JPH038509B2 - - Google Patents

Info

Publication number
JPH038509B2
JPH038509B2 JP57136001A JP13600182A JPH038509B2 JP H038509 B2 JPH038509 B2 JP H038509B2 JP 57136001 A JP57136001 A JP 57136001A JP 13600182 A JP13600182 A JP 13600182A JP H038509 B2 JPH038509 B2 JP H038509B2
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
cathode
anode
measured
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57136001A
Other languages
Japanese (ja)
Other versions
JPS5926049A (en
Inventor
Jinkichi Myai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK Corp
Original Assignee
DKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK Corp filed Critical DKK Corp
Priority to JP57136001A priority Critical patent/JPS5926049A/en
Publication of JPS5926049A publication Critical patent/JPS5926049A/en
Publication of JPH038509B2 publication Critical patent/JPH038509B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/404Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors
    • G01N27/4045Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors for gases other than oxygen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【発明の詳細な説明】 本発明は、被測定液中の過酸化水素濃度の高感
度な測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a highly sensitive method for measuring hydrogen peroxide concentration in a liquid to be measured.

従来より、過酸化水素濃度の測定方法として電
位差滴定法、吸光光度法などが知られているが、
いずれも感度、選択性、測定の迅速性、試薬の使
用量等の面で問題があり、またコンパクトな検出
器として組み上げることが困難なため、自動測定
器などには使用されていない。また、高感度な分
析を行なう場合はルミノールを用いる化学発光法
やホモワニリン酸を用いる蛍光法があり、その感
度はppbオーダーに及ぶが、測定には特別の光学
系を要し、装置が複雑になる。
Conventionally, potentiometric titration method, spectrophotometry method, etc. are known as methods for measuring hydrogen peroxide concentration.
All of them have problems in terms of sensitivity, selectivity, rapidity of measurement, amount of reagent used, etc., and are difficult to assemble into a compact detector, so they are not used in automatic measuring instruments. In addition, for highly sensitive analysis, there are chemiluminescence methods using luminol and fluorescence methods using homovanillic acid.The sensitivity of these methods reaches the ppb order, but measurement requires a special optical system and the equipment is complicated. Become.

更に、臨床化学や食品関係などで用いられる電
気化学的な過酸化水素測定法として、一定直流電
圧を加えた2箇の電極間に流れる電流値を測定す
る方法(特公昭45−35360など)が知られている。
この方法は一般に陽極に白金電極、陰極に銀電極
を選び、例えばKC電解液のもとで陽極及び陰
極間に0.4〜0.7Vの電圧を印加することによつて、 陽極側で H2O2→O2+2H++2e 陰極側で O2+2H2O+4e→4OH- なる反応を生じさせ、H2O2の濃度に対応して両
極間に流れる酸化還元電流を測定するものであ
る。この方法は測定を迅速に行なうことができる
うえ、特別の試薬を必要としない等の長所を有す
るが、所定の電圧を印加するための装置が複雑と
なり、また感度の点でも一般的にはppmオーダー
以下は測定し難い問題があり、いくつかの妨害物
質が存在する。
Furthermore, as an electrochemical hydrogen peroxide measurement method used in clinical chemistry and food-related fields, there is a method that measures the value of the current flowing between two electrodes to which a constant DC voltage is applied (e.g., Japanese Patent Publication No. 1973-35360). Are known.
This method generally selects a platinum electrode for the anode and a silver electrode for the cathode, and applies a voltage of 0.4 to 0.7 V between the anode and cathode under a KC electrolyte, for example, to generate H 2 O 2 on the anode side. →O 2 +2H + +2e The reaction O 2 +2H 2 O+4e→4OH - occurs on the cathode side, and the redox current flowing between the two electrodes is measured in response to the concentration of H 2 O 2 . This method has the advantage of being able to perform measurements quickly and does not require special reagents, but the equipment for applying the prescribed voltage is complicated and the sensitivity is generally lower than ppm. Measurements below the order of magnitude are difficult to measure, and there are several interfering substances.

本発明者は、上記事情に鑑み、応答が迅速で、
構成及び操作も簡単で、かつ高感度の過酸化水素
測定法につき鋭意研究を行なつた結果、白金、
金、銀、パラジウム,ロジウム,イリジウム,
鉛、ビスマス,マンガン−鉄合金、ニツケル,コ
バルト、銅及び鉄から選ばれた過酸化水素と接触
することによりこれを分解する陽極と、酸化銀又
は塩化銀からなる過酸化水素と接触することによ
り還元される陰極とから構成される両極を用いて
アルカリ性雰囲気でこれら両極に被測定液を接触
させ、この時両極間に流れる電流を測定し、この
電流値から被測定液中の過酸化水素濃度を求める
ことにより、上記目的が効果的に達成されること
を知見し、本発明をなすに至つたものである。
In view of the above circumstances, the present inventors are quick to respond and
As a result of intensive research into a highly sensitive hydrogen peroxide measurement method that is easy to configure and operate, platinum,
gold, silver, palladium, rhodium, iridium,
An anode that decomposes hydrogen peroxide selected from lead, bismuth, manganese-iron alloy, nickel, cobalt, copper and iron by contact with hydrogen peroxide, and hydrogen peroxide consisting of silver oxide or silver chloride. The liquid to be measured is brought into contact with the two electrodes in an alkaline atmosphere, and the current flowing between the two electrodes is measured. From this current value, the concentration of hydrogen peroxide in the liquid to be measured is determined. The inventors have discovered that the above object can be effectively achieved by finding the following, and have thus come up with the present invention.

即ち、上記方法によれば、過酸化水素はアルカ
リ性雰囲気のもとでは、例えば白金表面で接触的
に分解され、 陽極側で H2O2→O2+2H++2e …(1) なる反応を生じ、また酸化銀は過酸化水素によつ
て還元され、 陰極側で Ag2O+2H2O+2e→2Ag+
2OH- …(2) なる反応を生じ、この時両極間に流れる電流を測
定することにより、過酸化水素濃度を求めること
ができるものである。
That is, according to the above method, hydrogen peroxide is catalytically decomposed, for example, on the platinum surface in an alkaline atmosphere, and the following reaction occurs on the anode side: H 2 O 2 →O 2 +2H + +2e...(1) , silver oxide is reduced by hydrogen peroxide, and on the cathode side Ag 2 O + 2H 2 O + 2e → 2Ag +
2OH - ...(2) A reaction occurs, and the hydrogen peroxide concentration can be determined by measuring the current flowing between the two electrodes.

以下、本発明の一実施例につき図面を参照して
説明する。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図において1はセラミツク等で形成された
有底円筒状の多孔質管で、内部にアルカリ性電解
液2及び陰極3が収容されており、このアルカリ
性電解液2が少量ずつ多孔質管1中を浸透して多
孔質管1の表面に浸潤するようになつている。こ
こで、陰極3は塩化銀及び酸化銀から選ばれる過
酸化水素と接触して還元される物質よりなり、こ
れらを粉体のまま又は固体膜等の適宜形状に形成
したものなどが使用される。なお、陰極3には多
孔質管1外から白金、銀などで形成された陰極リ
ード線4が接続されている。また、アルカリ性電
解液としては、水酸化カリウム水溶液、水酸化ナ
トリウム水溶液等が好ましく、この電解質により
測定系をPH9以上のアルカリ性雰囲気中に保つ
ものである。更に、5は多孔質管1外周壁に巻着
された陽極である。この陽極としては白金、銀、
金、パラジウム,ロジウム,イリジウム,鉛、ビ
スマス,マンガン−鉄合金、ニツケル,コバル
ト、銅及び鉄から選ばれる過酸化水素と接触して
これを分解するものが使用できるが、特に安全
性、耐薬品性の点で、白金が好ましい。また陽極
の形状は線状、板状、多孔体状等に形成すること
ができ、この陽極5には白金、銀などで形成され
た陽極リード線6が接続されている。なお、7は
上記多孔質管1を収容するフロースルー電極用ボ
デイーであり、測定用サンプルを連続フローでサ
ンプリングして測定するための外容器である。ま
た、8は前記陰極リード線4と陽極リード線6と
に接続され、両極間に流れる電流値を測定する電
流計である。この場合、電流計としてはミリアン
ペア計、マイクロアンペア計、検流計等が使用で
きる。
In Fig. 1, reference numeral 1 denotes a bottomed cylindrical porous tube made of ceramic or the like, in which an alkaline electrolyte 2 and a cathode 3 are housed. The porous tube 1 is designed to penetrate into the surface of the porous tube 1. Here, the cathode 3 is made of a substance selected from silver chloride and silver oxide that is reduced when it comes into contact with hydrogen peroxide, and these are used as powder or formed into an appropriate shape such as a solid film. . Note that a cathode lead wire 4 made of platinum, silver, or the like is connected to the cathode 3 from outside the porous tube 1. Further, as the alkaline electrolyte, a potassium hydroxide aqueous solution, a sodium hydroxide aqueous solution, etc. are preferable, and this electrolyte maintains the measurement system in an alkaline atmosphere with a pH of 9 or more. Furthermore, 5 is an anode wrapped around the outer peripheral wall of the porous tube 1. Platinum, silver,
A material selected from gold, palladium, rhodium, iridium, lead, bismuth, manganese-iron alloy, nickel, cobalt, copper and iron that decomposes on contact with hydrogen peroxide can be used, but it is particularly safe and chemically resistant. From the viewpoint of properties, platinum is preferred. Further, the shape of the anode can be formed into a linear shape, a plate shape, a porous body shape, etc., and an anode lead wire 6 made of platinum, silver, etc. is connected to the anode 5. Note that 7 is a flow-through electrode body that accommodates the porous tube 1, and is an outer container for sampling and measuring a measurement sample in a continuous flow. Further, 8 is an ammeter that is connected to the cathode lead wire 4 and the anode lead wire 6 and measures the value of the current flowing between the two electrodes. In this case, a milliampere meter, microampere meter, galvanometer, etc. can be used as the ammeter.

上記構成の測定装置においては、ポンプ9によ
つて過酸化水素を含む試料がボデイー7内に送給
されると、陰極と陽極とはいずれも常にアルカリ
性電解液2と接触しているため、陽極5表面で前
記(1)式の反応が生じ、また多孔質管1中を通つて
陰極3に至つた試料中の過酸化水素によつて前記
(2)式の反応が生じて、両極3,5間に過酸化水素
濃度に対応する電流が流れ、この流れる電流を電
流計8によつて測定し、この電流値から過酸化水
素濃度が求まるものである。なお、この装置によ
り測定した電流値と過酸化水素濃度との関係を第
2図のグラフに示した。
In the measuring device configured as described above, when a sample containing hydrogen peroxide is fed into the body 7 by the pump 9, the cathode and the anode are both constantly in contact with the alkaline electrolyte 2, so the anode The reaction of formula (1) above occurs on the surface of the porous tube 1, and the hydrogen peroxide in the sample that has passed through the porous tube 1 and reaches the cathode 3 causes the above reaction to occur.
The reaction of equation (2) occurs, and a current corresponding to the hydrogen peroxide concentration flows between the electrodes 3 and 5. This flowing current is measured by an ammeter 8, and the hydrogen peroxide concentration is determined from this current value. It is something. The graph in FIG. 2 shows the relationship between the current value measured by this device and the hydrogen peroxide concentration.

この方法は、両極間に印加電圧を加える従来の
方法とは異なり、異種電極間で形成された電池作
用を利用するガルバニツクな原理にもとづくもの
で、この場合には印加電圧が不要なため装置が簡
素化でき、小型化が可能で、また印加電圧を用い
る方法と比較しても同等以上の出力が得られ、
1ppm以下の濃度の測定がμAのオーダーの電流値
で出力されるため、直接電流計で測定でき、ポー
ラログラフと同等以上の高感度であり、広い応用
の可能性を有するものである。
Unlike the conventional method of applying voltage between two electrodes, this method is based on a galvanic principle that utilizes the cell action formed between different electrodes. It can be simplified and miniaturized, and it can provide the same or higher output compared to methods that use applied voltage.
Since the measurement of concentrations of 1 ppm or less is output as a current value on the order of μA, it can be directly measured with an ammeter, has a high sensitivity equal to or higher than that of a polarograph, and has a wide range of potential applications.

第3図は本発明測定方法の実施に使用する他の
測定装置を示すもので、装置を隔膜電極型に構成
したものである。第3図中10は0.03μの孔径を
有する厚さ20〜30μのポリカーボネート等の隔膜
11によつて底部が閉塞された円筒状ボデイー
で、内部に例えば1〜2規定水酸化カリウム水溶
液によるアルカリ性電解液2が入つており、この
アルカリ性電解液2中に酸化銀を錠剤成型器で固
体膜に固めた陰極3及び白金からなる陽極5が収
容されている。なお、陰極3には固体膜成型を安
定なものにするために銀等を混入させることもで
きる。また、陽極5の形状は陰極3と接触しない
かぎり自由に選び得る。
FIG. 3 shows another measuring device used in carrying out the measuring method of the present invention, and the device is constructed as a diaphragm electrode type. In Fig. 3, reference numeral 10 denotes a cylindrical body whose bottom is closed by a diaphragm 11 made of polycarbonate or the like with a thickness of 20 to 30 μ and a pore size of 0.03 μ. A cathode 3 made of silver oxide solidified into a solid film using a tablet molding machine and an anode 5 made of platinum are housed in this alkaline electrolytic solution 2. Incidentally, silver or the like may be mixed into the cathode 3 in order to stabilize solid film formation. Further, the shape of the anode 5 can be freely selected as long as it does not come into contact with the cathode 3.

上記装置においては、隔膜11が過酸化水素を
透過するもの、例えば孔径0.03μ、厚さ20〜30μの
ポリカーボネート膜等で形成されているため、ボ
デイー10を被測定液12中に挿入すると、被測
定液12中の過酸化水素が隔膜11を透過して陰
極3と陽極5とに接触し、前記(1),(2)式の反応が
おき、この際に両極間に流れる電流を電流計8で
測定するもので、隔膜11を適宜選択することに
より、共存物質の影響を除くことができると共
に、両電極3,5の汚れも少ないものである。
In the above device, the diaphragm 11 is made of a material that permeates hydrogen peroxide, such as a polycarbonate membrane with a pore size of 0.03μ and a thickness of 20 to 30μ, so that when the body 10 is inserted into the liquid to be measured 12, the Hydrogen peroxide in the measurement liquid 12 passes through the diaphragm 11 and comes into contact with the cathode 3 and anode 5, and the reactions of formulas (1) and (2) occur, and at this time, the current flowing between the two electrodes is measured by an ammeter. By appropriately selecting the diaphragm 11, the influence of coexisting substances can be removed, and both electrodes 3 and 5 are less contaminated.

第4図は本発明測定方法をフローインジエクシ
ヨンアナリシスの検出器に用いた場合を示すもの
で、第4図中3及び5はそれぞれキヤリヤー溶液
流路中に所定間隔離間して配設された酸化銀から
なる陰極及び白金からなる陽極である。また、1
3はアルカリ電解液ポンプ、14はサンプルを導
入するサンプルインジエクター、15はキヤリア
ー液ポンプ、16はキヤリアー液等が流れる導管
である。
Figure 4 shows the case where the measurement method of the present invention is used in a detector for flow injection analysis. In Figure 4, 3 and 5 are respectively placed in the carrier solution flow path with a predetermined distance between them. A cathode made of silver oxide and an anode made of platinum. Also, 1
3 is an alkaline electrolyte pump, 14 is a sample injector for introducing a sample, 15 is a carrier liquid pump, and 16 is a conduit through which carrier liquid and the like flow.

上記装置においては、サンプルがキヤリアー溶
液中に断続的に導入されると共に、アルカリ電解
液ポンプ13によつて例えば1〜2モル濃度の水
酸化カリウム水溶液よりなるアルカリ電解液がパ
イプ16内に送給され、両極3,5がアルカリ電
解液に浸漬された状態でサンプルが両極3,5に
接触し、この時両極3,5間に流れる電流を電流
計8で測定するものである。なお、この場合はア
ルカリ電解液は電極近傍に保持することなくキヤ
リアー溶液と共に流出される。
In the above device, the sample is intermittently introduced into the carrier solution, and an alkaline electrolyte, such as an aqueous potassium hydroxide solution with a 1 to 2 molar concentration, is fed into the pipe 16 by the alkaline electrolyte pump 13. A sample contacts both electrodes 3 and 5 with both electrodes 3 and 5 immersed in an alkaline electrolyte, and the current flowing between both electrodes 3 and 5 at this time is measured with an ammeter 8. Note that in this case, the alkaline electrolyte is not held near the electrode and is flowed out together with the carrier solution.

以上説明したように、本発明の過酸化水素測定
方法は、過酸化水素と接触することによりこれを
分解する特定物質からなる陽極と、過酸化水素と
接触することにより還元される特定物質からなる
陰極とをアルカリ性雰囲気中で過酸化水素を含有
する被測定液に接触させ、これら両極間に流れる
電流を測定することにより、被測定液中の過酸化
水素濃度を求めるよう構成したので、印加電圧が
不要なものになり、装置を簡単化し得、しかもこ
の装置の感度は優れたものであり、広い応用の可
能性を有するものである。
As explained above, the hydrogen peroxide measurement method of the present invention consists of an anode made of a specific substance that decomposes hydrogen peroxide when it comes into contact with it, and a specific substance that reduces it when it comes into contact with hydrogen peroxide. By bringing the cathode into contact with a liquid to be measured containing hydrogen peroxide in an alkaline atmosphere and measuring the current flowing between these two electrodes, the concentration of hydrogen peroxide in the liquid to be measured is determined. This eliminates the need for the device, simplifies the device, and furthermore, the device has excellent sensitivity and has a wide range of possibilities for application.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施に使用するフロースルー
型過酸化水素測定装置の概略断面図、第2図は同
装置を用いて測定した電流値と過酸化水素濃度と
の関係を示すグラフ、第3図は本発明の実施に使
用する隔膜電極型過酸化水素測定装置を示す概略
図、第4図は本発明に係る過酸化水素測定装置を
フローインジエクシヨンアナリシス装置に組み込
んだ態様を示す概略説明図である。 2……アルカリ性電解液、3……陰極、5……
陽極、8……電流計、12……被測定液。
FIG. 1 is a schematic cross-sectional view of a flow-through type hydrogen peroxide measuring device used in carrying out the present invention, FIG. 2 is a graph showing the relationship between the current value measured using the same device and the hydrogen peroxide concentration, and FIG. FIG. 3 is a schematic diagram showing a diaphragm electrode type hydrogen peroxide measuring device used in carrying out the present invention, and FIG. 4 is a schematic diagram showing an embodiment in which the hydrogen peroxide measuring device according to the present invention is incorporated into a flow injection analysis device. It is an explanatory diagram. 2... Alkaline electrolyte, 3... Cathode, 5...
Anode, 8... Ammeter, 12... Liquid to be measured.

Claims (1)

【特許請求の範囲】 1 白金、金、銀、パラジウム,ロジウム,イリ
ジウム,鉛、ビスマス,マンガン−鉄合金、ニツ
ケル,コバルト、銅及び鉄から選ばれた陽極と、
酸化銀又は塩化銀からなる陰極とをアルカリ性雰
囲気中で過酸化水素を含有する被測定液に接触さ
せ、これら両極間に流れる電流を測定することに
より被測定液中の過酸化水素濃度を求めることを
特徴とする過酸化水素測定方法。 2 陽極が白金からなり、陰極が酸化銀からなる
特許請求の範囲第1項記載の過酸化水素測定方
法。
[Claims] 1. An anode selected from platinum, gold, silver, palladium, rhodium, iridium, lead, bismuth, manganese-iron alloy, nickel, cobalt, copper, and iron;
The concentration of hydrogen peroxide in the liquid to be measured is determined by bringing a cathode made of silver oxide or silver chloride into contact with a liquid to be measured containing hydrogen peroxide in an alkaline atmosphere and measuring the current flowing between these two electrodes. A hydrogen peroxide measurement method characterized by: 2. The method for measuring hydrogen peroxide according to claim 1, wherein the anode is made of platinum and the cathode is made of silver oxide.
JP57136001A 1982-08-04 1982-08-04 Method for measuring hydrogen peroxide Granted JPS5926049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57136001A JPS5926049A (en) 1982-08-04 1982-08-04 Method for measuring hydrogen peroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57136001A JPS5926049A (en) 1982-08-04 1982-08-04 Method for measuring hydrogen peroxide

Publications (2)

Publication Number Publication Date
JPS5926049A JPS5926049A (en) 1984-02-10
JPH038509B2 true JPH038509B2 (en) 1991-02-06

Family

ID=15164865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57136001A Granted JPS5926049A (en) 1982-08-04 1982-08-04 Method for measuring hydrogen peroxide

Country Status (1)

Country Link
JP (1) JPS5926049A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1009053A5 (en) * 1995-01-26 1996-11-05 Universiteit Gent Vakgroep Tex MEASURING PROBE SUITABLE FOR CONTINUED TO MEASURE HYDROGEN CONCENTRATION IN A bleaching bath.
US6129831A (en) * 1995-01-26 2000-10-10 Universiteit Gent - Vakgroep Textielkunde Hydrogen peroxide sensor
JP5135548B2 (en) * 2008-09-02 2013-02-06 日本電気株式会社 Electrodes for electrochemical measuring devices and electrodes for biosensors

Also Published As

Publication number Publication date
JPS5926049A (en) 1984-02-10

Similar Documents

Publication Publication Date Title
EP0679253B1 (en) Improvements in or relating to electrochemical reactions
Wang Electroanalytical techniques in clinical chemistry and laboratory medicine
JP2648337B2 (en) Acid gas sensor
US4003705A (en) Analysis apparatus and method of measuring rate of change of electrolyte pH
US3454485A (en) Oxygen sensor with scavenger means
US4400242A (en) Electrochemical method of determining oxygen, halothane and nitrous oxide
JPS6222424B2 (en)
US3915831A (en) Hydrogen sulfide sensing cell
Pihlar et al. Amperometric determination of cyanide by use of a flow-through electrode
AU2003276826A1 (en) Amperometric chloramine sensor
US5076904A (en) Electrochemical measuring cell for determining ammonia or hydrazine in a measuring sample
US3859191A (en) Hydrogen cyanide sensing cell
WO1993001490A1 (en) High speed oxygen sensor
JPS63313058A (en) Current titration method and apparatus for quantitatively determining varied gases, electrolytic cell and application thereof
Mancy et al. Analysis of dissolved oxygen in natural and waste waters
JPH038509B2 (en)
US3830709A (en) Method and cell for sensing nitrogen oxides
Zutshi Introduction to polarography and allied techniques
US3950231A (en) Method of determining hydrogen cyanide
US4891102A (en) Method of determining carbon dioxide in the presence of oxygen
US5393392A (en) Polarographic PPB oxygen gas sensor
US5198092A (en) Electrochemical measuring cell for determining ammonia or hydrazine in a measuring sample
US10352896B2 (en) Coulometric titration cell
Herrmann et al. Miniaturized sensor module for in-situ control of waters
Feldman et al. Direct Coulometric Titration of Hydrogen Peroxide with Electrogenerated Hypobromite.