JPH0382943A - Total reflection fluorescent x-ray analyzing apparatus - Google Patents

Total reflection fluorescent x-ray analyzing apparatus

Info

Publication number
JPH0382943A
JPH0382943A JP21945289A JP21945289A JPH0382943A JP H0382943 A JPH0382943 A JP H0382943A JP 21945289 A JP21945289 A JP 21945289A JP 21945289 A JP21945289 A JP 21945289A JP H0382943 A JPH0382943 A JP H0382943A
Authority
JP
Japan
Prior art keywords
slit
sample
goniometer
width
incident beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21945289A
Other languages
Japanese (ja)
Inventor
Yasubumi Kameshima
亀島 泰文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP21945289A priority Critical patent/JPH0382943A/en
Publication of JPH0382943A publication Critical patent/JPH0382943A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To project an incident beam correctly to the center of a sample by relatively shifting two blades forming an entering slit thereby controlling the width and position of said entering slit. CONSTITUTION:Before starting the analysis, the angle of an incident beam onto the surface of a sample bed 5 is set 45 deg. for a goniometer 8, and an entering slit 3 is set to be -200mum wide. Moreover, each position of the goniometer 8 and the entering slit 3 is adjusted so that the incident beam passing through the slit correctly hits the center of a sensitive position detector 6. A controller 10 feeds back positional data input thereto from the position detector 6 to actuators 4a, 4b for adjusting the entering slit 3, the goniometer 8 and a micrometer 9, thereby finely adjusting the width of the slit 3 and positions of the slit 3 and sample bed 5. Accordingly, the width of the slit 3 and the angle of incidence of the incident beam to a sample can be adjusted with good accuracy.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は基板結晶の表面汚染、絶縁膜の表面変成などの
表面分析に用いられる全反射蛍光X線分析装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a total internal reflection fluorescent X-ray spectrometer used for surface analysis of substrate crystal surface contamination, insulating film surface alteration, etc.

〔従来の技術] 全反射蛍光X線分析は単色X線を全反射臨界角以下の極
めて小さい角度で試料の表面に入射することにより、試
料内の極表面のみを取り出すことができる。また、入射
光による散乱パックグラウンドが少ないので、情報発生
体積が小さいのにかかわらず、良好なS/N比が得られ
る。
[Prior Art] Total internal reflection fluorescent X-ray analysis allows monochromatic X-rays to be incident on the surface of a sample at an extremely small angle below the critical angle for total internal reflection, thereby making it possible to extract only the extreme surface within the sample. Furthermore, since there is little scattering background caused by the incident light, a good S/N ratio can be obtained despite the small information generation volume.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ここで、問題となるのは全反射蛍光X線分析では入射角
が全反射臨界角以下の極めて小さい角度であるので、結
晶にあたるビームが極端に横広がりになることである。
The problem here is that in total reflection fluorescent X-ray analysis, the incident angle is extremely small, less than the critical angle of total reflection, so the beam hitting the crystal becomes extremely lateral spread.

通常の全反射臨界角は数mrad(例えばSin、と空
気の界面での臨界角は〜2.3mrad)である。この
ため、入射ビームを通常の円形のアパーチャを通したも
のを用いると、極端に横広がりの形状で試料にあたるこ
とになる。上記のSinオの場合を例に取ると、横方向
のビームは約500倍の広がりに拡大されることになる
。200Pφのアパーチャを使用した場合は約10cm
に広がるため、試料が小さい場合、試料台など他の部分
に照射されることがある。また、ビーム径内に中心対称
の強度分布があるときにビーム中の中心部を用いないで
計81すされる可能性が大きい。これらのことは散乱が
少なく、S/N比の高い全反射蛍光X線分析の特性を損
うことになる。
The normal critical angle for total reflection is several mrad (for example, the critical angle at the interface between Sin and air is ~2.3 mrad). For this reason, if the incident beam is passed through a normal circular aperture, it will hit the sample in an extremely horizontally spread shape. Taking the above-mentioned sinusoidal case as an example, the beam in the lateral direction will be expanded to a width of about 500 times. Approximately 10cm when using a 200Pφ aperture
If the sample is small, other parts such as the sample stage may be irradiated. Further, when there is a center-symmetrical intensity distribution within the beam diameter, there is a high possibility that a total of 81 beams will be used without using the central part of the beam. These things impair the characteristics of total internal reflection fluorescent X-ray analysis, which has little scattering and a high S/N ratio.

本発明の目的は全反射蛍光X線分析法において、入射ビ
ームの位置を試料の中心に正しく照射する装置を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an apparatus for correctly irradiating an incident beam to the center of a sample in total internal reflection fluorescent X-ray analysis.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明の全反射蛍光X線分析
装置においては、入射スリットを形成する2枚のブレー
ドと、前記2枚のブレードを相対変位させて入射スリッ
トの幅と位置を制御する手段と、前記入射スリットを透
過して試料台上に入射した入射ビームの位置を検出する
手段と、前記検出手段で得られた位置情報を前記入射ス
リットの制御手段及び前記試料台の位置調整機構にフィ
ードバックしてこれらを駆動制御する手段とを有するも
のである。
In order to achieve the above object, the total internal reflection X-ray fluorescence spectrometer of the present invention includes two blades forming an entrance slit, and the two blades are relatively displaced to control the width and position of the entrance slit. means for detecting the position of the incident beam that has passed through the entrance slit and entered the sample stage; a means for controlling the entrance slit and a position adjustment mechanism for the sample stage; and a means for driving and controlling them by feeding back to them.

〔作用] 本発明においては、入射ビームの位置を試料台において
正確に求めなければならない。このための位置を敏感に
検知する検知器としてレジステイブ・アノード・エンコ
ーダ(RAE)を用いる例を述べる。RAEは前面が均
一な半導体抵抗板から構成されているもので、正方形を
有する。4つの隅にオーミック電極が設けられ、対角線
上で対向する電極の間に直流電圧を加えてホイートスト
ンブリッジを形成し、X線が入射しているときに残りの
2つの電極間に流れる電流をモニターして、X線照射に
よるイオン化電流発生個所を検知するものである。この
種の検知器を利用して、位置情報を入射スリットの制御
手段及び試料台の位置調整機構にフィードバックさせる
ものである。
[Operation] In the present invention, the position of the incident beam must be accurately determined on the sample stage. An example will be described in which a resistive anode encoder (RAE) is used as a detector that sensitively detects the position for this purpose. The RAE is composed of a semiconductor resistor plate with a uniform front surface and has a square shape. Ohmic electrodes are provided at the four corners, and a DC voltage is applied between diagonally opposing electrodes to form a Wheatstone bridge, and the current flowing between the remaining two electrodes is monitored when X-rays are incident. This detects the location where ionization current is generated due to X-ray irradiation. This type of detector is used to feed back position information to the control means for the entrance slit and the position adjustment mechanism for the sample stage.

[実施例] 次に、本発明の実施例を図面に基づいて説明する。[Example] Next, embodiments of the present invention will be described based on the drawings.

第1図は本発明の一実施例を示す構成図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

本実施例においては、シンクロトロン放射光(SR光)
を励起源に用いた例を示す。SR光のように試料の設定
を遠隔操作で行わなければならない場合、本発明は特に
有効である。
In this example, synchrotron radiation light (SR light)
An example using this as the excitation source is shown below. The present invention is particularly effective in cases where sample settings must be performed remotely, such as in the case of SR light.

図において、1はSR光リング、2はモノクロメータ、
3は入射スリット、8はゴニオメータ、5は試料台、6
は位置敏感検出器、7はエネルギー分散型X線検出器で
ある。
In the figure, 1 is an SR optical ring, 2 is a monochromator,
3 is the entrance slit, 8 is the goniometer, 5 is the sample stage, 6
is a position sensitive detector, and 7 is an energy dispersive X-ray detector.

SR光光リング部ら入射された励起光はモノクロメータ
2を用いて単色化される。通常、モノクロメータ2とし
てはSi結晶(+11)面が用いられる。
The excitation light incident from the SR light ring section is made monochromatic using a monochromator 2. Usually, a Si crystal (+11) plane is used as the monochromator 2.

選択されるエネルギーはここでは10KeVを用いた。The energy chosen here was 10 KeV.

入射スリット3は極めて平行性の良い鋭利な2枚のブレ
ード3a、 3bの向き合った端縁間に形成されており
、2枚のブレード3a、 3bは圧電アクチュエータ4
a、 4bにより試料台5上の試料表面に対して斜上下
方向に相対変位させられ、このブレード3a。
The entrance slit 3 is formed between the opposing edges of two very parallel sharp blades 3a, 3b, and the two blades 3a, 3b are connected to a piezoelectric actuator 4.
The blade 3a is displaced diagonally vertically relative to the sample surface on the sample stage 5 by the blades 3a and 4b.

3bの変位により入射スリット3の幅及び試料表面に対
する入射スリット3の位置が調整されるようになってい
る。ここに、圧電アクチュエータ4a。
The width of the entrance slit 3 and the position of the entrance slit 3 with respect to the sample surface are adjusted by the displacement of the entrance slit 3b. Here, the piezoelectric actuator 4a.

4bは2枚のブレード3a、 3b間に形成される入射
スリット3の幅と位置を制御する制御手段を構成してい
る。ゴニオメータ8の軸上に試料表面が乗るような構造
であり、ゴニオメータ8による試料台5の角度の測定精
度は0.01度が副尺を用いて測れるようになっている
。また、試料台5への試料装填は、試料の裏面を真空チ
ャックで真空吸引して試料台5に吸着するようになって
いる。また、入射スリット3を透過した入射ビーム調整
の際にはウェハー状試料の代りに位置敏感検出器6が試
料台5上に装着され、該検出器6の表面がゴニオメータ
8の中心軸に乗るように水平駆動マイクロメータ9で調
整される。ここに、ゴニオメータ8及び水平駆動マイク
ロメータ9は試料台5の位置調整を行う位置調整機構を
構成している。
Reference numeral 4b constitutes a control means for controlling the width and position of the entrance slit 3 formed between the two blades 3a and 3b. The structure is such that the sample surface is placed on the axis of the goniometer 8, and the angle of the sample stage 5 can be measured by the goniometer 8 with an accuracy of 0.01 degree using a vernier scale. Further, when loading a sample onto the sample stage 5, the back surface of the sample is vacuum-suctioned by a vacuum chuck and adsorbed onto the sample stage 5. Furthermore, when adjusting the incident beam transmitted through the entrance slit 3, a position-sensitive detector 6 is mounted on the sample stage 5 instead of the wafer-shaped sample, and the surface of the detector 6 is placed on the central axis of the goniometer 8. is adjusted by the horizontal drive micrometer 9. Here, the goniometer 8 and the horizontal drive micrometer 9 constitute a position adjustment mechanism for adjusting the position of the sample stage 5.

分析開始時にゴニオメータ8による試料台5の表面の入
射ビームに対する角度が45″に設定され、入射スリッ
ト3は〜200p mの幅に設定される。スリット3を
透過した入射ビームが位置敏感検出器6の中心に正確に
あたるようにゴニオメータ8の位置及び入射スリット3
の位置が調整される。次に徐々にゴニオメータ8の設定
角を小さくしていく。当然、位置敏感検出器6に投影さ
れる入射ビームの幅は大きくなるので、入射スリット3
の幅を圧電アクチュエータ4a、 4bの操作により狭
めてゆき、かつ位置敏感検出器6の中心軸に投影される
ようにゴニオメータ8の水平駆動マイクロメータ9を操
作する。全反射条件に近い場合は入射スリット3の幅は
〜20I1mにすることにより、投影幅が〜lo+nm
となる。本装置の特長はこれらの微調整を全て位置敏感
検出器6からの電気信号に基づいてコントローラ10に
より入射スリット3の調整用圧電アクチュエータ4a、
 4b、ゴニオメータ8及びマイクロメータ9を駆動制
御して行うことにある。
At the start of analysis, the angle of the surface of the sample stage 5 with the incident beam by the goniometer 8 is set to 45'', and the entrance slit 3 is set to a width of ~200 pm. The position of the goniometer 8 and the entrance slit 3 are adjusted so that it hits the center of the
The position of is adjusted. Next, the set angle of the goniometer 8 is gradually decreased. Naturally, the width of the incident beam projected onto the position-sensitive detector 6 becomes larger, so the entrance slit 3
The width of the goniometer 8 is narrowed by operating the piezoelectric actuators 4a, 4b, and the horizontal drive micrometer 9 of the goniometer 8 is operated so that the image is projected onto the central axis of the position sensitive detector 6. When the condition is close to total reflection, the width of the entrance slit 3 is set to ~20I1m, and the projection width is ~lo+nm.
becomes. The feature of this device is that all of these fine adjustments are made by a controller 10 based on electric signals from a position sensitive detector 6 using a piezoelectric actuator 4a for adjusting the entrance slit 3;
4b, by controlling the drive of the goniometer 8 and micrometer 9.

すなわち、位置敏感検出器6で得られた位置情報を入力
としてコントローラ10は入射スリット3の調整用圧電
アクチュエータ4a、 4b、ゴニオメータ8及びマイ
クロメータ9にフィードバックして、スリット3の幅、
スリット3及び試料台5の位置について微調整を行うこ
ととなり、スリット3の幅及び入射ビームの試料に対す
る入射角の調整を精度良く行うことが可能となる。
That is, the controller 10 inputs the position information obtained by the position sensitive detector 6 and feeds it back to the piezoelectric actuators 4a, 4b for adjusting the entrance slit 3, the goniometer 8, and the micrometer 9, thereby adjusting the width of the slit 3,
Fine adjustments are made to the positions of the slit 3 and the sample stage 5, making it possible to accurately adjust the width of the slit 3 and the angle of incidence of the incident beam on the sample.

以」二の微調整を終了させた後、位置敏感検出器6を試
料台5から取外してこれに代えて試料を試− 斜台5に装着し、試料の表面にスリット3を介して入射
ビームを入射させ、エネルギー分散型X線検出器7を用
いて全反射測定を行う。
After completing the above two fine adjustments, the position sensitive detector 6 is removed from the sample stage 5, a sample is mounted on the tilting stage 5 in its place, and the incident beam is applied to the surface of the sample through the slit 3. is incident, and total reflection measurement is performed using the energy dispersive X-ray detector 7.

[発明の効果] 以上説明したように、本発明によれば、自動的に迅速、
かつ安全な測定を行うことができる効果を有する。
[Effect of the invention] As explained above, according to the present invention, automatic and rapid
It also has the effect of allowing safe measurements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図である。 1・・・シンクロトロン放射光リング 2・・・モノクロメータ   3・・・入射スリット3
a、 3b・・・ブレード  4a、4b・・圧電アク
チュエータ5・・試料台       6・・位置敏感
検出器7・・・エネルギー分散型X線検出器 8・・・ゴニオメータ
FIG. 1 is a block diagram showing an embodiment of the present invention. 1... Synchrotron synchrotron radiation ring 2... Monochromator 3... Input slit 3
a, 3b...Blade 4a, 4b...Piezoelectric actuator 5...Sample stage 6...Position sensitive detector 7...Energy dispersive X-ray detector 8...Goniometer

Claims (1)

【特許請求の範囲】[Claims] (1)入射スリットを形成する2枚のブレードと、前記
2枚のブレードを相対変位させて入射スリットの幅と位
置を制御する手段と、前記入射スリットを透過して試料
台上に入射した入射ビームの位置を検出する手段と、前
記検出手段で得られた位置情報を前記入射スリットの制
御手段及び前記試料台の位置調整機構にフィードバック
してこれらを駆動制御する手段とを有することを特徴と
する全反射蛍光X線分析装置。
(1) Two blades that form an entrance slit, a means for controlling the width and position of the entrance slit by relatively displacing the two blades, and an incident light that passes through the entrance slit and enters the sample stage. It is characterized by comprising means for detecting the position of the beam, and means for feeding back the position information obtained by the detection means to the control means for the entrance slit and the position adjustment mechanism for the sample stage to control their driving. A total internal reflection fluorescent X-ray analyzer.
JP21945289A 1989-08-25 1989-08-25 Total reflection fluorescent x-ray analyzing apparatus Pending JPH0382943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21945289A JPH0382943A (en) 1989-08-25 1989-08-25 Total reflection fluorescent x-ray analyzing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21945289A JPH0382943A (en) 1989-08-25 1989-08-25 Total reflection fluorescent x-ray analyzing apparatus

Publications (1)

Publication Number Publication Date
JPH0382943A true JPH0382943A (en) 1991-04-08

Family

ID=16735643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21945289A Pending JPH0382943A (en) 1989-08-25 1989-08-25 Total reflection fluorescent x-ray analyzing apparatus

Country Status (1)

Country Link
JP (1) JPH0382943A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012117990A (en) * 2010-12-03 2012-06-21 Shimadzu Corp Slit device
WO2016103834A1 (en) * 2014-12-25 2016-06-30 株式会社リガク Oblique-incidence x-ray fluorescence analysis device and method
WO2018128988A1 (en) * 2017-01-03 2018-07-12 Kla-Tencor Corporation X-ray zoom lens for small angle x-ray scatterometry
WO2018211664A1 (en) * 2017-05-18 2018-11-22 株式会社島津製作所 X-ray spectrometer
US11137360B2 (en) 2017-09-27 2021-10-05 Shimadzu Corporation X-ray spectrometer and chemical state analysis method using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121737A (en) * 1986-10-31 1988-05-25 ゲー・カー・エス・エス・フオルシユングスツエントルム・ゲーシユタハト・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method and device for measuring analytic depth in layer near surface in total reflection range
JPH01208465A (en) * 1988-02-15 1989-08-22 Raimuzu:Kk Vacuum vapor deposition equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121737A (en) * 1986-10-31 1988-05-25 ゲー・カー・エス・エス・フオルシユングスツエントルム・ゲーシユタハト・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method and device for measuring analytic depth in layer near surface in total reflection range
JPH01208465A (en) * 1988-02-15 1989-08-22 Raimuzu:Kk Vacuum vapor deposition equipment

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012117990A (en) * 2010-12-03 2012-06-21 Shimadzu Corp Slit device
US10302579B2 (en) 2014-12-25 2019-05-28 Rigaku Corporation Grazing incidence x-ray fluorescence spectrometer and grazing incidence x-ray fluorescence analyzing method
JPWO2016103834A1 (en) * 2014-12-25 2017-04-27 株式会社リガク Obliquely incident X-ray fluorescence analyzer and method
CN107110798A (en) * 2014-12-25 2017-08-29 株式会社理学 Grazing incidence fluorescence x-ray analysis equipment and method
WO2016103834A1 (en) * 2014-12-25 2016-06-30 株式会社リガク Oblique-incidence x-ray fluorescence analysis device and method
CN107110798B (en) * 2014-12-25 2019-08-16 株式会社理学 Grazing incidence fluorescence x-ray analysis equipment and method
WO2018128988A1 (en) * 2017-01-03 2018-07-12 Kla-Tencor Corporation X-ray zoom lens for small angle x-ray scatterometry
US10859518B2 (en) 2017-01-03 2020-12-08 Kla-Tencor Corporation X-ray zoom lens for small angle x-ray scatterometry
WO2018211664A1 (en) * 2017-05-18 2018-11-22 株式会社島津製作所 X-ray spectrometer
JPWO2018211664A1 (en) * 2017-05-18 2019-11-07 株式会社島津製作所 X-ray spectrometer
CN110678743A (en) * 2017-05-18 2020-01-10 株式会社岛津制作所 X-ray spectroscopic analyzer
US11112371B2 (en) 2017-05-18 2021-09-07 Shimadzu Corporation X-ray spectrometer
US11137360B2 (en) 2017-09-27 2021-10-05 Shimadzu Corporation X-ray spectrometer and chemical state analysis method using the same

Similar Documents

Publication Publication Date Title
KR102517042B1 (en) X-ray source optics for small-angle x-ray scatterometry
CN109073902B (en) Beam shaping slit for small spot size transmission small angle X-ray scatterometry
JP3135920B2 (en) Surface analysis method and device
US7600916B2 (en) Target alignment for X-ray scattering measurements
US20050036583A1 (en) X-ray fluorescence system with apertured mask for analyzing patterned surfaces
KR20150143339A (en) Fluorescent x-ray analyzer
US6885726B2 (en) Fluorescent X-ray analysis apparatus
KR20180035710A (en) Closed­loop control of x­ray knife edge
JP2954819B2 (en) Calibration method for total reflection X-ray fluorescence analyzer
JPH0382943A (en) Total reflection fluorescent x-ray analyzing apparatus
US6992287B2 (en) Apparatus and method for image optimization of samples in a scanning electron microscope
JP2630249B2 (en) Total reflection X-ray fluorescence analyzer
JPH08136479A (en) Total reflection-type fluorescent x-ray analyzing apparatus
JPH06283585A (en) Semiconductor evaluation equipment
US6847696B2 (en) Synchrotron radiation measurement apparatus, X-ray exposure apparatus, and device manufacturing method
JP3034470B2 (en) X-ray analyzer
JP2002005858A (en) Total reflection x-ray fluorescence analyzer
WO2022118585A1 (en) Total internal reflection fluorescent x-ray analyzer
JP2000180388A (en) X-ray diffraction apparatus and x-ray diffracting and measuring method
JP2001083105A (en) X-ray diffractometer and method for measuring diffracted x-ray
JPH04208900A (en) Setting of irradiation angle of energy beam
JP3740530B2 (en) Aligner for total internal reflection X-ray fluorescence analysis
JP2001266788A (en) Angle resolving electron spectroscope of diffraction planar aperture transmissive energy control type, and analysis method using the same
JPH0572149A (en) X-ray measuring device
JP2000146870A (en) Total reflection x-ray analyzer, and regulating method therefor