特開昭61−11108号に開示さ
れるように、一次側と二次側の圧を等しくした状態で、
一次側に循環ポンプによって洗浄液を供給するようにし
ている。
For this reason, conventional techniques have been used to change the membrane surface flow rate and the differential pressure between the membranes, perform backwashing, and even keep the pressures on the primary and secondary sides equal, as disclosed in JP-A-61-11108. ,
Cleaning liquid is supplied to the primary side by a circulation pump.

(発明が解決しようとする課題) 上述しに従来の方法にあっては、処理の途中で運転条件
を変えなければならず、また−旦微細な孔に入り込んだ
溶質粒子は簡単に除去することができない。
(Problems to be Solved by the Invention) As mentioned above, in the conventional method, the operating conditions must be changed during the treatment, and - once the solute particles have entered the fine pores, it is difficult to easily remove them. I can't.

(課題を解決するための手段) 上記課題を解決すべく本発明は、基質溶液のpHを調整
するか、洗浄液のp)Iを調整することとし、当該調整
後のpoがセラミック膜を構成する材料の等電位点及び
基質の等電位点のいずれの等電位点よりも酸性かアルカ
リ性の一方になるようにした。
(Means for Solving the Problems) In order to solve the above problems, the present invention adjusts the pH of the substrate solution or adjusts the p)I of the cleaning solution, and the po after the adjustment constitutes a ceramic membrane. It was made to be either more acidic or more alkaline than either the equipotential point of the material or the equipotential point of the substrate.

(作用) 基質溶液のpH又は洗浄液のpHを調整することてセラ
ミック膜を構成する材料及び基質の荷電が正か負のいず
れか一方となるようにして互いに反発せしめ、膜に付着
した基質溶液が膜から静電的に離れやすくなる。
(Function) By adjusting the pH of the substrate solution or the pH of the cleaning solution, the materials constituting the ceramic membrane and the substrate are charged either positively or negatively, so that they repel each other, and the substrate solution adhering to the membrane is removed. It becomes easier to separate electrostatically from the membrane.

(実施例) 以下に本発明の実施例を添付図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the accompanying drawings.

第1図は本発明方法の実施に用いる装置の概略図、第2
図はセラミック膜の一例を示す斜視図であり、タンク1
内には基質としてのタンパク質、糖或いはデンプン等の
有機物を含む溶液℃が満たされており、タンク1と膜モ
ジュール2とを配管3で接続し、この配管3の途中にポ
ンプ4を設け、このポンプ4によって基質溶液℃を膜モ
ジュール2の一次側に供給し、二次側に透過した液を配
管5を介して他のタンク等へ導き、また戻し管6を介し
て一次側の基質溶液をタンク1へ戻すようにしている。
Fig. 1 is a schematic diagram of the apparatus used to carry out the method of the present invention;
The figure is a perspective view showing an example of a ceramic membrane, and shows a tank 1.
The inside is filled with a solution containing organic matter such as protein, sugar, or starch as a substrate.The tank 1 and the membrane module 2 are connected by a pipe 3, and a pump 4 is installed in the middle of this pipe 3. The substrate solution °C is supplied to the primary side of the membrane module 2 by the pump 4, and the liquid that has permeated to the secondary side is guided to another tank etc. via the piping 5, and the substrate solution on the primary side is returned via the return pipe 6. I'm trying to return it to tank 1.

ここで膜モジュール2は第2図に示すようなチューブ状
をなすセラミック非対称膜7を多数本台せて構成され、
セラミック非対称膜7は大径のセラミック粒子からなる
支持体8の一次側表面に小径のセラミック粒子からなる
薄膜9を形成している。ここで薄IIU9を構成するセ
ラミック粒子としては粒子径5001以下の5n02.
 TiO2,ZrO2又は八℃203 とする。
Here, the membrane module 2 is constructed by mounting a large number of tubular asymmetric ceramic membranes 7 as shown in FIG.
The ceramic asymmetric membrane 7 has a thin film 9 made of small-diameter ceramic particles formed on the primary surface of a support 8 made of large-diameter ceramic particles. Here, the ceramic particles constituting the thin IIU9 are 5n02.
TiO2, ZrO2 or 8℃203.

以上の装置を用いて基質溶液℃゛を濃縮或いは分離する
には基質溶液立なのpI(を水酸イピナトリウムやリン
酸等を用いて調整する。具体的にはセラミック膜を構成
する5n02等の材料の等電位点及び基質の等電位点の
いずれの等電位点よりも基質溶液のpl(が酸側又はア
ルカリ側のいずれか一方になるようにし、セラミック膜
を構成する材料の荷電と基質の荷電とが同じになるよう
にして互いに静電的に反発し合って吸着しないようにす
る。
To concentrate or separate the substrate solution ℃ using the above device, adjust the pI of the substrate solution using ipinodium hydroxide, phosphoric acid, etc. Specifically, 5n02 etc. that constitute the ceramic membrane The PL of the substrate solution should be on either the acid side or the alkaline side relative to the equipotential point of the material and the substrate, so that the charge of the material constituting the ceramic membrane and the substrate so that they have the same charge so that they electrostatically repel each other and do not attract each other.

次に具体的な実験例に基づいて本発明を説明する。Next, the present invention will be explained based on specific experimental examples.

第3図はセラミック膜の構成材料のゼータ電位とpHと
の関係を示したグラフであり、ゼータ電位がOとなるp
Hが等電位点てあり、この点よりもpHが犬きくなると
セラミック膜を構成する材料は酸として作用し、pll
が小さくなるとアルカリとして作用する。
Figure 3 is a graph showing the relationship between the zeta potential and pH of the constituent materials of the ceramic membrane.
H has an equipotential point, and when the pH becomes higher than this point, the material that makes up the ceramic membrane acts as an acid, and pll
When becomes small, it acts as an alkali.

また、第4図は各種タンパク質の分子量と等電位点との
関係を示すグラフであり、前記同様各種タンパク質は両
性物質としての性質を持つ。
Further, FIG. 4 is a graph showing the relationship between the molecular weight of various proteins and the equipotential point, and as described above, various proteins have properties as amphoteric substances.

更に第5図乃至第10図はflux変化率鴎)と透過量
(ml)との関係を示すグラフであり、flux変化率
(96)は−旦目詰まりしたセラミック膜の回復率を示
す。つまりflux変化率(*)が100!にであれば
目詰まり前の状態に完全に戻ったことを表わし、0零で
あれば全く回復していないことを表わしている。
Further, FIGS. 5 to 10 are graphs showing the relationship between the flux change rate (96) and the permeation amount (ml), and the flux change rate (96) indicates the recovery rate of the once-clogged ceramic membrane. In other words, the flux change rate (*) is 100! If it is 0, it means that the state has completely returned to the state before clogging, and if it is 0, it means that it has not recovered at all.

即ち、第5図はセラミック膜としてのs n 02 t
Jiを、基質として牛血清アルブミンを選定した場合の
実験結果を示したものであり、第5図の読み方は以下の
通りである。先ず基質溶液のpHがpH4,1において
セラミック膜にアルブミンを吸着せしめ、そのままpH
4,1のまま運転を透過量が500m1になるまで行い
、次いでpi(4,1の洗浄液中に24時間浸漬し再び
透過量が600m1になるまで運転を行い、この後pH
6,5の洗浄液中に24時間浸漬した後、pHs、5の
まま透過量が51]1]m+になるまで運転を行った。
That is, FIG. 5 shows s n 02 t as a ceramic film.
This figure shows the experimental results when bovine serum albumin was selected as the substrate for Ji, and how to read FIG. 5 is as follows. First, when the pH of the substrate solution is pH 4.1, albumin is adsorbed onto the ceramic membrane, and then the pH is adjusted to
Continue operation with 4.1 until the permeation amount reaches 500 ml, then immerse it in the cleaning solution of pi (4.1) for 24 hours, and operate again until the permeation amount reaches 600 ml.
After being immersed in the cleaning solution No. 6.5 for 24 hours, operation was continued at pH 5 until the amount of permeation reached 51]1]m+.

第5図からは、pHが4.1のときにはflux変化率
が小さく回復率か悪く、pl(を6,5 にすると急激
にflux変化率が向上することが分かる。これはpH
−+41では5n02は酸として作用し、牛血清アルブ
ミンはアルカリとして作用し、両者は荷電が逆になるの
で互いに静電的に吸着し、pHが65になるといずれも
酸として作用し、互いに荷電か同じになって反発するの
でf lux変化率か回復するものと考えられる。また
、第6図からは、始めからpHを65としておけは、直
ちにflux変化率が回復することが分る。
From Figure 5, it can be seen that when the pH is 4.1, the flux change rate is small and the recovery rate is poor, and when pl (is set to 6.5), the flux change rate increases rapidly.
At -+41, 5n02 acts as an acid, and bovine serum albumin acts as an alkali, and since both have opposite charges, they electrostatically adsorb each other.When the pH reaches 65, they both act as acids, and their charges are reversed. Since it becomes the same and rebounds, it is thought that the flux change rate recovers. Moreover, from FIG. 6, it can be seen that if the pH is set to 65 from the beginning, the flux change rate immediately recovers.

更に第7図及び第8図はセラミック膜をTlO2とし、
第9図及び第10図はセラミック膜ZrO2としたもの
であり、これらのグラフから以下のことか言える。即ち
、分離するタンパク質を牛血清アルブミンとした場合、
セラミック膜の材料として5nQ2又はTit)2を用
いているときは基質溶液又は洗浄7夜のpH1をpH2
,8(Sn02及びTlO2の等電位点)以下かpH+
4.a(牛血清アルブミンの等電位点)以上とし、Zr
O2を用いているときはpHをpH3,5(ZrO2の
等電位点)以下かpl+4.8以上とし、 八u 20
3を用いているときはpHをpH4,8以下かpH6,
o (八f1.20..の等電位点)以下とする。
Furthermore, in FIGS. 7 and 8, the ceramic film is TlO2,
FIGS. 9 and 10 show ceramic films of ZrO2, and the following can be said from these graphs. That is, when the protein to be separated is bovine serum albumin,
When using 5nQ2 or Tit)2 as the material for the ceramic membrane, the pH of the substrate solution or the pH of 7 nights of washing is changed to pH2.
,8 (equipotential point of Sn02 and TlO2) or below or pH+
4. a (the isopotential point of bovine serum albumin) or higher, and Zr
When using O2, the pH should be below pH 3.5 (equopotential point of ZrO2) or above pl+4.8.
3, adjust the pH to below pH 4.8 or pH 6.
o (equipotential point of 8f1.20..) or less.

尚実施例にあっては静電的な反発力を利用してセラミッ
ク膜に付着した基質を積極的に落とすようにしたが、逆
にセラミック膜と基質とを荷電が反対となるようなpH
を選定することて、特定物質の吸着除去にも応用するこ
とができる。
In the example, the electrostatic repulsion force was used to actively remove the substrate attached to the ceramic membrane, but on the other hand, the ceramic membrane and the substrate were heated at a pH such that the charges were opposite to each other.
It can also be applied to adsorption and removal of specific substances by selecting .

(発明の効果) 以上に説明した如く本発明によれば、タンパク等の有機
物をセラミック膜を用いて分離するにあたり、基質溶液
又は洗浄液のpHを調整することで、セラミック膜と基
質とが互いに静電的に反発するようにしたので、セラミ
ック膜に基質が吸着されて目詰まりを起こしにくく且つ
一旦吸着された基質を除去しやすいので膜性能の回復が
早い。
(Effects of the Invention) As explained above, according to the present invention, when separating organic substances such as proteins using a ceramic membrane, by adjusting the pH of the substrate solution or cleaning solution, the ceramic membrane and the substrate can be kept static from each other. Since it is electrically repellent, it is difficult for the substrate to be adsorbed to the ceramic membrane and cause clogging, and since the substrate once adsorbed is easy to remove, the membrane performance recovers quickly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の実施に用いる装置の概略図、第2
図はセラミック膜の斜視図、第3図はセラミック膜を構
成する材料の等電位点を示すグラフ、第4図は各種タン
パク質の等電位点と分子量の関係を示すグラフ、第5図
乃至第10図はpHとflux変化率との関係を示す実
験結果のグラフである。 尚、図面中1はタンク、2は膜モジュール、7はセラミ
ック非対称膜、8は支持体、9はR膜である。
Fig. 1 is a schematic diagram of the apparatus used to carry out the method of the present invention;
The figure is a perspective view of a ceramic membrane, Figure 3 is a graph showing the equipotential points of the materials constituting the ceramic membrane, Figure 4 is a graph showing the relationship between equipotential points and molecular weights of various proteins, and Figures 5 to 10 The figure is a graph of experimental results showing the relationship between pH and flux change rate. In the drawings, 1 is a tank, 2 is a membrane module, 7 is an asymmetric ceramic membrane, 8 is a support, and 9 is an R membrane.

Claims (2)

【特許請求の範囲】[Claims] (1)一次側の基質溶液に浸透圧以上の圧力を加え、所
定の分子量以下の物質をセラミック膜を透過せしめて二
次側に取出すようにした処理方法において、前記セラミ
ック膜を構成する材料及び基質のいずれの等電位点より
も基質溶液のpHが酸性かアルカリ性のいずれかになる
ようにpH調整を行うようにしたことを特徴とするセラ
ミック膜を用いた処理方法。
(1) A treatment method in which a pressure higher than osmotic pressure is applied to the substrate solution on the primary side, and a substance with a predetermined molecular weight or less is allowed to permeate the ceramic membrane and taken out to the secondary side, and the material constituting the ceramic membrane and 1. A treatment method using a ceramic membrane, characterized in that the pH of the substrate solution is adjusted so that the pH of the substrate solution is either acidic or alkaline relative to any equipotential point of the substrate.
(2)一次側の基質溶液に浸透圧以上の圧力を加え、所
定の分子量以下の物質をセラミック膜を透過せしめて二
次側に取出すようにした処理方法において、この処理方
法は中間に洗浄工程を有し、この洗浄工程にあっては前
記セラミック膜を構成する材料及び基質のいずれの等電
位点よりもpHが酸性かアルカリ性のいずれかである洗
浄液を用いて洗浄するようにしたことを特徴とするセラ
ミック膜を用いた処理方法。
(2) In a treatment method in which a pressure higher than osmotic pressure is applied to the substrate solution on the primary side, substances with a predetermined molecular weight or less are allowed to pass through a ceramic membrane and taken out to the secondary side. , and in this cleaning step, cleaning is performed using a cleaning solution whose pH is either acidic or alkaline relative to the equipotential points of any of the materials and substrate constituting the ceramic membrane. A treatment method using a ceramic membrane.
JP22617689A 1989-08-31 1989-08-31 Treatment using ceramic membrane Pending JPH0389921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22617689A JPH0389921A (en) 1989-08-31 1989-08-31 Treatment using ceramic membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22617689A JPH0389921A (en) 1989-08-31 1989-08-31 Treatment using ceramic membrane

Publications (1)

Publication Number Publication Date
JPH0389921A true JPH0389921A (en) 1991-04-15

Family

ID=16841077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22617689A Pending JPH0389921A (en) 1989-08-31 1989-08-31 Treatment using ceramic membrane

Country Status (1)

Country Link
JP (1) JPH0389921A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1184070A3 (en) * 2000-09-01 2003-12-17 Haldor Topsoe A/S Method for the removal of particulate matter from aqueous suspension
JP2011016114A (en) * 2009-07-10 2011-01-27 Mitsui Eng & Shipbuild Co Ltd One-end sealed type substrate pipe for zeolite membrane
JP2014144433A (en) * 2013-01-29 2014-08-14 Panasonic Corp Boron-containing effluent treatment method and boron-containing effluent treatment system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1184070A3 (en) * 2000-09-01 2003-12-17 Haldor Topsoe A/S Method for the removal of particulate matter from aqueous suspension
JP2011016114A (en) * 2009-07-10 2011-01-27 Mitsui Eng & Shipbuild Co Ltd One-end sealed type substrate pipe for zeolite membrane
JP2014144433A (en) * 2013-01-29 2014-08-14 Panasonic Corp Boron-containing effluent treatment method and boron-containing effluent treatment system

Similar Documents

Publication Publication Date Title
JP4230223B2 (en) Method and apparatus for isolating ionic species from a liquid
CA1330049C (en) Process for removing pyrogens
JPS6322842B2 (en)
Michaels et al. Ultrafiltration
EP1203774A1 (en) Process for removing protein aggregates and virus from a protein solution
GB1600820A (en) Coated membranes
US4992178A (en) Inorganic ultrafiltration of microfiltration membrane modified by a hydrophilic polymer, its preparation process and its use for the separation of proteins
Lentsch et al. Separation albumin–PEG: Transmission of PEG through ultrafiltration membranes
SE451843B (en) PROCEDURE FOR EX recovering an association
JPH0389921A (en) Treatment using ceramic membrane
US10717052B2 (en) Hybrid type filtration structure for filtering liquid
Mix Mechanism of adsorption and elution of viruses to and from surfaces
Michaels et al. Tangential flow filtration
Shao et al. Retention of small charged impurities during ultrafiltration
US3725235A (en) Dynamically formed electrodialysis membranes
Bowen Electrochemical aspects of microfiltration and ultrafiltration
JPH05329339A (en) Filtering apparatus
Bowen et al. Electroosmotic membrane backwashing
JPH06238140A (en) Filter membrane
JPS5922608A (en) Electrodialysis method
Shah et al. Performance characteristics of nanoporous carbon membranes for protein ultrafiltration
Li et al. Effect of solution chemistry on membrane resistance and flux decline
Bier Electrokinetic membrane processes
JPS5918087B2 (en) Membrane treatment method
JPH04190834A (en) Cross-flow type filter