JPH038769A - Production of carbon fiber-reinforced carbonaceous material - Google Patents

Production of carbon fiber-reinforced carbonaceous material

Info

Publication number
JPH038769A
JPH038769A JP1139143A JP13914389A JPH038769A JP H038769 A JPH038769 A JP H038769A JP 1139143 A JP1139143 A JP 1139143A JP 13914389 A JP13914389 A JP 13914389A JP H038769 A JPH038769 A JP H038769A
Authority
JP
Japan
Prior art keywords
carbon fiber
carbon
carbonaceous filler
paste
reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1139143A
Other languages
Japanese (ja)
Inventor
Yoshiaki Matsui
松井 義昭
Masayoshi Kaji
鍛治 正義
Masakazu Harada
原田 雅一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Corp
Priority to JP1139143A priority Critical patent/JPH038769A/en
Publication of JPH038769A publication Critical patent/JPH038769A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain in high productivity the title material with good wear resistance by graphitization of an extrusion formed product of a paste comprising a carbonaceous filler, carbon fiber and a binder. CONSTITUTION:Firstly, a slurry is prepared by dispersion mixing of a carbonaceous filler and short carbon fiber in a liquid dispersion medium. Second, the slurry is filtered to obtain a cake containing said carbonaceous filler and carbon fiber. Third, a binder (e.g. coal tar, pitch) is added to the cake followed by kneading into a paste, which is then extruded, and the resulting formed product is carbonized or graphitized.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、炭素繊維強化炭素材料の製造方法に関するも
のである。詳しく述べると、耐摩耗性の良好な炭素繊維
強化炭素材料を生産性よく製造する方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing a carbon fiber reinforced carbon material. Specifically, the present invention relates to a method for manufacturing a carbon fiber reinforced carbon material with good wear resistance with good productivity.

(従来の技術) 炭素繊維強化炭素材料は、軽量(比重1.5〜2、 0
g/cc)で、耐熱温度が2,500〜3゜000℃と
いうように著しく優れている他に、高温における機械的
性質、耐熱衝撃性、寸法安定性等の熱的安定性に優れて
いる。炭素繊維強化炭素材料は、このような特徴から高
温にさらされる部品に用いられる材料として有用であり
、例えば、ブレーキング時の表面温度が500〜1. 
000℃になる航空機のディスクブレーキに用いられて
おり、また、今後は大型自動車用や高速鉄道車両用のブ
レーキ材料としての用途の拡大も期待されている。また
、該炭素繊維強化炭素材料は、等方性黒鉛材料の代替材
料としても有望である。等方性黒鉛材料は、電気炉の内
壁材料、発熱体やシリコン半導体引き上げ用るつぼ、焼
成用の黒鉛るつぼ、黒鉛ボート等耐熱性を要求される用
途に使用されている。ここに、高い強度を有する炭素繊
維強化炭素材料を使用すれば、従来の材料よりも少ない
量で必要な強度を持たせることができ、そのため使用量
を低減させることができるので、価格次第で充分代替可
能である。
(Prior art) Carbon fiber-reinforced carbon materials are lightweight (specific gravity 1.5-2, 0
g/cc), and has an extremely high heat resistance temperature of 2,500 to 3,000℃, as well as excellent thermal stability such as mechanical properties, thermal shock resistance, and dimensional stability at high temperatures. . Due to these characteristics, carbon fiber reinforced carbon materials are useful as materials for parts that are exposed to high temperatures, for example, when the surface temperature during braking is 500 to 1.
It is used in aircraft disc brakes, which can reach temperatures of 1,000 degrees Celsius, and is expected to be used more widely in the future as a brake material for large automobiles and high-speed railway vehicles. The carbon fiber reinforced carbon material is also promising as a substitute for isotropic graphite materials. Isotropic graphite materials are used in applications that require heat resistance, such as inner wall materials for electric furnaces, heating elements, crucibles for pulling silicon semiconductors, graphite crucibles for firing, and graphite boats. If carbon fiber-reinforced carbon materials with high strength are used, the required strength can be achieved with a smaller amount than conventional materials, and therefore the amount used can be reduced, so it is sufficient depending on the price. Substitutable.

この炭素繊維強化炭素材料は、予め炭素繊維に樹脂、ピ
ッチ等の有機物のマトリックス前駆体を含浸または塗布
しておき、成形しかつ硬化したのち、炭化ないし黒鉛化
させる樹脂含浸法、炭素繊維や炭素繊維織物の繊維間に
直接熱分解炭素を充填させる化学気相蒸着法(CVD法
)等の方法によって製造されている[炭素、1983年
(No、Lf5)第196〜208頁]。
This carbon fiber-reinforced carbon material is produced using a resin impregnation method in which carbon fibers are pre-impregnated or coated with an organic matrix precursor such as resin or pitch, molded and cured, and then carbonized or graphitized. It is manufactured by a method such as a chemical vapor deposition method (CVD method) in which pyrolytic carbon is directly filled between the fibers of a fiber fabric [Carbon, 1983 (No. Lf5), pp. 196-208].

(発明が解決しようとする課題) このように優れた特性を数多く有している炭素繊維強化
炭素材料であるが、現在量も安価な航空機用ブレーキで
もその価格は未だ極めて高い。このような高価格のため
に、航空宇宙機器用材料やブレーキ材料のような限定さ
れた用途にしか利用されていないのが現状である。炭素
繊維強化炭素材料が高価である理由としては、原料とし
て高価な炭素繊維の織布や炭素繊維の長繊維を使用して
いること、賦形もプレス成形法で成形したりあるいは炭
素繊維を三次元織りして賦形する等生産効率の悪い方法
をとっていること、場合によっては処理コストの高いC
VD処理を必要とすること等が挙げられる。
(Problems to be Solved by the Invention) Carbon fiber-reinforced carbon materials have many excellent properties as described above, but their prices are still extremely high even for aircraft brakes, which are currently available and inexpensive. Due to such a high price, it is currently only used for limited applications such as materials for aerospace equipment and brake materials. The reason why carbon fiber-reinforced carbon materials are expensive is that they use expensive carbon fiber woven cloth or carbon fiber long fibers as raw materials, and that they are shaped by press molding or tertiary carbon fiber. Inefficient production methods such as original weaving and shaping, and in some cases high processing costs
For example, it requires VD processing.

そこで、原料として安価な炭素繊維の短u&錐を使用し
、成形法として黒鉛電極や等方性黒鉛材料の大量生産に
使用されている押出成形法を利用することにより、従来
法よりも安価な炭素繊維強化炭素材を製造することが考
えられる。この押出成形法で炭素繊維強化炭素材料を製
造する場合には、繊維容ffl (V、 )が太き(な
ると、混練後のペーストを押出成形するときに成形体に
クラックが生成したり、あるいは成形体が割れたりする
という問題があった。
Therefore, by using cheap carbon fiber short U & cone as raw materials and extrusion molding method used for mass production of graphite electrodes and isotropic graphite materials, we have developed a method that is cheaper than conventional methods. It is conceivable to manufacture a carbon fiber reinforced carbon material. When producing a carbon fiber-reinforced carbon material using this extrusion method, the fiber volume ffl (V, ) is thick (if this happens, cracks may occur in the molded product when the paste after kneading is extruded, or There was a problem that the molded product could crack.

したがって、本発明の目的は、炭素wc維強化炭素材料
の新規な製造方法を提供することにある。
Therefore, an object of the present invention is to provide a novel method for producing carbon WC fiber-reinforced carbon materials.

本発明の他の目的は、安価な炭素繊維の短繊維を原料と
して用いて炭素繊維強化炭素材料の製造方法を提供する
ことにある。本発明のさらに他の目的は、Vrの高い炭
素繊維強化炭素材料の製造方法を提供することにある。
Another object of the present invention is to provide a method for producing a carbon fiber-reinforced carbon material using inexpensive short carbon fibers as a raw material. Still another object of the present invention is to provide a method for producing a carbon fiber-reinforced carbon material with high Vr.

(課題を解決するための手段) これらの諸口的は、炭素質フィラーと炭素(裁維の短繊
維とを液状分散媒中に分散混合させたのち、得れたスラ
リーを濾過して炭素質フィラーと炭素)a維とのケーキ
を得、該ケーキに粘結材を配合して得られるペーストを
押出成形し、ついで該成形物を炭化ないし黒鉛化するこ
とを特徴とする炭化繊維強化材料の製造方法により達成
される。
(Means for solving the problem) These various methods include dispersing and mixing carbonaceous filler and carbon (short fibers of cut fibers) in a liquid dispersion medium, and then filtering the obtained slurry to obtain carbonaceous filler. and carbon) a fiber, extrusion molding a paste obtained by blending a caking agent into the cake, and then carbonizing or graphitizing the molded product. This is accomplished by a method.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

本発明において用いられる炭素繊維は、繊維長(L)が
0.5〜100關、好ましくは5〜50mmで、繊維径
(D)が3〜30μm程度で、L/Dが20以上、特に
100〜10.000である短繊維が好ましい。炭素繊
維の原料については特に制限はなく、ピッチ、アクリロ
ニトリル等、いずれを原料としたものでもよいが、好ま
しくはピッチ系である。
The carbon fibers used in the present invention have a fiber length (L) of about 0.5 to 100 mm, preferably 5 to 50 mm, a fiber diameter (D) of about 3 to 30 μm, and an L/D of 20 or more, especially 100 mm. ~10.000 short fibers are preferred. There is no particular restriction on the raw material for the carbon fibers, and they may be made from pitch, acrylonitrile, or the like, but pitch-based materials are preferred.

炭素質フィラーとしては、ピッチコークス、石油コーク
ス、無煙炭、黒鉛、カーボンブラック等が挙げられ、こ
れらは平均粒径0.5mm以下に粉砕して得られる粒状
物が好ましい。炭素質フィラーは、炭素繊維100重旦
部当り20〜100重量部、好ましくは50〜200重
量部配合される。
Examples of the carbonaceous filler include pitch coke, petroleum coke, anthracite, graphite, and carbon black, and granules obtained by pulverizing these to an average particle size of 0.5 mm or less are preferable. The carbonaceous filler is blended in an amount of 20 to 100 parts by weight, preferably 50 to 200 parts by weight, per 100 parts by weight of carbon fiber.

この炭素質フィラーと炭素繊維とは、液状分散媒中に分
散混合される。分散媒としては、水やベンゼン、トルエ
ン、キシレン、タール系軽油、洗浄油、カルポル油、ヘ
キサン類、ヘプタン類、オクタン類、灯油、石油系軽油
等の炭化水素類、その他の有機溶剤等がある。前記炭素
質フィラーと炭素繊維との合計量の液状分散媒に対する
濃度は濾過のし易さ、分散のし易さ等から10重量%以
下とするのがよい。分散混合は、通常の撹拌操作で、炭
素繊維が解繊されて、該繊維がばらばらに解きほぐされ
るまで行なわれる。炭素質フィラーと炭素繊維とが液状
分散媒中で充分分散混合されると、スラリーが得られる
。このスラリーを濾過して液状分散媒を濾別すると、ケ
ーキ状物が得られる。このケーキは、必要によりさらに
遠心分離、熱風乾燥等に供して脱水される。
The carbonaceous filler and carbon fibers are dispersed and mixed in a liquid dispersion medium. Dispersion media include water, benzene, toluene, xylene, tar-based light oil, cleaning oil, carpol oil, hexanes, heptanes, octanes, kerosene, hydrocarbons such as petroleum light oil, and other organic solvents. . The concentration of the total amount of the carbonaceous filler and carbon fibers relative to the liquid dispersion medium is preferably 10% by weight or less from the viewpoint of ease of filtration and dispersion. Dispersion mixing is performed by a normal stirring operation until the carbon fibers are defibrated and loosened into pieces. When the carbonaceous filler and carbon fibers are sufficiently dispersed and mixed in a liquid dispersion medium, a slurry is obtained. When this slurry is filtered to remove the liquid dispersion medium, a cake-like product is obtained. This cake is further dehydrated by centrifugation, hot air drying, etc., if necessary.

つぎに、このケーキに粘結材を加えてニーダ−等の混練
機で混練することによりペースト状物が得られる。粘結
材としては、コールタール、石油タール、コールタール
ピッチ、石油系ピッチ、樹脂、例えばフェノール樹脂、
フラン樹脂等の熱硬化性樹脂等が挙げられる。この粘結
祠は、前記炭素繊維100重量部当り10〜1,000
重量部、好ましくは50〜200重量部配合される。
Next, a paste is obtained by adding a caking agent to this cake and kneading it with a kneader such as a kneader. As the caking agent, coal tar, petroleum tar, coal tar pitch, petroleum pitch, resin such as phenol resin,
Examples include thermosetting resins such as furan resins. This caking powder is 10 to 1,000 per 100 parts by weight of the carbon fiber.
It is blended in an amount of 50 to 200 parts by weight, preferably 50 to 200 parts by weight.

このペースト状物を、押出成形法により成形すると、炭
素繊維が均一に分散した成形体が得られる。この成形体
を炭化するか、あるいは必要に応じて黒鉛化するこ゛と
により炭素繊維が均一に分散した炭素繊維強化炭素材料
が得られる。炭化は非酸化性雰囲気、例えば窒素、アル
ゴン、ヘリウム、炭酸ガス等の不活性ガス雰囲気中で4
50〜1゜100℃の温度範囲で徐々に加熱して行われ
る。
When this paste-like material is molded by extrusion molding, a molded article in which carbon fibers are uniformly dispersed can be obtained. By carbonizing this compact or, if necessary, graphitizing it, a carbon fiber-reinforced carbon material in which carbon fibers are uniformly dispersed can be obtained. Carbonization is carried out in a non-oxidizing atmosphere, such as an inert gas atmosphere such as nitrogen, argon, helium, carbon dioxide, etc.
It is carried out by gradually heating in a temperature range of 50 to 1 to 100 degrees Celsius.

また、黒鉛化は、同様に非酸化性雰囲気中で1゜800
〜2.800℃の温度範囲で徐々に加熱して行われる。
Graphitization is also carried out at 1°800 in a non-oxidizing atmosphere.
It is carried out by gradual heating in the temperature range of ~2.800°C.

得られた炭素繊維強化炭素材料の密度、強度等が低けれ
ば、通常の炭素祠料の製造方法と同様に、含浸炭化、C
VD等操作を行なって高密度化、高強度化等を行なって
もよい。含浸炭化は、例えば、減圧下にコールタール、
石油タール、コールタールピッチ、石油系ピッチ、熱可
塑性樹脂等を含浸させたのち、前記条件下に炭化するこ
とにより行なわれ、1回ないし複数回行なわれる。
If the density, strength, etc. of the obtained carbon fiber reinforced carbon material are low, impregnation carbonization, C
It is also possible to increase the density, increase the strength, etc. by performing operations such as VD. Impregnation carbonization is, for example, coal tar under reduced pressure,
This is carried out by impregnating petroleum tar, coal tar pitch, petroleum pitch, thermoplastic resin, etc., and then carbonizing it under the above conditions, and is carried out once or multiple times.

以上の方法により、炭素繊維の短繊維が均一に分散した
炭素繊維強化炭素材料が得られる。また、本発明方法で
は、混練前に炭素繊維の短繊維と炭素質フィラーとを液
状分散媒中に均一に混合するので、従来方法における混
練時に炭素繊維が塊状に固り、これにより成形時にクラ
ックや割れが発生するという問題が解決した。また、V
rやニーダ−の混練特性によっては、混練後のペースト
中に炭素繊維が均一に分散していない場合がある。
By the above method, a carbon fiber-reinforced carbon material in which short carbon fibers are uniformly dispersed can be obtained. In addition, in the method of the present invention, short carbon fibers and carbonaceous filler are uniformly mixed in a liquid dispersion medium before kneading, so the carbon fibers harden into lumps during kneading in the conventional method, which causes cracks during molding. The problem of cracking and cracking has been solved. Also, V
Depending on the kneading characteristics of the r and the kneader, the carbon fibers may not be uniformly dispersed in the paste after kneading.

この場合は、ペースト状物を一度予備成形したのち、粉
砕し、再度ニーダ−等の混練機で混練し、ついで、押出
成形法等により成形することにより、炭素繊維が均一に
分散した成形体が得られる。この場合の予備成形は、必
ずしも押出成形法で行なう必要はなく、プレス成形等の
他の成形法でもよい。
In this case, the paste-like material is first preformed, then pulverized, kneaded again with a kneader or other kneader, and then molded using an extrusion method, etc., to create a molded product in which carbon fibers are uniformly dispersed. can get. Preforming in this case does not necessarily have to be carried out by extrusion molding, and other molding methods such as press molding may be used.

(実施例) つぎに、実施例を挙げて本発明をさらに詳細に説明する
。なお、下記実施例における「部」および「%」は、特
にことわらない限り重量による。
(Example) Next, the present invention will be described in further detail by giving examples. In addition, "part" and "%" in the following examples are based on weight unless otherwise specified.

実施例1 コールタールピッチ系の炭素繊維(長さ3mm)50部
とピッチコークス(標準篩60メツシユ)50部とを水
1,000部に加えて、攪拌機で混合し、スラリーを得
た。このスラリーを60メツシユの金網で濾過するとと
もに濾液は金網で繰返し循環した。得られたケーキを遠
心分離機により脱水したのち、ニーダ−に供給し、これ
に粘結材としてコールタールピッチ100部を加えて混
練し、ペースト状物を得た。このペースト状物を押出成
形機を用いて成形し、直径20mm、長さ100mmの
円柱状成形体を得た。この成形体の嵩密度は1 、 6
8 g / 0m3、V fは29.3%であった。
Example 1 50 parts of coal tar pitch-based carbon fibers (length 3 mm) and 50 parts of pitch coke (60 mesh standard sieve) were added to 1,000 parts of water and mixed with a stirrer to obtain a slurry. This slurry was filtered through a 60-mesh wire mesh, and the filtrate was repeatedly circulated through the wire mesh. The resulting cake was dehydrated using a centrifugal separator and then fed into a kneader, and 100 parts of coal tar pitch was added thereto as a caking agent and kneaded to obtain a paste. This paste-like material was molded using an extrusion molding machine to obtain a cylindrical molded product with a diameter of 20 mm and a length of 100 mm. The bulk density of this molded body is 1, 6
8 g/0 m3, V f was 29.3%.

この成形体を電気炉に入れ、窒素ガス雰囲気下に1.1
00°Cまで昇温しで炭化を行なった。炭化後の嵩密度
は1.53g/cm3であった。つぎに含浸炭化操作を
3回行ったのち、アルゴンガス雰囲気下で2,000°
Cまで昇温しで黒鉛化を行なった。得らた黒鉛化材料に
ついての物性は、第1表のとおりであった。なお、曲げ
強度およびヤング率は、押出軸方向に長手方向とする試
験片で測定した。熱伝導率は押出軸方向のもので、レー
ザーフラッシュ法で測定した。つぎに、摩擦係数を測定
するとともに、ステータ/ロータ方式でブレーキテスト
(摩耗量)を測定した。その結果を第2表に示す。
This molded body was placed in an electric furnace and heated for 1.1 hours under a nitrogen gas atmosphere.
Carbonization was carried out by raising the temperature to 00°C. The bulk density after carbonization was 1.53 g/cm3. Next, after performing the impregnation carbonization operation three times, the temperature was set at 2,000° under an argon gas atmosphere.
Graphitization was performed by raising the temperature to C. The physical properties of the graphitized material obtained were as shown in Table 1. The bending strength and Young's modulus were measured using a test piece whose longitudinal direction was in the extrusion axis direction. Thermal conductivity was measured in the extrusion axis direction using a laser flash method. Next, the friction coefficient was measured, and a brake test (amount of wear) was also measured using a stator/rotor method. The results are shown in Table 2.

比較のために、市販のブレーキ材料(炭素繊維織布を積
層したのち、CVD処理を行なったもの)についても同
じ方式で試験した。その結果を第2表に示す。
For comparison, a commercially available brake material (carbon fiber woven fabric laminated and then CVD treated) was also tested in the same manner. The results are shown in Table 2.

第1表 試験項目 嵩密度(g/ cm3) 曲げ強度(Kgf/ mm2) ヤング率(Kgf/ mm2) 熱伝導率(Wlm−K) 実施例1 1.93 13.8 1.240 4 第2表 とが可能となる。また、本発明方法により得られる炭素
繊維強化炭素材料は、耐摩耗性が極めて高いので、ディ
スクブレーキ等の材料として極めて有用である。
Table 1 Test items Bulk density (g/cm3) Bending strength (Kgf/mm2) Young's modulus (Kgf/mm2) Thermal conductivity (Wlm-K) Example 1 1.93 13.8 1.240 4 Table 2 becomes possible. Furthermore, the carbon fiber-reinforced carbon material obtained by the method of the present invention has extremely high wear resistance and is therefore extremely useful as a material for disc brakes and the like.

Claims (1)

【特許請求の範囲】[Claims] (1)炭素質フィラーと炭素繊維の短繊維とを液状分散
媒中に分散混合させたのち、得られたスラリーを濾過し
て炭素質フィラーと炭素繊維とのケーキを得、該ケーキ
に粘結材を配合して得られるペーストを押出成形し、つ
いで該成形物を炭化ないし黒鉛化することを特徴とする
炭素繊維強化炭素材料の製造方法。
(1) After dispersing and mixing the carbonaceous filler and short carbon fibers in a liquid dispersion medium, the resulting slurry is filtered to obtain a cake of the carbonaceous filler and carbon fibers, and the cake is caked. A method for producing a carbon fiber-reinforced carbon material, which comprises extruding a paste obtained by blending materials, and then carbonizing or graphitizing the molded product.
JP1139143A 1989-06-02 1989-06-02 Production of carbon fiber-reinforced carbonaceous material Pending JPH038769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1139143A JPH038769A (en) 1989-06-02 1989-06-02 Production of carbon fiber-reinforced carbonaceous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1139143A JPH038769A (en) 1989-06-02 1989-06-02 Production of carbon fiber-reinforced carbonaceous material

Publications (1)

Publication Number Publication Date
JPH038769A true JPH038769A (en) 1991-01-16

Family

ID=15238563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1139143A Pending JPH038769A (en) 1989-06-02 1989-06-02 Production of carbon fiber-reinforced carbonaceous material

Country Status (1)

Country Link
JP (1) JPH038769A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104010A1 (en) * 2012-12-26 2014-07-03 三菱鉛筆株式会社 Carbon-based composite material, and method for producing same
JP2015160749A (en) * 2014-02-26 2015-09-07 Jfeスチール株式会社 Method of producing magnesia-carbon brick and magnesia-carbon brick

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104010A1 (en) * 2012-12-26 2014-07-03 三菱鉛筆株式会社 Carbon-based composite material, and method for producing same
JP2014141391A (en) * 2012-12-26 2014-08-07 Mitsubishi Pencil Co Ltd Carbon based composite material and method for producing the same
JP2015160749A (en) * 2014-02-26 2015-09-07 Jfeスチール株式会社 Method of producing magnesia-carbon brick and magnesia-carbon brick

Similar Documents

Publication Publication Date Title
TWI338611B (en) Manufacture of carbon/carbon composites by hot pressing
US6699427B2 (en) Manufacture of carbon/carbon composites by hot pressing
US4041116A (en) Method for the manufacture of carbon-carbon composites
US20090148699A1 (en) Carbon fiber containing ceramic particles
USRE42775E1 (en) Isotropic pitch-based materials for thermal insulation
US20040155382A1 (en) Manufacture of carbon/carbon composites by hot pressing
JP2007161574A (en) Process for producing silicon carbide-containing ceramic
US5705106A (en) Heat-insulating structural carbon material and process for producing heat-insulating structural carbon material
US3719452A (en) Carbonaceous material and method of preparation
JPH038769A (en) Production of carbon fiber-reinforced carbonaceous material
JPH05251088A (en) Manufacture of porous carbon electrode plate for fuel cell
JP2700798B2 (en) Manufacturing method of carbon and graphite materials
JP3314383B2 (en) Method for producing carbon fiber / carbon composite material
JP3138718B2 (en) Method for producing carbon fiber reinforced carbon material
JPH0768064B2 (en) Carbon fiber reinforced composite material
JPH05306167A (en) Production of short fiber reinforced c/c composite
KR970008693B1 (en) Process for the preparation of carbon composite material
JP3297977B2 (en) Manufacturing method of carbon material
JPH0825815B2 (en) Method for producing carbon-carbon composite material
JP3404498B2 (en) Method for producing short fiber reinforced C / C composite
US9546113B2 (en) High porosity/low permeability graphite bodies and process for the production thereof
JPH0456789B2 (en)
JPS58194777A (en) Manufacture of whisker reinforced carbonaceous composite material
JPH0475819A (en) Composite electrode for electric discharge machining
JPH02275759A (en) Sliding part material