JPH0385344A - Fuel control at the time of machine warming - Google Patents

Fuel control at the time of machine warming

Info

Publication number
JPH0385344A
JPH0385344A JP22007589A JP22007589A JPH0385344A JP H0385344 A JPH0385344 A JP H0385344A JP 22007589 A JP22007589 A JP 22007589A JP 22007589 A JP22007589 A JP 22007589A JP H0385344 A JPH0385344 A JP H0385344A
Authority
JP
Japan
Prior art keywords
acceleration
water temperature
time
fuel
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22007589A
Other languages
Japanese (ja)
Inventor
Katsuyuki Kajitani
梶谷 勝之
Yoichi Iwakura
洋一 岩倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP22007589A priority Critical patent/JPH0385344A/en
Publication of JPH0385344A publication Critical patent/JPH0385344A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent stumbling and so on at the early stage of acceleration by increasing and compensating a coefficient of transitional air-fuel ratio compensation according to a condition of engine warming using a coefficient of after- starting water temperature compensation, and by attenuating it at the time of acceleration and every time only when a certain period of time passes by. CONSTITUTION:An electronic controller 4 by which a fuel injection valve 3 installed on an intake tube 2 is controlled based on the information from each sensor and so on, calculates reference injection quantity based on an engine rotation signal (b) by a crank angle sensor 10 and on an intake pressure signal (c) by pressure sensor 11. At the time of engine acceleration, fuel injection quantity is determined by compensating the reference injection quantity by a coefficient of transitional air-fuel ratio compensation and so on, which is determined according to the degree of acceleration, and for which the reference compensation is increased and compensated by a coefficient of after-starting water temperature compensation. The coefficient of after-starting water temperature compensation is so set as to be attenuated every time only when a predetermined period of time passes by at the time of acceleration.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電子制御燃料噴射装置を備えた自動車等のエ
ンジンに好適に採用可能な暖機時の燃料制御方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a fuel control method during warm-up that can be suitably employed in engines such as automobiles equipped with an electronically controlled fuel injection device.

[従来の技術] この種のエンジンでは、加速時の空気過剰・燃料不足に
対処するために、本発明の先行技術として、例えば、特
開昭60−17245号公報に示されるように、加速が
行われた場合には加速度合に応じて燃料の加速増量を行
うようにしている。
[Prior Art] In this type of engine, in order to deal with excess air and fuel shortage during acceleration, as a prior art of the present invention, for example, as shown in Japanese Patent Application Laid-open No. 17245/1980, acceleration is reduced. If this occurs, the amount of fuel is increased depending on the degree of acceleration.

燃料の加速増量は、検出した加速度合に応じて過渡時空
燃比補正係数を決定し、その過渡時空燃比補正係数で基
本噴射量を増量補正することにより行われているのが普
通である。
The acceleration increase in fuel is normally performed by determining a transient air-fuel ratio correction coefficient according to the detected acceleration, and increasing the basic injection amount using the transient air-fuel ratio correction coefficient.

しかしながら、このような構成によると、暖機時と暖機
完了後とで同様な加速状態が検出された場合は、雨域で
加速増量分が同量となり、燃料要求量の多い暖機時の加
速性を向上させ難い。そのため、エンジン冷却水温によ
ってエンジンの暖機状態を検出するとともに、検出した
暖機状態に応じて始動後水温補正係数を決定し、その始
動後水温補正係数で前記過渡時空燃比補正係数を増量修
正することにより、暖機時の加速性を向上させるように
している例もある。この始動後水温補正係数は、エンジ
ン始動後、一定時間の経過毎に徐々に減衰されるように
なっている。
However, according to such a configuration, if similar acceleration conditions are detected during warm-up and after warm-up is completed, the increase in acceleration in rainy areas will be the same amount, and the increase in acceleration during warm-up with high fuel demand will be the same. Difficult to improve acceleration. Therefore, the warm-up state of the engine is detected based on the engine cooling water temperature, a post-start water temperature correction coefficient is determined according to the detected warm-up state, and the transient air-fuel ratio correction coefficient is increased by the post-start water temperature correction coefficient. In some cases, this improves acceleration during warm-up. This post-start water temperature correction coefficient is gradually attenuated every predetermined period of time after the engine is started.

[発明が解決しよとする課題] ところが、暖機過程では吸入空気量が少ない量に制限さ
れているため、燃料が吸気管内の壁面に付着し易くなる
。特に、ファーストアイドル付近のように吸入空気量が
少ない場合は、燃料噴射弁から噴射された燃料がそのま
ま落下して、吸気管内の壁面の下側に付着し易く、壁面
の上側が乾く傾向にある。そして、加速時のように吸入
空気量が急速に多くなると、燃料が壁面の上側等にも付
着するようになる。しかして、暖機時における前述の燃
料制御方法によれば、エンジン始動後、ファーストアイ
ドル状態で放置しておくと、始動後の経過時間に伴って
始動後水温補正係数が徐々に減少する。このため、始動
後水温補正係数にかかる燃料増量分がOになった後に加
速が行われると、加速初期において壁面への燃料付着が
多くなる。
[Problems to be Solved by the Invention] However, since the amount of intake air is limited to a small amount during the warm-up process, fuel tends to adhere to the wall surface within the intake pipe. In particular, when the amount of intake air is small, such as near first idle, the fuel injected from the fuel injector tends to fall and adhere to the lower side of the wall inside the intake pipe, causing the upper side of the wall to dry out. . When the amount of intake air increases rapidly, such as during acceleration, fuel also adheres to the upper side of the wall surface, etc. According to the above-described fuel control method during warm-up, if the engine is left in the fast idle state after starting, the post-start water temperature correction coefficient gradually decreases as time elapses after starting. For this reason, if acceleration is performed after the amount of fuel increased according to the post-start water temperature correction coefficient reaches O, the amount of fuel adhering to the wall surface increases in the early stages of acceleration.

その結果、−時的に加速初期の空燃比がリーンになり、
思付やパックファイヤ等が発生する原因になる。
As a result, - the air-fuel ratio at the beginning of acceleration becomes lean,
This may cause an accident or packfire.

本発明は、このような不具合を解消することを目的とし
ている。
The present invention aims to eliminate such problems.

[課題を解決するための手段] 本発明は、上記目的を達成するために、次のような構成
を採用している。
[Means for Solving the Problems] In order to achieve the above object, the present invention employs the following configuration.

すなわち、本発明にかかる暖機時の燃料制御方法は、エ
ンジンの加速時に燃料の加速増量を行うための過渡時空
燃比補正係数を、エンジンの暖機状態に応じて始動後水
温補正係数で増量修正するとともに、その始動後水温補
正係数をエンジン始動後に漸次減衰させるように構成し
た暖機時の燃料制御方法であって、前記始動後水温補正
係数を、加速が行われた場合かつ一定時間の経過毎に限
り、減衰させるようにしたことを特徴とする。
That is, the fuel control method during warm-up according to the present invention increases the transient air-fuel ratio correction coefficient for increasing the amount of fuel when the engine accelerates, using the water temperature correction coefficient after engine startup, depending on the warm-up state of the engine. and a fuel control method during warm-up configured to gradually attenuate the after-start water temperature correction coefficient after the engine starts, wherein the post-start water temperature correction coefficient is reduced when acceleration is performed and after a certain period of time has elapsed. It is characterized in that it is attenuated only at each time.

[作用] このような構成によれば、エンジン始動後の経過時間の
みによって、始動後水温補正係数が減衰されることがな
いので、ファーストアイドル状態等で放置された場合で
も、前記始動後水温補正係数を過渡時空燃比補正係数に
確実に反映させることが可能となる。したがって、ファ
ーストアイドル後等に加速が行われた場合には、始動後
水温補正係数で過渡時空燃比補正係数が増量修正される
とともに、その過渡時空燃比補正係数によって燃料供給
量が過渡的に増量補正されることになる。
[Function] According to such a configuration, the post-start water temperature correction coefficient is not attenuated only by the elapsed time after the engine starts, so even if the engine is left in the fast idle state, etc., the post-start water temperature correction coefficient It becomes possible to reliably reflect the coefficient in the transient air-fuel ratio correction coefficient. Therefore, when acceleration is performed after first idle, etc., the transient air-fuel ratio correction coefficient is increased by the post-start water temperature correction coefficient, and the fuel supply amount is temporarily increased by the transient air-fuel ratio correction coefficient. will be done.

しかも、始動後水温補正係数を加速のみでなく、一定の
経過時間を関数として減衰させるようにしているので、
短時間内に加速が繰り返し行われるようなことがあって
も、始動後水温補正係数が短時間内に減衰されてしまう
ようなこともない。
In addition, the water temperature correction coefficient after startup is attenuated not only as a function of acceleration but also as a function of a certain elapsed time.
Even if acceleration is repeated within a short period of time, the water temperature correction coefficient after startup will not be attenuated within a short period of time.

[実施例] 以下、本発明の一実施例を図面を参照して説明する。[Example] Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図に概略的に示したエンジンは、自動車に搭載され
るもので、電子制御燃料噴射装置1を備えている。電子
制御燃料噴射装置1は、吸気管2に装着した燃料噴射弁
3と、この燃料噴射弁3の作動を制御する電子制御装置
4とを具備してなり、前記燃料噴射弁3から燃焼室5に
供給する燃料の量を、各種センサ等の情報に基づいて前
記電子制御装置4により調節するようにしたものである
The engine schematically shown in FIG. 1 is installed in an automobile and is equipped with an electronically controlled fuel injection device 1. As shown in FIG. The electronically controlled fuel injection device 1 includes a fuel injection valve 3 attached to an intake pipe 2 and an electronic control device 4 that controls the operation of the fuel injection valve 3. The amount of fuel supplied to the engine is adjusted by the electronic control device 4 based on information from various sensors and the like.

燃料噴射弁3は、電磁コイルを内蔵しており、該電磁コ
イルに前記電子制御装置4から燃料噴射信号aが印加さ
れると、その印加時間に相当する量の燃料を吸気ポート
近傍に噴射するようになっている。
The fuel injection valve 3 has a built-in electromagnetic coil, and when a fuel injection signal a is applied to the electromagnetic coil from the electronic control device 4, it injects fuel in an amount corresponding to the application time into the vicinity of the intake port. It looks like this.

電子制御装置4は、中央演算処理装置6と、メモリー7
と、入力インターフェース8および出力インターフェー
ス9等を備えたマイクロコンピュータユニットからなる
もので、前記人力インターフェース8に、少なくとも、
クランク角センサ10からのエンジン回転信号すと、圧
力センサ11からの吸気圧信号Cと、エンジン冷却水の
温度を検出する水温センサ12からの水温信号d等がそ
れぞれ人力されるようになっている。出力インターフェ
ース9からは、前記燃料噴射弁3に向けて燃料噴射信号
aが出力されるようになっている。
The electronic control device 4 includes a central processing unit 6 and a memory 7.
and a microcomputer unit equipped with an input interface 8, an output interface 9, etc., and the human interface 8 has at least the following:
The engine rotation signal from the crank angle sensor 10, the intake pressure signal C from the pressure sensor 11, the water temperature signal d from the water temperature sensor 12 that detects the temperature of engine cooling water, etc. are manually input. . The output interface 9 outputs a fuel injection signal a toward the fuel injection valve 3.

クランク角センサ10は、エンジン回転数に応じた信号
を出力するように構成されたもので、ディストリビュー
タ13に内蔵しである。圧力センサ11は、吸気圧に応
じた信号を出力するように構成されたもので、サージタ
ンク14に設けである。水温センサ12は、サーミスタ
等を内蔵したもので構成されており、エンジン冷却水温
に応じた信号を出力するようになっている。
The crank angle sensor 10 is configured to output a signal according to the engine speed, and is built into the distributor 13. The pressure sensor 11 is configured to output a signal according to the intake pressure, and is provided in the surge tank 14. The water temperature sensor 12 includes a built-in thermistor and the like, and outputs a signal corresponding to the engine cooling water temperature.

また、前記電子制御装置4は、エンジン回転信号すおよ
び吸気圧信号C等から吸入空気量を算出し、算出した吸
入空気量に応じて基本噴射量TPを決定するように設定
しである。・基本噴射量PTは、エンジン状況に応じて
決まる各種補正係数にや、無効噴射時間Nで補正される
とともに、エンジンの加速時には、加速度合に応じて決
まる過渡時空燃比補正係数F’AEVでさらに増量補正
されるようになっている。過渡時空燃比補正係数FAE
Wは、例えば、360’ CA (クランク角度アング
ル)前の吸気圧と最新の吸気圧との変化量等に応じて決
まる基本補正値fを、始動後水温補正係数KASWで増
量修正してなる(PAEV −f・KASV)。始動後
水温補正係数KASWは、エンジン始動時のエンジン冷
却水温に応じて初期値が決定される。この初期値は、エ
ンジン冷却水温が低い場合は大きな値に設定され、エン
ジン冷却水温が高い場合は小さな値に設定され、エンジ
ン冷却水温の上昇に応じて徐々に小さくなるようにしで
ある。そして、この初期値は、エンジン始動後に1まで
一定量づつ徐々に減衰されるようになっている。このよ
うな手順に基づいて燃料噴射量Tが決定されると(T 
=TPx(1+FAEV) xK +N ) 、決定さ
れた燃料噴射量Tに相当する時間だけ前記燃料噴射弁3
を開弁させて、燃焼室5へ燃料が供給されるようになっ
ている。
Further, the electronic control device 4 is configured to calculate the intake air amount from the engine rotation signal S, the intake pressure signal C, etc., and determine the basic injection amount TP in accordance with the calculated intake air amount.・The basic injection amount PT is corrected by various correction coefficients determined according to the engine situation and by the invalid injection time N, and when the engine accelerates, it is further corrected by the transient air-fuel ratio correction coefficient F'AEV determined according to the degree of acceleration. It has been adjusted to increase the amount. Transient air-fuel ratio correction coefficient FAE
W is obtained by, for example, increasing the basic correction value f, which is determined according to the amount of change between the intake pressure before 360' CA (crank angle angle) and the latest intake pressure, using the water temperature correction coefficient KASW after startup ( PAEV -f・KASV). The initial value of the post-start water temperature correction coefficient KASW is determined according to the engine cooling water temperature at the time of engine start. This initial value is set to a large value when the engine cooling water temperature is low, and is set to a small value when the engine cooling water temperature is high, and gradually decreases as the engine cooling water temperature rises. This initial value is gradually attenuated by a constant amount until it reaches 1 after the engine is started. When the fuel injection amount T is determined based on such a procedure (T
=TPx(1+FAEV)xK+N), the fuel injection valve 3 is operated for a time corresponding to the determined fuel injection amount T.
By opening the valve, fuel is supplied to the combustion chamber 5.

さらに、前記電子制御装置4には、第2図に概略的に示
すようなプログラムを内蔵しである。先ず、ステップ5
1で、インクリメントカウンタTSUMをOにセットし
てステップ52に進む。ステップ52では、水温信号d
に基づいて始動後水温補正係数KASWの初期値KAs
wczを決定し、その値を所定の番地KASWにセット
してステップ53に進む。
Furthermore, the electronic control device 4 has a built-in program as schematically shown in FIG. First, step 5
1, the increment counter TSUM is set to O and the process proceeds to step 52. In step 52, the water temperature signal d
Initial value KAs of water temperature correction coefficient KASW after startup based on
wcz is determined, the value is set in a predetermined address KASW, and the process proceeds to step 53.

ステップ53では、吸気圧の変化量に基づいて過渡時空
燃比補正係数PAEVが正か否かを判別し、過渡時空燃
比補正係数FAEWが正であってエンジンが加速状態に
あると判断した場合に限りステップ54に進む。ステッ
プ54では、インクリメントカウンタTSUMに所定値
ΔTSUMを加算し、その値を所定の番地TSUMにセ
ットしてステップ55に進む。
In step 53, it is determined whether or not the transient air-fuel ratio correction coefficient PAEV is positive based on the amount of change in the intake pressure, and only when it is determined that the transient air-fuel ratio correction coefficient FAEW is positive and the engine is in an accelerating state. Proceed to step 54. In step 54, a predetermined value ΔTSUM is added to the increment counter TSUM, the value is set in a predetermined address TSUM, and the process proceeds to step 55.

ステップ55では、インクリメントカウンタTSUMの
値が一定値以上か否かを判別し、一定値以上であると判
断した場合はステップ56に進み、一定値に達していな
いと判断した場合はステップ53に移行する。ステップ
56では、始動後水温補正係数KASWから所定値ΔK
ASWだけ減衰した値を所定の番地KASWにセットし
てステップ57に進む。ステップ57では、インクリメ
ントカウンタTSUMの値を0にセットしてステップ5
3に移行する。
In step 55, it is determined whether the value of the increment counter TSUM is greater than or equal to a certain value, and if it is determined that it is greater than or equal to the certain value, the process proceeds to step 56, and if it is determined that the value has not reached the certain value, the process proceeds to step 53. do. In step 56, a predetermined value ΔK is calculated from the post-start water temperature correction coefficient KASW.
A value attenuated by ASW is set at a predetermined address KASW, and the process proceeds to step 57. In step 57, the value of the increment counter TSUM is set to 0, and in step 5
Move to 3.

このような構成によると、エンジン始動後の経過時間の
みによって、始動後水温補正係数KASWが減衰される
ことがないので、ファーストアイドル状態等で放置され
た場合でも、前記始動後水温補正係数KASVを過渡時
空燃比補正係数FAEWに有効に反映させることが可能
となる。したがって、ファーストアイドル後等に加速が
行われた場合には、始動後水温補正係数KASWで過渡
時空燃比補正係数PAEWが増量修正されるため、加速
増量分が暖機状態に応じて増量されることになる。しか
も、始動後水温補正係数KASVの減衰後、一定時間が
経過していない場合は、短時間内に加速が繰り返し行わ
れても始動後水温補正係数KASWが連続的に減衰され
ることがないので、暖機過程における加速時の加速増量
分を確実に増量修正することができる。
According to such a configuration, the post-start water temperature correction coefficient KASW is not attenuated only by the elapsed time after the engine is started, so even if the engine is left in the fast idle state, the post-start water temperature correction coefficient KASV is not attenuated. This can be effectively reflected in the transient air-fuel ratio correction coefficient FAEW. Therefore, when acceleration is performed after first idling, etc., the transient air-fuel ratio correction coefficient PAEW is increased by the post-start water temperature correction coefficient KASW, so the acceleration amount is increased according to the warm-up state. become. Moreover, if a certain period of time has not passed after the after-start water temperature correction coefficient KASV decays, the post-start water temperature correction coefficient KASW will not be continuously attenuated even if acceleration is repeated within a short period of time. , it is possible to reliably correct the increase in acceleration amount during acceleration during the warm-up process.

したがって、このような構成によれば、ファーストアイ
ドル状態で放置した後に加速が行われ、吸入空気量が急
速に増加して燃料が付着する壁面域が異なっても、これ
に起因する加速初期の燃料不足を効果的に防止すること
ができる。その結果、暖機過程における加速初期に空燃
比がリーンに変化するのを回避することができ、加速初
期に思付やパックファイヤ等が発生するのを有効に抑制
することができる。
Therefore, with such a configuration, even if acceleration is performed after being left in the fast idling state and the intake air amount rapidly increases and the wall surface area where fuel adheres is different, the fuel at the initial acceleration due to this will be Shortages can be effectively prevented. As a result, it is possible to prevent the air-fuel ratio from changing to lean at the beginning of acceleration during the warm-up process, and it is possible to effectively suppress the occurrence of flashing, packfire, etc. at the beginning of acceleration.

なお、本発明は、吸気圧の変化量によってエンジンの加
速状態を検出する場合に限らず、スロットルシャフトに
連結する加速センサ等でエンジンの加速状態を検出する
場合にも有効に適用可能である。
The present invention is not limited to detecting the acceleration state of the engine based on the amount of change in intake pressure, but can also be effectively applied to detecting the acceleration state of the engine using an acceleration sensor or the like connected to the throttle shaft.

[発明の効果] 以上のような構成からなる本発明によれば、エンジンの
暖機過程で加速が行われた場合に、加速初期に空燃比が
リーンに変化するのを効果的に回避することができるの
で、加速初期に思付やパックファイヤ等が発生するのを
有効に抑制することができる空燃比の制御性に優れた暖
機時の燃料制御方法を提供できる。
[Effects of the Invention] According to the present invention configured as described above, when acceleration is performed during the warm-up process of the engine, it is possible to effectively prevent the air-fuel ratio from changing to lean at the beginning of acceleration. Therefore, it is possible to provide a fuel control method during warm-up with excellent controllability of the air-fuel ratio, which can effectively suppress the occurrence of flashing, packfire, etc. at the beginning of acceleration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す概略的な全体構成図、
第2図は同実施例の制御手順を概略的に示すフローチャ
ート図である。 1・・・電子制御燃料噴射装置 3・・・燃料噴射弁 4・・・電子制御装置 10・・・クランク角センサ 11・・・圧力センサ 12・・・水温センサ
FIG. 1 is a schematic overall configuration diagram showing an embodiment of the present invention;
FIG. 2 is a flowchart schematically showing the control procedure of the same embodiment. 1... Electronically controlled fuel injection device 3... Fuel injection valve 4... Electronic control device 10... Crank angle sensor 11... Pressure sensor 12... Water temperature sensor

Claims (1)

【特許請求の範囲】[Claims] エンジンの加速時に燃料の加速増量を行うための過渡時
空燃比補正係数を、エンジンの暖機状態に応じて始動後
水温補正係数で増量修正するとともに、その始動後水温
補正係数をエンジン始動後に漸次減衰させるように構成
した暖機時の燃料制御方法であって、前記始動後水温補
正係数を、加速が行われた場合かつ一定時間の経過毎に
限り、減衰させるようにしたことを特徴とする暖機時の
燃料制御方法。
The transient air-fuel ratio correction coefficient for accelerating the increase in fuel when the engine accelerates is increased by the post-start water temperature correction coefficient according to the warm-up state of the engine, and the post-start water temperature correction coefficient is gradually attenuated after the engine starts. A fuel control method during warm-up, characterized in that the post-start water temperature correction coefficient is attenuated only when acceleration is performed and every time a certain period of time elapses. How to control fuel during flight.
JP22007589A 1989-08-27 1989-08-27 Fuel control at the time of machine warming Pending JPH0385344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22007589A JPH0385344A (en) 1989-08-27 1989-08-27 Fuel control at the time of machine warming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22007589A JPH0385344A (en) 1989-08-27 1989-08-27 Fuel control at the time of machine warming

Publications (1)

Publication Number Publication Date
JPH0385344A true JPH0385344A (en) 1991-04-10

Family

ID=16745549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22007589A Pending JPH0385344A (en) 1989-08-27 1989-08-27 Fuel control at the time of machine warming

Country Status (1)

Country Link
JP (1) JPH0385344A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100224353B1 (en) * 1997-07-10 1999-12-01 박병재 Method for compensating the amount of fuel at acceleration just after start
JP2009019508A (en) * 2007-07-10 2009-01-29 Nikki Co Ltd Fuel injection control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100224353B1 (en) * 1997-07-10 1999-12-01 박병재 Method for compensating the amount of fuel at acceleration just after start
JP2009019508A (en) * 2007-07-10 2009-01-29 Nikki Co Ltd Fuel injection control device

Similar Documents

Publication Publication Date Title
US4389996A (en) Method and apparatus for electronically controlling fuel injection
US4986241A (en) Internal combustion engine air-fuel ratio control system including alcohol sensor back-up control arrangement
US5003955A (en) Method of controlling air-fuel ratio
CA2514394C (en) Fuel injection controller of engine
US4594986A (en) Fuel supply arrangement for internal combustion engine
US4957086A (en) Fuel controller for an internal combustion engine
JPH0385344A (en) Fuel control at the time of machine warming
JPH0361644A (en) Correction of fuel injection quantity in warming
JPS63124842A (en) Electronic control fuel injection device
JP2584299B2 (en) Electronically controlled fuel injection device for internal combustion engine
JP2634083B2 (en) How to correct the atmospheric pressure of the engine
JP2807557B2 (en) Fuel control method after engine start
JPS6027760A (en) Controlling method of fuel injection in internal- combustion engine
JP3116720B2 (en) Fuel supply control device for internal combustion engine
JPH0385345A (en) Transitional fuel compensation
JPH0385343A (en) Fuel control at the time of machine warming
JP2665247B2 (en) Fuel control method after engine restart
JPH02119648A (en) Fuel control method for engine
JPH08504Y2 (en) Electronically controlled fuel injection type internal combustion engine interrupt injection control device
JPS6146442A (en) Fuel injection control device
JPH07116962B2 (en) Air-fuel ratio controller for internal combustion engine
JPS6217323A (en) Fuel injection controller of internal-combustion engine
JPH0491335A (en) Fuel control method after starting engine
JPS62157246A (en) Fuel feed rate control device of internal combustion engine
JPH0458032A (en) Fuel control device for engine