JPH0382939A - Superconducting-coil monitoring system - Google Patents

Superconducting-coil monitoring system

Info

Publication number
JPH0382939A
JPH0382939A JP21950989A JP21950989A JPH0382939A JP H0382939 A JPH0382939 A JP H0382939A JP 21950989 A JP21950989 A JP 21950989A JP 21950989 A JP21950989 A JP 21950989A JP H0382939 A JPH0382939 A JP H0382939A
Authority
JP
Japan
Prior art keywords
superconducting coil
scattered light
optical fiber
light
monitoring system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21950989A
Other languages
Japanese (ja)
Inventor
Mitsugi Nakahara
貢 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21950989A priority Critical patent/JPH0382939A/en
Publication of JPH0382939A publication Critical patent/JPH0382939A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To detect the temperature change of a superconducting coil or the change in structure of the coil and to make it possible to specify the generating section of the change by providing an optical fiber along the superconducting coil in parallel, and inputting pulse-type monochromatic light into the optical fiber. CONSTITUTION:Pulse-type monochromatic light emitted from a light source 1 passes through the light splitter 2. Thereafter, the light is inputted into an optical fiber 4 through a condenser lens 3. The optical fiber 4 is provided along a superconducting coil 5 in parallel. The transmitted light through the optical fiber 4 is absorbed in an extinction device 6. In the meantime, the scattering light generated in the optical fiber 4 becomes the reflected light and becomes the incident light for a scattering light detecting device 7. Spectroscopy is performed for every wavelength of the scattering light in a spectroscope 71 on the device 7. Optoelectronic transducing action is performed in a spectroscope 72. The received light signal is amplified in a preamplifier 73 and becomes the input signal for an operating device 74. The device 4 detects the temperature change of the superconducting coil 5 as the temperature change of the optical fiber 4 based on the intensity of the scattering light and the returning time of the optical fiber 4. The section where the temperature change occurs is obtained. The results are displayed on a display device 75.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電力貯蔵用超電導エネルギー貯蔵システムに
係り、超電導コイルの温度上昇、又は電磁力による歪増
加を早期に検出するのに好適な、超電導コイル監視シス
テムに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a superconducting energy storage system for power storage, and is suitable for early detection of a temperature rise in a superconducting coil or an increase in strain due to electromagnetic force. Regarding superconducting coil monitoring system.

〔従来の技術〕[Conventional technology]

電力貯蔵用超電導エネルギー貯蔵システムは、超電導コ
イルに電流を流し、電磁エネルギーとしてエネルギー貯
蔵を行う。この時、超電導コイルが、超電導状態から常
電導状態へ転移(クエンチ現象)した場合、常電導状態
での抵抗発熱による超電導コイルの溶断を防くため、電
流遮断等の対策が必要となる。このクエンチ現象の早期
検出力3 法としては、特開昭63−4.471.0号公報「超電
導コイルのクエンチ検出装置Jにその例がある。
A superconducting energy storage system for power storage stores energy as electromagnetic energy by passing current through a superconducting coil. At this time, if the superconducting coil transitions from the superconducting state to the normal conducting state (quench phenomenon), measures such as cutting off the current are required to prevent the superconducting coil from fusing due to resistance heat generation in the normal conducting state. An example of this method for early detection of quench phenomena can be found in Japanese Unexamined Patent Publication No. 63-4.471.0 ``Quench Detection Apparatus J for Superconducting Coils''.

すなわち、通常使用する超電導コイルと並列にクエンチ
検出用超電導コイルを設置し、その抵抗変化からクエン
チ現象の発生を検出する構成とした装置がある。
That is, there is a device configured to install a superconducting coil for quench detection in parallel with a normally used superconducting coil, and detect the occurrence of a quench phenomenon from a change in resistance.

しかしながら、従来の超電導コイル監視システムにおい
ては、超電導コイルのクエンチ現象をクエンチ検出用超
電導コイルの抵抗変化から検出する構成であるため、ク
エンチ現象の発生区間を特定することが困難という問題
点がある。
However, in the conventional superconducting coil monitoring system, the quench phenomenon of the superconducting coil is detected from the resistance change of the quench detection superconducting coil, so there is a problem that it is difficult to specify the section where the quench phenomenon occurs.

すなわち、電力貯蔵用超電導エネルギー貯蔵システムの
超電導コイルは、直径が数十mから数百mの規模となる
ため、クエンチ現象あるいは許容値以上の構造的変化を
発生した超電導コイルの区間については、すみやかに短
絡回路によるバイパス処理等の保護装置の動作を円滑に
運用させる必要がある。
In other words, since the diameter of the superconducting coil of a superconducting energy storage system for power storage ranges from several tens of meters to several hundred meters, sections of the superconducting coil where a quench phenomenon or a structural change exceeding an allowable value has occurred should be promptly removed. It is necessary to ensure that protection devices such as bypass processing using short circuits operate smoothly.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の超電導コイル監視システムにあっては、超電導コ
イルのクエンチ現象や許容値以上の構造変形を発生した
区間の特定ができないため、大型構造の超電導コイルに
対して、短絡回路によるバイパス処理等の保護装置の運
用が円滑さを欠く問題点があった。
With conventional superconducting coil monitoring systems, it is not possible to identify sections where superconducting coil quench phenomenon or structural deformation exceeding the allowable value has occurred. There was a problem that the operation of the equipment was not smooth.

本発明の目的は、強力な電磁場の影響を受けずに超電導
コイルの温度変化又は構造変化を検出し、かつその発生
区間を特定できる超電導コイル監視システムを提供する
ことにある。
An object of the present invention is to provide a superconducting coil monitoring system that can detect temperature changes or structural changes in a superconducting coil without being affected by strong electromagnetic fields, and can identify the area where the changes occur.

〔課題を解決するための手段〕[Means to solve the problem]

前記の目的を遠戚するため、本発明に係る超電導コイル
監視システムは、超電導コイルに電流を流してエネルギ
ー貯蔵を行う電力貯蔵用超電導エネルギー貯蔵システム
の超電導コイル監視システムにおいて、超電導コイルに
並設した光ファイバと、光ファイバにパルス単色光を入
射する光源と、光源と光ファイバーとの間りこ設けた光
分岐器と、光分岐器を介して受光した光ファイバからの
散乱光を電気変換して演算処理するとともに超電導コイ
ルの状態を表示する散乱光検出装置とからなるように構
成されている。
In order to achieve the above object, the superconducting coil monitoring system according to the present invention is a superconducting coil monitoring system for a superconducting energy storage system for power storage that stores energy by passing a current through the superconducting coil. An optical fiber, a light source that inputs pulsed monochromatic light into the optical fiber, an optical splitter with a gap between the light source and the optical fiber, and electrical conversion of scattered light from the optical fiber received through the optical splitter to perform calculations. It is configured to include a scattered light detection device that performs processing and displays the state of the superconducting coil.

そして散乱光検出装置は、光分岐器からの散乱光をそれ
ぞれの波長に分光してその分光を電気変換する受光器と
、その受光信号を増幅して演算処理する演算処理装置と
、その出力信号を表示する表示装置とからなる構成であ
る。
The scattered light detection device consists of a light receiver that splits the scattered light from the optical splitter into its respective wavelengths and converts the split lights electrically, an arithmetic processing device that amplifies and processes the received light signal, and an output signal thereof. This configuration consists of a display device that displays .

また散乱光検出装置は、散乱光を分光してラマン散乱光
の強度変化から光ファイバの温度分布を演算するととも
に、温度分布より超電導コイルの温度変化を検出し表示
する装置である構成とする。
Further, the scattered light detection device is configured to be a device that spectrally spectrally disperses the scattered light, calculates the temperature distribution of the optical fiber from the intensity change of the Raman scattered light, and detects and displays the temperature change of the superconducting coil from the temperature distribution.

さらに散乱光検出装置は、散乱光を分光してレーリー散
乱光の強度変化から光ファイバの歪分布を演算するとと
もに、歪分布より超電導コイルの構造変形を検出し表示
する装置である構成とする。
Further, the scattered light detection device is configured to be a device that spectrally disperses the scattered light, calculates the strain distribution of the optical fiber from intensity changes of the Rayleigh scattered light, and detects and displays structural deformation of the superconducting coil from the strain distribution.

そして散乱光検出装置は、光ファイバのそれぞれの部分
からの散乱光の戻り時間と、散乱光の強度変化とから超
電導コイルの温度及び歪の変化した区間を特定する装置
である構成とする。
The scattered light detection device is configured to be a device that identifies the section where the temperature and strain of the superconducting coil have changed based on the return time of the scattered light from each part of the optical fiber and the change in the intensity of the scattered light.

また超電導コイルに並設した光ファイバは、超電導コイ
ルに複数個所で固定されるとともに、固定される個所で
初期歪が付加されである構成でもよい。
Further, the optical fibers arranged in parallel to the superconducting coil may be fixed to the superconducting coil at a plurality of locations, and an initial strain may be added at the fixed locations.

さらに超電導コイルに電流を流してエネルギー貯蔵を行
う電力貯蔵用超電導エネルギー貯蔵システムの超電導コ
イル監視システムにおいて、超電導コイルに並設した光
ファイバにパルス単光色を入射してその散乱光を分岐す
る光装置と、散乱光を受光し電気変換して散乱光の強度
変化から光ファイバの温度分布及び歪分布に対応する超
電導コイルの温度分布及び構造変形を演算するとともに
、超電導コイルのクエンチ現象及び構造変形を表示する
散乱光検出装置とを備えた構成でもよい。
Furthermore, in a superconducting coil monitoring system for a superconducting energy storage system for power storage that stores energy by passing a current through a superconducting coil, a pulsed monochromatic light is incident on an optical fiber installed in parallel to a superconducting coil, and the scattered light is branched. The device receives scattered light, converts it into electricity, calculates the temperature distribution and structural deformation of the superconducting coil corresponding to the temperature distribution and strain distribution of the optical fiber from the intensity change of the scattered light, and also calculates the quench phenomenon and structural deformation of the superconducting coil. It may also be configured to include a scattered light detection device that displays.

そして散乱光の強度変化は、ラマン散乱光の強度比が最
大となる波長変化で示され波長変化により光ファイバの
温度分布が演算されるものとする。
It is assumed that the intensity change of the scattered light is represented by the wavelength change at which the intensity ratio of the Raman scattered light is maximum, and the temperature distribution of the optical fiber is calculated based on the wavelength change.

また超電導コイルの冷却容器に収納され超電導コイルの
雰囲気温度を検出する少くとも1個の光ファイバにパル
ス単光色を入射してその散乱光を分岐する光装置を備え
た構成でもよい。
Alternatively, the configuration may include an optical device that enters a pulsed single color light into at least one optical fiber that is housed in a cooling container of the superconducting coil and detects the ambient temperature of the superconducting coil, and branches the scattered light.

〔作用〕[Effect]

本発明の超電導コイル監視システムによれば、超電導コ
イルに光ファイバを並設したため、光ファイバにパルス
的な単色光を入射することにより光フアイバ内部の散乱
による散乱光が得られる。
According to the superconducting coil monitoring system of the present invention, since the optical fibers are arranged in parallel to the superconducting coil, by inputting pulsed monochromatic light into the optical fiber, scattered light due to scattering inside the optical fiber can be obtained.

この散乱光の波長は、入射光の波長に対する移動の程度
によりラマン散乱光とレーリー散乱光とに分けられる。
The wavelength of this scattered light is divided into Raman scattered light and Rayleigh scattered light depending on the degree of movement relative to the wavelength of the incident light.

入射光波長と散乱光波長とが異なるラマン散乱光強度は
温度依存性があるため、散乱光検出装置で分光すること
により超電導コイルの温度変化が測定される。また、入
射光波長と散乱光波長が同一であるレーリー散乱光強度
は、光ファイバの歪及び破断と関係があるため、散乱光
検出装置で分光することにより超電導コイルの構造的変
化が測定される。さらに、散乱光の戻り時間及び散乱光
の減衰特性の周期性から、超電導コイルの温度変化、構
造的変化の発生区間が特定される。
Since the intensity of Raman scattered light, in which the incident light wavelength and the scattered light wavelength are different, is temperature dependent, temperature changes in the superconducting coil are measured by spectroscopy using a scattered light detector. In addition, the intensity of Rayleigh scattered light, where the wavelength of the incident light and the wavelength of the scattered light are the same, is related to strain and breakage of the optical fiber, so structural changes in the superconducting coil can be measured by spectroscopy with a scattered light detector. . Furthermore, from the return time of the scattered light and the periodicity of the attenuation characteristics of the scattered light, the interval in which the temperature change and structural change of the superconducting coil occur is specified.

そして、光ファイバは無誘導性であることから、強力な
電磁場となる超電導コイル近傍でも電磁誘導されない。
Since optical fibers are non-inductive, they are not electromagnetically induced even in the vicinity of superconducting coils, where there is a strong electromagnetic field.

〔実施例〕〔Example〕

本発明の一実施例を第工図を参照しながら説明する。 An embodiment of the present invention will be described with reference to the drawings.

第1図に示されるように、光源上から出射されたパルス
的な単色光は、光分岐器2を通過後に集光レンズ3を経
由して多モードの光ファイバ4に入射される。光ファイ
バ4は、電力貯蔵用超電導エネルギー貯蔵システムの超
電導コイル5に並列に設置される。この光ファイバ4の
透過光は、消光器6で吸収される。これに対し、光ファ
イバ4の内部で発生した散乱光は反射光となり、集光レ
ンズ3及び光分岐器2を再び通過して、散乱光検出装置
7の入射光となる。散乱光検出装置7は、この入射光を
分光器71で散乱光の波長ごとに分光し、受光器72で
光−電気変換をする。この受光信号は、前置増幅器73
で増幅され、演算処理装置74の入力信号となる。演算
処理装置74は、光ファイバ4の散乱光の強度及び散乱
光の戻り時間から、光ファイバ4と並列に設置されてい
る超電導コイル5の温度変化を光ファイバ4の温度変化
として検出するとともに、温度変化が発生した区間を下
記の方法で求め、その結果を表示装置75にて表示する
As shown in FIG. 1, pulsed monochromatic light emitted from a light source passes through a light splitter 2 and then enters a multimode optical fiber 4 via a condenser lens 3. The optical fiber 4 is installed in parallel to the superconducting coil 5 of the superconducting energy storage system for power storage. The light transmitted through the optical fiber 4 is absorbed by the extinction device 6. On the other hand, the scattered light generated inside the optical fiber 4 becomes reflected light, passes through the condenser lens 3 and the optical splitter 2 again, and becomes incident light on the scattered light detection device 7. In the scattered light detection device 7, a spectroscope 71 separates this incident light into wavelengths of scattered light, and a light receiver 72 performs optical-to-electrical conversion. This received light signal is sent to the preamplifier 73
The signal is amplified and becomes an input signal to the arithmetic processing unit 74. The arithmetic processing unit 74 detects the temperature change of the superconducting coil 5 installed in parallel with the optical fiber 4 as a temperature change of the optical fiber 4 from the intensity of the scattered light of the optical fiber 4 and the return time of the scattered light, and The section in which the temperature change occurred is determined by the method described below, and the result is displayed on the display device 75.

すなわち、超電導コイル5において、何らかの原因で超
電導コイル5が超電導状態から常電導状態に転移(クエ
ンチ)すると、常電導状態部分の抵抗発熱により超電導
コイル5の温度が上昇する。
That is, in the superconducting coil 5, when the superconducting coil 5 transitions (quenches) from the superconducting state to the normal conducting state for some reason, the temperature of the superconducting coil 5 increases due to resistance heat generation in the normal conducting state portion.

この超電導コイル5の温度上昇により、光ファイバ4の
温度も上昇する。
As the temperature of the superconducting coil 5 increases, the temperature of the optical fiber 4 also increases.

光ファイバ4へ入射されたパルス的な単色光は、光ファ
イバ4の内部で散乱を受けながら進行する。
The pulsed monochromatic light incident on the optical fiber 4 travels while undergoing scattering inside the optical fiber 4.

この散乱光は、入射した単色光と同一波長であり、光フ
ァイバ4の温度変化の影響を受けないレーリー散乱光と
、入射した単色光と異なる波長となり光ファイバ4の温
度変化の影響を受けるラマン散乱光とに分けられる。し
たがって、光ファイバ4が温度上昇した区間と、温度上
昇していない区間とでは、ラマン散乱光の強度が異なる
ことになる。
This scattered light includes Rayleigh scattered light, which has the same wavelength as the incident monochromatic light and is not affected by temperature changes in the optical fiber 4, and Raleigh scattered light, which has a different wavelength from the incident monochromatic light and is affected by temperature changes in the optical fiber 4. It can be divided into scattered light. Therefore, the intensity of the Raman scattered light is different between a section where the temperature of the optical fiber 4 has increased and a section where the temperature has not increased.

このラマン散乱光は、入射光が温度」1昇した光ファイ
バ4からエネルギーを受は取り、短波長側に散乱光の波
長が移動するアンチストークス散乱光と、光フアイバ4
ヘエネルギーを与え、長波長側へ散乱光の波長が移動す
るストークス散乱光とに、さらに分けられる。このアン
チストークス散乱光とストークス散乱光との強度比R(
T)は、次式となる。
This Raman scattered light receives and receives energy from the optical fiber 4 whose temperature has increased by 1, and the anti-Stokes scattered light moves the wavelength of the scattered light to the shorter wavelength side, and the optical fiber 4
It is further divided into Stokes scattered light, in which the wavelength of the scattered light shifts to the longer wavelength side. The intensity ratio R of this anti-Stokes scattered light and Stokes scattered light (
T) is the following formula.

R(T)=(λS/λa)’exp(hCy/kT)た
だし、λSニストークス散乱光波長 λa:アンチストークス散乱光波長 hニブランク定数 C:光の速度 V:散乱光の移動波長 に:ボルツマン定数 T:光ファイバの温度 すなわち、散乱光検出装置7の分光器71で、光ファイ
バ4の散乱光をこのストークス散乱光及びアンチストー
クス散乱光に分光し、それぞれの強度を受光器72を用
いて測定し、演算処理装置74によりそれらの散乱光の
強度比から光ファイバ4の温度Tを演算するものである
R(T)=(λS/λa)'exp(hCy/kT)where, λS Nistokes scattered light wavelength λa: anti-Stokes scattered light wavelength h Niblank constant C: speed of light V: moving wavelength of scattered light: Boltzmann Constant T: Temperature of the optical fiber, that is, the spectroscope 71 of the scattered light detection device 7 separates the scattered light of the optical fiber 4 into Stokes scattered light and anti-Stokes scattered light, and the intensity of each is measured using the light receiver 72. The temperature T of the optical fiber 4 is calculated by the arithmetic processing unit 74 from the intensity ratio of the scattered lights.

一方、第2図に示されるように、光源lからのパルス的
な単色光に対する光ファイバ4からの散乱光の戻り時間
からは、光ファイバ4の散乱場所までの距離を求めるこ
とができる。
On the other hand, as shown in FIG. 2, the distance to the scattering location of the optical fiber 4 can be determined from the return time of the scattered light from the optical fiber 4 with respect to the pulsed monochromatic light from the light source 1.

そして第2図に、光ファイバ4にパルス的な単色光を入
射した時のラマン散乱光であるストークス散乱光、及び
アンチストークス散乱光のある代表的な波長についての
受光波形が示される。超電導コイル5のB点近傍で、ク
エンチ現象による温度上昇の発生の結果として、ストー
クス散乱光及びアンチストークス散乱光の受光強度が増
加する。
FIG. 2 shows received light waveforms for certain typical wavelengths of Stokes scattered light and anti-Stokes scattered light, which are Raman scattered light, when pulsed monochromatic light is input into the optical fiber 4. Near point B of the superconducting coil 5, as a result of the temperature rise due to the quench phenomenon, the received light intensity of Stokes scattered light and anti-Stokes scattered light increases.

この時の温度上昇の程度は、ストークス散乱光及びアン
チストークス散乱光の受光強度比R(T)から逆算して
求めることができる。また、超電導コイル5の温度上昇
区間は、光ファイバ4にパルス的な単色光を入射した時
からの経過時間から特定できる。なお、ストークス散乱
光波長及びアンチストークス散乱光波長に対する、受光
器72の受光効率の違いは、演算処理装置74にて補正
される。
The degree of temperature rise at this time can be determined by back calculation from the received light intensity ratio R(T) of Stokes scattered light and anti-Stokes scattered light. Further, the temperature increase section of the superconducting coil 5 can be specified from the elapsed time from the time when the pulsed monochromatic light is input to the optical fiber 4. Note that the difference in light receiving efficiency of the light receiver 72 with respect to the Stokes scattered light wavelength and the anti-Stokes scattered light wavelength is corrected by the arithmetic processing unit 74.

第3図は、本発明の超電導コイル監視システムを、超電
導コイル5の電磁力による構造的変形を検出する場合に
応用した他の実施例である。第3図と第1図の構造的な
違いは、超電導コイル5に対する光ファイバ4の設置方
法である。すなわち。
FIG. 3 shows another embodiment in which the superconducting coil monitoring system of the present invention is applied to detect structural deformation of the superconducting coil 5 due to electromagnetic force. The structural difference between FIG. 3 and FIG. 1 is the method of installing the optical fiber 4 with respect to the superconducting coil 5. Namely.

超電導コイル5に電力貯蔵用の大電流が流れると、超電
導コイル5はその大電流による電磁力のため、半径方向
の広がる方向に変形する。同時に、超電導コイル5に複
数の固定点4工で設置された光ファイバ4も固定点41
の間で伸びる。その結果、光ファイバ4は、初期歪が与
えられているため、超電導コイル5の変形に伴うその歪
量が少くなる。
When a large current for power storage flows through the superconducting coil 5, the superconducting coil 5 deforms in the direction of radial expansion due to the electromagnetic force caused by the large current. At the same time, the optical fiber 4 installed at a plurality of fixed points 4 on the superconducting coil 5 is also connected to the fixed point 41.
It stretches between. As a result, since the optical fiber 4 is given an initial strain, the amount of strain caused by the deformation of the superconducting coil 5 is reduced.

この時第1図と同様にして、光ファイバ4にパルス的な
単色光を入射することにより、光ファイバ4の歪に応じ
て第4図に示されるような光源波長と同一波長のレーリ
ー散乱光が得られる。
At this time, by injecting pulsed monochromatic light into the optical fiber 4 in the same manner as shown in FIG. 1, Rayleigh scattered light having the same wavelength as the light source wavelength as shown in FIG. is obtained.

すなわち、超電導コイル5の変形はその大電流又は小電
流により光ファイバ4の歪量の増減となり、その歪量は
、レーリー散乱光強度の変化となって、散乱光検出装置
7で測定される。第4図の例は、光ファイバ4からのレ
ーリー散乱光の戻り時間から、B地点とC地点との間に
おいて、光ファイバ4の歪の減少によるレーリー散乱光
強度の減少から、超電導コイル5の部分的な変形の発生
を検出することができる。また、第3図の構成において
、光ファイバ4からのラマン散乱光を検出することによ
り、超電導コイル5の温度分布も検出できることは明白
である。
That is, deformation of the superconducting coil 5 results in an increase or decrease in the amount of strain in the optical fiber 4 due to the large current or small current, and the amount of strain is measured by the scattered light detection device 7 as a change in the Rayleigh scattered light intensity. In the example shown in FIG. 4, from the return time of the Rayleigh scattered light from the optical fiber 4, between points B and C, the intensity of the Rayleigh scattered light decreases due to the decrease in the strain of the optical fiber 4, so that the superconducting coil 5 Occurrence of partial deformation can be detected. Furthermore, in the configuration shown in FIG. 3, it is clear that by detecting the Raman scattered light from the optical fiber 4, the temperature distribution of the superconducting coil 5 can also be detected.

第5図及び第6図は第1図に示される散乱光検出袋W7
の演算処理袋W74の処理をまとめたものである。ここ
で第5図は、超電導コイル5の温度分布の検出に関する
処理例である。すなわち、受光器72のラマン散乱光波
長に対する受光感度特性を補正後、光ファイバ4からの
ラマン散乱光の戻り時間に応じて、時系列的な受光信号
となる。
Figures 5 and 6 show the scattered light detection bag W7 shown in Figure 1.
This is a summary of the processing of the arithmetic processing bag W74. Here, FIG. 5 shows an example of processing related to detecting the temperature distribution of the superconducting coil 5. That is, after correcting the light-receiving sensitivity characteristic of the light receiver 72 with respect to the Raman-scattered light wavelength, a time-series light-receiving signal is generated according to the return time of the Raman-scattered light from the optical fiber 4.

この時系列的なラマン散乱光に基き、ストークス散乱光
とアンチストークス散乱光とからなろうマン散乱光の強
度比R(T)を計算する。このラマン散乱光の強度比R
(T)と温度Tとの関係から、超電導コイル5の温度T
を計算する。この時の温15 度Tは、超電導コイル5の許容変動範囲外、すなわち、
クエンチ現象に伴う温度上昇によるものがどうかの判定
がなされる。超電導コイル5にクエンチ現象が発生して
いると判定された場合は、ラマン散乱光の戻り時間から
、クエンチ現象による温度変動区間が計算され、表示装
置75に対して超電導コイルの温度分布等の表示要求と
なる。
Based on this time-series Raman scattered light, the intensity ratio R(T) of the Willmann scattered light consisting of the Stokes scattered light and the anti-Stokes scattered light is calculated. The intensity ratio R of this Raman scattered light
(T) and the temperature T, the temperature T of the superconducting coil 5
Calculate. The temperature of 15 degrees T at this time is outside the allowable fluctuation range of the superconducting coil 5, that is,
It is determined whether this is due to a temperature increase accompanying the quench phenomenon. If it is determined that a quench phenomenon has occurred in the superconducting coil 5, the temperature fluctuation section due to the quench phenomenon is calculated from the return time of the Raman scattered light, and the temperature distribution etc. of the superconducting coil is displayed on the display device 75. It becomes a request.

また、第6図は、第3図に示される超電導コイル5の歪
分布の検出に関する処理例である。処理の手順はほぼ第
5図と同様である。すなわち、超電導コイル5の正常時
における時系列的なレーリー散乱光と、対象とするレー
リー散乱光とを比較し、その比あるいは差から超電導コ
イル5の歪量を判定する。この時の歪量は、超電導コイ
ル5の許容変動範囲外、すなわち、電磁力等に伴う例え
ば部分的な構造的変形によるものかどうかの判定がなさ
れる。超電導コイル5に許容以上の構造的変形が発生し
ていると判定された場合は、レーリー散乱光の戻り時間
から、その発生区間が計算され、表示装置75に対する
超電導コイルの歪分布G 等の表示要求となる。
Further, FIG. 6 is an example of processing related to detecting the strain distribution of the superconducting coil 5 shown in FIG. 3. The processing procedure is almost the same as that shown in FIG. That is, the time-series Rayleigh scattered light when the superconducting coil 5 is normal is compared with the targeted Rayleigh scattered light, and the amount of strain in the superconducting coil 5 is determined from the ratio or difference. It is determined whether the amount of strain at this time is outside the permissible fluctuation range of the superconducting coil 5, that is, whether it is due to, for example, partial structural deformation due to electromagnetic force or the like. If it is determined that structural deformation exceeding the allowable value has occurred in the superconducting coil 5, the generation section is calculated from the return time of the Rayleigh scattered light, and the strain distribution G of the superconducting coil etc. is displayed on the display device 75. It becomes a request.

第7図及び第8図は、超電導コイル監視システムの他の
一実施例が示される。第7図及び第8図において、超電
導コイル5は、冷却容器8の中の冷媒中に設置され、冷
却装置9で冷却される。この冷却袋W9の冷却能力が変
化すると冷媒内に温度分布が発生することもあり、この
ような場合、超電導コイル5のクエンチ@象による温度
変化検出用の光ファイバを超電導コイル5に設置された
光ファイバ41とし、また、超電導コイル5のクエンチ
現象を引き起す要因となる冷媒の温度変化検出用の光フ
ァイバ42を冷媒中に設置し、光装置及び散乱光検出装
置等からなる監視装置11によりこれらの光ファイバ4
]、、42のラマン散乱光の強度変化から超電導コイル
5、あるいは冷媒の温度分布を検出する。
7 and 8 show another embodiment of the superconducting coil monitoring system. In FIGS. 7 and 8, the superconducting coil 5 is placed in a refrigerant in a cooling container 8 and is cooled by a cooling device 9. In FIG. When the cooling capacity of the cooling bag W9 changes, a temperature distribution may occur in the refrigerant, and in such a case, an optical fiber for detecting temperature changes due to quenching of the superconducting coil 5 is installed in the superconducting coil 5. An optical fiber 41 is installed in the refrigerant, and an optical fiber 42 for detecting a temperature change in the refrigerant, which is a factor that causes the quench phenomenon of the superconducting coil 5, is installed in the refrigerant, and a monitoring device 11 consisting of an optical device, a scattered light detection device, etc. These optical fibers 4
The temperature distribution of the superconducting coil 5 or the refrigerant is detected from the intensity change of the Raman scattered light of .

第9図は、本発明の超電導コイル監視システムとして、
第1図及び第3図に示される実施例を組み合せた場合の
例であり、ラマン散乱光及びレーリー散乱光を利用し、
超電導コイル5の温度並びに構造的変形を同時に監視す
る。ここで監視装置1工は、光源及び散乱光検出装置等
から構成される。また、光ファイバ40は歪分布検出用
であり、光ファイバ41は温度分布検出用となる。
FIG. 9 shows the superconducting coil monitoring system of the present invention,
This is an example in which the embodiments shown in FIGS. 1 and 3 are combined, and using Raman scattered light and Rayleigh scattered light,
The temperature and structural deformation of the superconducting coil 5 are monitored simultaneously. Here, one monitoring device is composed of a light source, a scattered light detection device, and the like. Further, the optical fiber 40 is used for detecting strain distribution, and the optical fiber 41 is used for detecting temperature distribution.

第10図は、超電導コイル5の温度上昇の検出を例にと
り、その温度上昇の区間を特定する他の実施例が示され
る。すなわち、複数回に巻いた光ファイバ4を超電導コ
イル5に設置する。この時のストークス散乱光とアンチ
ストークス散乱光との強度比は、第11図のようになる
。この強度比の周期的な変化は、超電導コイル5の長さ
に依存しており、光ファイバ4の光の速度をこれから求
めることで、戻り光の検出時間からさらに正確に温度上
昇の区間を特定することができる。
FIG. 10 shows another embodiment in which the temperature rise of the superconducting coil 5 is detected, and the section of the temperature rise is specified. That is, the optical fiber 4 wound multiple times is installed in the superconducting coil 5. The intensity ratio of the Stokes scattered light and the anti-Stokes scattered light at this time is as shown in FIG. This periodic change in the intensity ratio depends on the length of the superconducting coil 5, and by determining the speed of light in the optical fiber 4 from this, the period of temperature rise can be identified more accurately from the detection time of the returned light. can do.

さらに、ストークス散乱光波長及びアンチストークス散
乱光波長に対する受光器の受光効率の違いは、次の方法
によっても補正することができる。
Furthermore, the difference in light receiving efficiency of the light receiver for the Stokes scattered light wavelength and the anti-Stokes scattered light wavelength can also be corrected by the following method.

すなわち、温度θがわかっている光ファイバの特定区間
からのストークス散乱光及びアンチストークス散乱光の
強度比をR(θ)とすると、超電導コイルの温度検出区
間での強度比R(T)とは、下式の関係がある。
That is, if the intensity ratio of Stokes scattered light and anti-Stokes scattered light from a specific section of the optical fiber whose temperature θ is known is R(θ), then what is the intensity ratio R(T) in the temperature detection section of the superconducting coil? , there is a relationship as shown below.

これは、ラマン散乱光に対する受光器の受光効率を含ま
ないため、より正確に温度測定が可能となる。
Since this does not include the light receiving efficiency of the light receiver for Raman scattered light, more accurate temperature measurement is possible.

なお、本発明の超電導コイル監視システムでは、超電導
コイルの温度分布及び歪分布を検出するため、超電導コ
イルに並列に設置した光ファイバに対し、パルス的な単
色光を入射した時の光フアイバ内部からの散乱光を散乱
光検出装置で検出する構成であるが、超電導コイルの安
定性監視のシステムとして下記のシステムもある。
In addition, in the superconducting coil monitoring system of the present invention, in order to detect the temperature distribution and strain distribution of the superconducting coil, pulsed monochromatic light is incident on the optical fiber installed in parallel to the superconducting coil from inside the optical fiber. The structure is such that the scattered light of the superconducting coil is detected by a scattered light detection device, but the following system is also available as a system for monitoring the stability of superconducting coils.

すなわち、超電導コイルの温度変化を検出するため、超
電導コイルに並列に設置した光ファイバに対し、定常的
な単色光を入射した時の光フアイバ内部からのラマン散
乱光を散乱光検出装置にて検出する。この時のラマン散
乱光の分光特性は、光ファイバの受ける温度変化による
ラマン散乱光の波長移動として検出される。これより光
ファイバのラマン散乱光の波長移動数から、超電導コイ
ルにおけるクエンチ現象による温度上昇、あるいはクエ
ンチ現象を発生させる要因となる超電導コイル周囲の温
度上昇が検出できる。
In other words, in order to detect temperature changes in the superconducting coil, a scattered light detector detects the Raman scattered light from inside the optical fiber when steady monochromatic light is incident on the optical fiber installed in parallel to the superconducting coil. do. The spectral characteristics of the Raman scattered light at this time are detected as a wavelength shift of the Raman scattered light due to temperature changes experienced by the optical fiber. From this, it is possible to detect a temperature rise due to the quench phenomenon in the superconducting coil, or a temperature rise around the superconducting coil, which is a factor that causes the quench phenomenon, from the number of wavelength shifts of the Raman scattered light of the optical fiber.

〔発明の効果〕〔Effect of the invention〕

本発明の超電導コイル監視システムによれば、超電導コ
イルに並列に設置した光ファイバからのラマン散乱光、
レーリー散乱光の時間的な変化を検出することにより、
ラマン散乱光の強度変化からは、超電導コイルのクエン
チ現象による温度上昇、あるいは超電導コイル周囲の温
度上昇を検出できる。また、レーリー散乱光の強度変化
からは、超電導コイルの電磁力による構造的変形を検出
できる。そして温度上昇、あるいは構造的変形の発生し
ている位置は、散乱光の戻り時間から特定できる。さら
に、光ファイバは、超電導コイルの強力な電磁場の影響
を受けず、かつ熱絶縁性が良いため、超電導コイルへの
電流遮断及びバイパス等の保護対策のための情報が提供
でき、超電導コイ19− ルの保守性の向上が図れる。
According to the superconducting coil monitoring system of the present invention, Raman scattered light from an optical fiber installed in parallel to the superconducting coil,
By detecting temporal changes in Rayleigh scattered light,
From changes in the intensity of Raman scattered light, it is possible to detect a temperature rise due to the quench phenomenon of the superconducting coil or a temperature rise around the superconducting coil. Furthermore, structural deformation of the superconducting coil due to electromagnetic force can be detected from changes in the intensity of Rayleigh scattered light. The location where the temperature rise or structural deformation is occurring can be identified from the return time of the scattered light. Furthermore, optical fibers are not affected by the strong electromagnetic field of superconducting coils and have good thermal insulation properties, so they can provide information for protective measures such as current interruption and bypass to superconducting coils. The maintainability of the file can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図、第2図は本発
明に用いる光ファイバのラマン散乱光の時間的強度変化
を示す図、第3図は超電導コイルの構造的変形を検出す
る他の実施例を示す図、第4図は光ファイバのレーリー
散乱光の時間的強度変化を示す図、第5図及び第6図は
本発明にて用いる散乱光検出装置における処理手順を示
す図、第7図、第8図、第9図及び第10図は本発明の
他の実施例を示す構成図、第11図は、第10図の光フ
ァイバにおける散乱光の強度比を示す図である。 1・・光源、2・・・光分岐器、4・・光ファイバ、5
・・・超電導コイル、7・・・散乱光検出装置。
Figure 1 is a configuration diagram showing an embodiment of the present invention, Figure 2 is a diagram showing temporal intensity changes of Raman scattered light of an optical fiber used in the present invention, and Figure 3 is a diagram showing structural deformation of a superconducting coil. FIG. 4 is a diagram showing temporal intensity changes of Rayleigh scattered light of an optical fiber, and FIGS. 5 and 6 are diagrams showing processing procedures in a scattered light detection device used in the present invention. , FIG. 7, FIG. 8, FIG. 9, and FIG. 10 are configuration diagrams showing other embodiments of the present invention, and FIG. 11 is a diagram showing the intensity ratio of scattered light in the optical fiber of FIG. 10. It is. 1...Light source, 2...Optical splitter, 4...Optical fiber, 5
...Superconducting coil, 7...Scattered light detection device.

Claims (9)

【特許請求の範囲】[Claims] 1.超電導コイルに電流を流してエネルギー貯蔵を行う
電力貯蔵用超電導エネルギー貯蔵システムの超電導コイ
ル監視システムにおいて、前記超電導コイルに並設した
光ファイバと、該光ファイバにパルス単色光を入射する
光源と、該光源と前記光ファイバーとの間に設けた光分
岐器と、該光分岐器を介して受光した前記光ファイバか
らの散乱光を電気変換して演算処理するとともに前記超
電導コイルの状態を表示する散乱光検出装置とからなる
ことを特徴とする超電導コイル監視システム。
1. A superconducting coil monitoring system for a superconducting energy storage system for power storage that stores energy by passing a current through a superconducting coil, comprising: an optical fiber installed in parallel with the superconducting coil; a light source that inputs pulsed monochromatic light into the optical fiber; an optical splitter provided between a light source and the optical fiber; and scattered light that receives scattered light from the optical fiber through the optical splitter and electrically converts it into arithmetic processing and displays the state of the superconducting coil. A superconducting coil monitoring system comprising a detection device.
2.散乱光検出装置は、光分岐器からの散乱光をそれぞ
れの波長に分光してその分光を電気変換する受光器と、
その受光信号を増幅して演算処理する演算処理装置と、
その出力信号を表示する表示装置とからなることを特徴
とする請求項1記載の超電導コイル監視システム。
2. The scattered light detection device includes a light receiver that separates the scattered light from the optical splitter into respective wavelengths and converts the separated lights electrically;
an arithmetic processing device that amplifies and performs arithmetic processing on the received light signal;
The superconducting coil monitoring system according to claim 1, further comprising a display device that displays the output signal.
3.散乱光検出装置は、散乱光を分光してラマン散乱光
の強度変化から光フアイバの温度分布を演算するととも
に、該温度分布より超電導コイルの温度変化を検出し表
示する装置であることを特徴とする請求項1又は2記載
の超電導コイル監視システム。
3. The scattered light detection device is characterized by being a device that spectrally disperses the scattered light, calculates the temperature distribution of the optical fiber from the intensity change of the Raman scattered light, and detects and displays the temperature change of the superconducting coil from the temperature distribution. The superconducting coil monitoring system according to claim 1 or 2.
4.散乱光検出装置は、散乱光を分光してレーリー散乱
光の強度変化から光ファイバの歪分布を演算するととも
に、該歪分布より超電導コイルの構造変形を検出し表示
する装置であることを特徴とする請求項1又は2記載の
超電導コイル監視システム。
4. The scattered light detection device is characterized by being a device that spectrally disperses the scattered light, calculates the strain distribution of the optical fiber from the intensity change of the Rayleigh scattered light, and detects and displays the structural deformation of the superconducting coil from the strain distribution. The superconducting coil monitoring system according to claim 1 or 2.
5.散乱光検出装置は、光ファイバのそれぞれの部分か
らの散乱光の戻り時間と、該散乱光の強度変化とから超
電導コイルの温度及び歪の変化した区間を特定する装置
であることを特徴とする請求項1〜4のいずれか1項記
載の超電導コイル監視システム。
5. The scattered light detection device is characterized in that it is a device that identifies the section where the temperature and strain of the superconducting coil have changed based on the return time of the scattered light from each part of the optical fiber and the intensity change of the scattered light. The superconducting coil monitoring system according to any one of claims 1 to 4.
6.超電導コイルに並設した光ファイバは、前記超電導
コイルに複数個所で固定されるとともに、該固定される
個所で初期歪が付加されてあることを特徴とする請求項
1,2又は4記載の超電導コイル監視システム。
6. The superconductor according to claim 1, 2 or 4, wherein the optical fibers arranged in parallel to the superconducting coil are fixed to the superconducting coil at a plurality of locations, and an initial strain is added at the fixed locations. Coil monitoring system.
7.超電導コイルに電流を流してエネルギー貯蔵を行う
電力貯蔵用超電導エネルギー貯蔵システムの超電導コイ
ル監視システムにおいて、前記超電導コイルに並設した
光ファイバにパルス単光色を入射してその散乱光を分岐
する光装置と、該散乱光を受光し電気変換して前記散乱
光の強度変化から前記光フアイバの温度分布及び歪分布
に対応する前記超電導コイルの温度分布及び構造変形を
演算するとともに、該超電導コイルのクエンチ現象及び
構造変形を表示する散乱光検出装置とを備えたことを特
徴とする超電導コイル監視システム。
7. In a superconducting coil monitoring system for a superconducting energy storage system for power storage in which energy is stored by passing a current through a superconducting coil, a pulsed monochromatic light is incident on an optical fiber installed in parallel with the superconducting coil, and the scattered light is branched. a device, which receives the scattered light, converts it electrically, calculates the temperature distribution and structural deformation of the superconducting coil corresponding to the temperature distribution and strain distribution of the optical fiber from the intensity change of the scattered light; A superconducting coil monitoring system comprising a scattered light detection device that displays a quench phenomenon and structural deformation.
8.散乱光の強度変化は、ラマン散乱光の強度比が最大
となる波長変化で示され該波長変化により光フアイバの
温度分布が演算されることを特徴とする請求項7記載の
超電導コイル監視システム。
8. 8. The superconducting coil monitoring system according to claim 7, wherein the intensity change of the scattered light is indicated by a wavelength change at which the intensity ratio of the Raman scattered light is maximum, and the temperature distribution of the optical fiber is calculated based on the wavelength change.
9.超電導コイルの冷却容器に収納され該超電導コイル
の雰囲気温度を検出する少くとも1個の光フアイバにパ
ルス単光色を入射してその散乱光を分岐する光装置を備
えたことを特徴とする請求項7記載の超電導コイル監視
システム。
9. A claim characterized by comprising an optical device that injects a pulsed single light color into at least one optical fiber that is housed in a cooling container for a superconducting coil and detects the ambient temperature of the superconducting coil, and branches the scattered light. The superconducting coil monitoring system according to item 7.
JP21950989A 1989-08-25 1989-08-25 Superconducting-coil monitoring system Pending JPH0382939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21950989A JPH0382939A (en) 1989-08-25 1989-08-25 Superconducting-coil monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21950989A JPH0382939A (en) 1989-08-25 1989-08-25 Superconducting-coil monitoring system

Publications (1)

Publication Number Publication Date
JPH0382939A true JPH0382939A (en) 1991-04-08

Family

ID=16736576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21950989A Pending JPH0382939A (en) 1989-08-25 1989-08-25 Superconducting-coil monitoring system

Country Status (1)

Country Link
JP (1) JPH0382939A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07170721A (en) * 1992-06-26 1995-07-04 Canon Inc Method of detecting quenching of superconducting motor, superconducting magnet device, superconducting actuator, and superconductive wire, and its superconductive wire
WO2013081123A1 (en) * 2011-12-01 2013-06-06 株式会社フジクラ Method for detecting normal conduction transition of superconducting wire rod

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07170721A (en) * 1992-06-26 1995-07-04 Canon Inc Method of detecting quenching of superconducting motor, superconducting magnet device, superconducting actuator, and superconductive wire, and its superconductive wire
WO2013081123A1 (en) * 2011-12-01 2013-06-06 株式会社フジクラ Method for detecting normal conduction transition of superconducting wire rod
CN103959044A (en) * 2011-12-01 2014-07-30 株式会社藤仓 Method for detecting normal conduction transition of superconducting wire rod
US20140268130A1 (en) * 2011-12-01 2014-09-18 Fujikura Ltd. Method for detecting non-superconducting transition of superconducting wire
JPWO2013081123A1 (en) * 2011-12-01 2015-04-27 株式会社フジクラ Method for detecting normal conducting transition of superconducting wire
EP2787341A4 (en) * 2011-12-01 2015-05-27 Fujikura Ltd Method for detecting normal conduction transition of superconducting wire rod

Similar Documents

Publication Publication Date Title
JP5070874B2 (en) Measuring device, abnormality detection device and abnormality detection method
CN107917738B (en) Distributed optical fiber sensing system capable of simultaneously measuring temperature, strain and vibration
CN103616089B (en) A kind of optical fiber temperature vibration sensor and comprehensive monitoring system and method
CN104964699B (en) Disturbance determination methods and device based on φ OTDR optical fiber distributed perturbation sensors
CN107843357B (en) Distributed fiber optic temperature and strain detecting method based on Raman scattering
US20090202194A1 (en) Optical measuring device for determining temperature in a cryogenic environment and winding arrangement whose temperature can be monitored
JP5242098B2 (en) Optical fiber sensor and variation position detection method
CN111896136B (en) Dual-parameter distributed optical fiber sensing device and method with centimeter-level spatial resolution
BR102014000346A2 (en) TEMPERATURE DETECTION SYSTEM
CN108414113A (en) The fire alarm system and method for fiber optic temperature are predicted with multi-point temperature coefficient of dispersion
CN112378430B (en) Distributed optical fiber Raman sensing device and method based on chaotic laser
JPS63140927A (en) Distribution temperature sensor
CN108181025A (en) A kind of optical fiber composite overhead ground wire thermal fault on-line monitoring method
CN104614091B (en) All -fiber long range high spatial resolution single photon temperature sensor
KR20110047484A (en) Method for measuring temperature distribution using Raman ???? temperature sensor
Ludbrook et al. Continuous fiber Bragg grating optical sensors for superconducting magnet quench detection: the effects of attenuation and position in the array
JPH0382939A (en) Superconducting-coil monitoring system
JPH0420823A (en) Measuring apparatus for exothermic temperature of axial part
CN109990917A (en) A kind of data center's system for detecting temperature and its detection method
CN203772449U (en) Fiber temperature-measuring tape with high spatial resolution
JPH07218353A (en) Temperature distribution measurement method and device by otdr
CN209745427U (en) data center temperature detection system
JPH0755332A (en) Method for sensing abnormal state in low temperature facility
CN112033574A (en) Distributed fiber laser monitoring system and monitoring method
JP2989228B2 (en) Power cable abnormal point detector