JPH038268A - Sealed storage battery and manufacture thereof - Google Patents

Sealed storage battery and manufacture thereof

Info

Publication number
JPH038268A
JPH038268A JP1140794A JP14079489A JPH038268A JP H038268 A JPH038268 A JP H038268A JP 1140794 A JP1140794 A JP 1140794A JP 14079489 A JP14079489 A JP 14079489A JP H038268 A JPH038268 A JP H038268A
Authority
JP
Japan
Prior art keywords
electrode plate
electrolyte
negative electrode
storage battery
sealed storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1140794A
Other languages
Japanese (ja)
Other versions
JPH0744040B2 (en
Inventor
Yoshiaki Hasuda
蓮田 良紀
Takaharu Akuto
阿久戸 敬治
Maki Ishizawa
真樹 石沢
Toshio Horie
堀江 利夫
Tsutomu Ogata
努 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1140794A priority Critical patent/JPH0744040B2/en
Publication of JPH038268A publication Critical patent/JPH038268A/en
Publication of JPH0744040B2 publication Critical patent/JPH0744040B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/121Organic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To obtain a sealed thin storage battery having high capacity and long life by arranging an electrolyte between a positive plate and a negative plate and on the negative plate. CONSTITUTION:A positive plate 1 and a negative plate 2 are arranged on a plastic base 4 so that the height of the negative plate 2 is lower than that of the positive plate 1. An electrolyte is filled into the space formed between the positive plate 1 and the negative plate 2 and the space formed on the negative plate 2. The gelled electrolyte desirable to be filled in these spaces is prepared by containing sulfuric acid in silica sol or containing glass short fibers or an inorganic compound such as porous glass in the sulfuric acid-contained silica sol. A sealed thin lead-acid battery having high capacity and long life can be obtained.

Description

【発明の詳細な説明】 (発明の産業上利用分野) 本発明は密閉型蓄電池およびその製造方法、さらに詳細
には機器の小型化に伴う電池の薄形化を実現すると共に
、さらに高容量化と長寿命化を同時に可能にすることが
できる密閉型蓄電池及びその製造方法に関するものであ
る。
[Detailed Description of the Invention] (Industrial Application Field of the Invention) The present invention provides a sealed storage battery and a method for manufacturing the same, and more specifically, realizes thinning of the battery due to miniaturization of equipment, and further increases the capacity. The present invention relates to a sealed storage battery and a method for manufacturing the same, which can simultaneously achieve long life and long life.

(従来技術) ポータプル機器などの小型機器の普及に伴い、安価で薄
形の密閉型蓄電池の需要が増大している。
(Prior Art) With the spread of small devices such as portable devices, the demand for inexpensive and thin sealed storage batteries is increasing.

その薄形化の方法として、例えば、特願昭63−185
085号に記載されている密閉型蓄電池がある、この方
法は同一平面上に正極と負極が並設され、正極と負極の
厚さを同一にして両極間の空間には電池反応に関与する
電解質が充填されている。この構造を取ることにより、
充放電に伴う電池反応の場の進展方法が電極面間ではな
く、電極面と平行方向となる電極端面間の反応となる。
As a method for making the thickness thinner, for example, Japanese Patent Application No. 63-185
There is a sealed storage battery described in No. 085. In this method, a positive electrode and a negative electrode are arranged side by side on the same plane, the thickness of the positive electrode and the negative electrode are the same, and the space between the two electrodes is filled with an electrolyte that participates in the battery reaction. is filled. By taking this structure,
The way the battery reaction field develops during charging and discharging is not between the electrode surfaces, but between the electrode end surfaces parallel to the electrode surfaces.

これにより電極面中央部に位置する集電部の劣化が保護
されるため、電極厚さが薄くなっても寿命が低下するこ
となく薄形化を可能としている。
This protects the current collector located at the center of the electrode surface from deteriorating, so that even if the electrode thickness becomes thinner, the lifespan will not be reduced and it is possible to make the electrode thinner.

また、正極及び負極パターンは正極活物質及び負極活物
質をスクリーン印刷することができるために、スクリー
ン印刷用マスクパターンを変更するだけで容易に種々の
形状の電極の製造を可能にしている。
Further, since the positive electrode and negative electrode patterns can be formed by screen printing the positive electrode active material and the negative electrode active material, it is possible to easily manufacture electrodes of various shapes by simply changing the screen printing mask pattern.

(発明が解決する問題点) しかしながら、例えば鉛蓄電池では正極活物質の利用率
は、負極のそれよりも低いために、正極活物質量を負極
活物質量より多めにするのが一般的であり、高容量化の
最適設計上において正極厚さは負極のそれより厚いこと
が望ましい。
(Problems to be solved by the invention) However, for example, in lead-acid batteries, the utilization rate of the positive electrode active material is lower than that of the negative electrode, so it is common to make the amount of the positive electrode active material larger than the amount of the negative electrode active material. In terms of optimal design for high capacity, it is desirable that the thickness of the positive electrode be thicker than that of the negative electrode.

以上のような理由で正極と負極の端面が離間対向しその
間で反応することを特徴とするこの方法は、電解質の厚
さが負極の厚さと同一になるように硫酸などの電解質を
充填すると、電池の薄形化と長寿命化を達成できるもの
のその電解質が負極厚さより高い正極端面の活物質面全
体に接触できないために、容量が小さくなるという欠点
を有している。
For the reasons mentioned above, this method is characterized in that the end faces of the positive and negative electrodes are spaced apart and face each other, and reactions occur between them. Although the battery can be made thinner and have a longer lifespan, it has the disadvantage that the capacity is reduced because the electrolyte cannot contact the entire surface of the active material on the positive end surface, which is higher than the thickness of the negative electrode.

一方、例えば特願平1−57075号に示される方法、
すなわち正・負極間及び、正極と負極の活物質面上部に
も電解質層を設ける方法では、高容量化は達成できるも
のの、■正極の鉛または鉛合金の集電体が電解質の硫酸
に侵され易い性質があること、■薄形電池においては正
極活物質層の厚さが正・負電極間距離に比べてがなり薄
いなめ、正極上面部に存在する電解質の硫酸のために、
正極端面部のみに硫酸がある場合と比し、集電体の鉛消
失速度が著しく速い、などの理由により電池寿命が短い
という欠点を有している。また、従来の薄形電池におけ
る電解質形成方法は、電池構造における電解質パターン
に、例えばガラス繊維でできたリテーナを裁断し、それ
を電極間に挿入して硫酸電解液をリテーナ中に含浸させ
ていた。この方法は前記リテーナの保形性が乏しいため
にリテーナ挿入時に位置ずれを起こすという欠点を有し
ている。
On the other hand, for example, the method shown in Japanese Patent Application No. 1-57075,
In other words, although high capacity can be achieved by providing an electrolyte layer between the positive and negative electrodes and on the active material surfaces of the positive and negative electrodes, ■ the lead or lead alloy current collector of the positive electrode is attacked by the sulfuric acid electrolyte. ■In thin batteries, the thickness of the positive electrode active material layer is thinner than the distance between the positive and negative electrodes, and due to the sulfuric acid electrolyte present on the top surface of the positive electrode,
Compared to the case where sulfuric acid is present only on the positive end surface, this method has the disadvantage that the battery life is short because the rate of lead disappearance in the current collector is significantly faster. In addition, the conventional method for forming electrolyte in thin batteries involves cutting a retainer made of glass fiber, for example, into the electrolyte pattern in the battery structure, inserting it between the electrodes, and impregnating the retainer with sulfuric acid electrolyte. . This method has the disadvantage that the retainer has poor shape retention, which causes positional displacement when inserting the retainer.

本発明は、上述の問題点に鑑みなされたものであり、薄
形の密閉型鉛蓄電池において高容量化を図りながら且つ
長寿命化を可能にする新しい密閉型蓄電池及びその製造
方法を提供することにある。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a new sealed storage battery and a method for manufacturing the same that can increase the capacity and extend the life of a thin sealed lead-acid battery. It is in.

(問題点を解決するための手段) 上記間u点を解決するために、本発明による密閉型蓄電
池は負極板と該負極板厚みより厚くなっている正極板と
をプラスチックフィルムの同一平面上に互いに離間対向
させて配置し、前記正極板と前記負極板の画電極端面及
び前記負極板の上面部における空間に電解質を設けたこ
とを特徴とするものである。
(Means for solving the problem) In order to solve the above problem, the sealed storage battery according to the present invention has a negative electrode plate and a positive electrode plate that is thicker than the negative electrode plate on the same plane of a plastic film. The electrolyte is provided in spaces at the end surfaces of the picture electrodes of the positive electrode plate and the negative electrode plate, and in the upper surface portion of the negative electrode plate, so that they are spaced apart from each other and facing each other.

また、本発明は上述のような密閉型蓄電池を製造する方
法に関するものであり、特に電解質パターンの位置ずれ
防止を可能にするために、この製造方法は負極板と負極
板厚みより厚くなっている正格板とがプラスチック基板
上の同一平面上に互いに離間対向している電極構造を有
する密閉型蓄電池の製造方法であって、その正極板と負
極板の両電極端面間及び負極板上部の空間にゲル状電解
質を充填させることを特徴としている。ゲル状電解質は
スクリーン印刷、圧入、滴下などの方法により設けるこ
とができる。
The present invention also relates to a method for manufacturing the above-mentioned sealed storage battery, and in particular, in order to prevent the electrolyte pattern from shifting, this manufacturing method uses a negative electrode plate that is thicker than the negative electrode plate thickness. A method for manufacturing a sealed storage battery having an electrode structure in which a positive plate and a positive plate face each other at a distance on the same plane on a plastic substrate, and the method includes a method for manufacturing a sealed storage battery having an electrode structure in which a positive plate and a positive plate face each other at a distance from each other on the same plane on a plastic substrate. It is characterized by being filled with gel electrolyte. The gel electrolyte can be provided by methods such as screen printing, press-fitting, and dropping.

従来の技術とは電解質の存在する位置が異なっている。The difference from conventional technology is the location of the electrolyte.

すなわち、従来技術は正・負極全面または対向正・負極
間のみに存在しているのに対して、本技術は正極板と負
極板の両電極端面間及び負極板上面部の空間にある点が
異なっている。また、電解質の充填が、ゲル状電解質を
スクリーン印刷する方法才たは型抜きなどを用いて圧入
する方法、ゾル状電解質をスポイトなどにより滴下する
方法によっているため電池構造における電解質パターン
の位置ずれがなく容易に形成できるという点が従来技術
と異なっている。
In other words, whereas the conventional technology exists only on the entire surface of the positive and negative electrodes or between the opposing positive and negative electrodes, the present technology exists in the space between the end surfaces of the positive and negative electrodes and on the upper surface of the negative electrode. It's different. In addition, electrolyte filling is done by screen printing gel electrolyte, press-fitting using a die cutter, or dropping sol electrolyte using a dropper, which may cause misalignment of the electrolyte pattern in the battery structure. It differs from the prior art in that it can be easily formed without any problems.

第1図は、本発明の密閉型蓄電池の電極構造を示してお
り、■は正極板、2は負極板、3は電解質、4はプラス
チックフィルム基板、5は安全弁である。
FIG. 1 shows the electrode structure of the sealed storage battery of the present invention, where ▪ is a positive electrode plate, 2 is a negative electrode plate, 3 is an electrolyte, 4 is a plastic film substrate, and 5 is a safety valve.

また、同図(a)は平面図、(b)は前記第1図(a)
のA−A’断面図である。
Also, FIG. 1(a) is a plan view, and FIG. 1(b) is the same as in FIG. 1(a).
It is an AA' sectional view of.

第1図より明らかなように正極板1および負極板2をプ
ラスチック基板4上に負極板2の高さが正極板1より低
くなるように形成すると共に(第1図(b)参照)、電
解質3を前記正極板1と負極板2の間で形成される空間
および前記負極板2の上面で構成される空間に充填する
(第1図(a)、第1図(b)参照)。
As is clear from FIG. 1, the positive electrode plate 1 and the negative electrode plate 2 are formed on the plastic substrate 4 so that the height of the negative electrode plate 2 is lower than the positive electrode plate 1 (see FIG. 1(b)), and the electrolyte 3 into the space formed between the positive electrode plate 1 and the negative electrode plate 2 and the space formed by the upper surface of the negative electrode plate 2 (see FIGS. 1(a) and 1(b)).

電解質3は従来のガラス繊維製の不織布を用いて電解質
形状を作製し、それに硫酸を含浸させたものを用いても
よいが、所定の電解質形状を生産性良く効率的に形成す
るには、例えばスクリーン印刷用マスクを介してスクリ
ーン印刷手法により形成するか、型抜きなどにより圧入
できるゲル状電解質及びスポイトなどにより滴下できる
ゾル状電解質が好ましい、正極板1及び負極板2は鉛系
材料でできな集電体の上に電池反応に寄与する活物質を
公知のスクリーン印刷法により形成させたものであり、
負極側より正極側の方が高くなっている。
The electrolyte 3 may be prepared by making an electrolyte shape using a conventional glass fiber non-woven fabric and impregnating it with sulfuric acid, but in order to efficiently form a predetermined electrolyte shape with good productivity, for example, The positive electrode plate 1 and the negative electrode plate 2 are preferably made of a lead-based material, such as a gel electrolyte that can be formed by a screen printing method through a screen printing mask, or a gel electrolyte that can be press-fitted by die cutting or the like, or a sol electrolyte that can be dropped with a dropper. An active material that contributes to battery reactions is formed on a current collector using a known screen printing method,
The positive electrode side is higher than the negative electrode side.

この構造において、負極と正極との間及び負極面上部の
正極間に充填させる望ましいゲル状電解質の例としては
、シリカゾル(たとえば日産化学社製スノーチック20
(商標名)、スノーチック0(商標名)、スノーチック
XS(商標名)など)に硫酸を含有させたもの及びそれ
らの硫酸含有シリカゾルにガラス短繊維または多孔質ガ
ラスなどの無機化合物を含有させたものがある。
In this structure, examples of desirable gel electrolytes to be filled between the negative electrode and the positive electrode and between the positive electrode on the upper part of the negative electrode surface include silica sol (for example, Snow Tick 20 manufactured by Nissan Chemical Co., Ltd.).
(trade name), Snowtick 0 (trade name), Snowtick There is something.

また、メトキシシラン、エトキシシランなどの有機硅素
化合物を水と酸触媒またはアルカリ触媒とで高分子量化
させたゲルと硫酸との混合物がある。さらに、これらゲ
ルに、粘度を調節するために一般的な増粘剤を含有させ
てもよい。
There is also a mixture of sulfuric acid and a gel obtained by increasing the molecular weight of an organosilicon compound such as methoxysilane or ethoxysilane with water and an acid or alkali catalyst. Furthermore, these gels may contain common thickeners to adjust the viscosity.

このような電解質を電極間および負極上面に充填する方
法は、基本的に限定されるものではない。
The method of filling such an electrolyte between the electrodes and on the upper surface of the negative electrode is basically not limited.

例えば、電解質がゲル状態にある場合にはスクリーン印
刷法又は圧入法により、電解質がゾル状態にある場合に
は滴下法などにより行なうことができる。
For example, when the electrolyte is in a gel state, it can be carried out by a screen printing method or a press-in method, and when the electrolyte is in a sol state, it can be carried out by a dropping method.

即ち、ゲル状電解質をスクリーン印刷する方法としては
、一般的なスクリーン印刷機を用いることができ、スキ
ージ及びスクリーンマスクなど一般的なスクリーン印刷
機用のものを用いることができるが、この硫酸含有ゲル
は強酸性のために、スクリーンマスクの材質は耐硫酸性
に優れるものであればよく、例えばステンレス製または
アモルファス合金製のものがある。メツシュサイズは8
0メツシュ前後が良好な充填性を得るのに望ましいが、
ゲルの粘性に応じて開口率60〜80%のものを用いる
ことができる。
That is, as a method for screen printing the gel electrolyte, a general screen printing machine can be used, and a squeegee and a screen mask for general screen printing machines can be used, but this sulfuric acid-containing gel Since the material is strongly acidic, the screen mask may be made of any material as long as it has excellent sulfuric acid resistance, such as stainless steel or amorphous alloy. mesh size is 8
Around 0 mesh is desirable to obtain good filling properties, but
Depending on the viscosity of the gel, one having an aperture ratio of 60 to 80% can be used.

ゲル状電解質を圧入する方法としては、たとえば、底面
に電解質パターンの平面形状を有し、その底面がゲルを
押すのに適した筒状のものから構成されており、それに
ゲル状電解質を入れて筒上部より下部方向へ圧力をかけ
て電極間の充填すべき空間へ一定量押し出す構造を有す
る型抜き装置により行なうことができる。
A method for press-fitting a gel electrolyte is, for example, to use a cylindrical piece with a planar shape of an electrolyte pattern on the bottom, the bottom of which is suitable for pushing the gel, and then inserting the gel electrolyte into it. This can be carried out using a die-cutting device that has a structure that applies pressure from the upper part of the cylinder to the lower part and extrudes a certain amount into the space to be filled between the electrodes.

また、電解質が低粘度のゾル状態である場合には、スポ
イトによる滴下により、容易に該電解質を充填すること
ができる。
Further, when the electrolyte is in a sol state with low viscosity, the electrolyte can be easily filled by dropping with a dropper.

以上の方法により充填した電解質は、時間の経過と共に
増粘して完全なゲル状電解質となり、所定の電解質形状
を形成する。
The electrolyte filled by the above method increases in viscosity over time and becomes a complete gel-like electrolyte, forming a predetermined electrolyte shape.

次に、第1図に示した本発明による密閉型蓄電池の性能
を確かめるための実施例を以下に示す。
Next, an example for confirming the performance of the sealed storage battery according to the present invention shown in FIG. 1 will be shown below.

(実施例1) プラスチックフィルム基板上に鉛系箔の集電体を形成し
、その上に活物質をスクリーン印刷法により形成し、第
1図に示す電極を形成した。負極板の厚さは350μm
、正極板の厚さは500μm、各極板の幅は4mm、正
極と負極との間の間隔は3mmである。この両電極間及
び負極板上部の空間に第1図(b)に示す構造になるよ
うにスクリーン印刷法により硫酸を含有させたスノーテ
ックス20(商標名)を充填させた。その後上部面にプ
ラスチックフィルムをのせ下部のプラスチックフィルム
と熱シールすることにより密閉型蓄電池を得た。電池の
大きさは54mmX85mmであった。この電池の20
時間率での容量は約70mAhであった。
(Example 1) A lead-based foil current collector was formed on a plastic film substrate, and an active material was formed thereon by screen printing to form the electrode shown in FIG. 1. The thickness of the negative electrode plate is 350μm
, the thickness of the positive electrode plate is 500 μm, the width of each electrode plate is 4 mm, and the spacing between the positive electrode and the negative electrode is 3 mm. The space between the two electrodes and above the negative electrode plate was filled with Snowtex 20 (trade name) containing sulfuric acid by a screen printing method so as to have the structure shown in FIG. 1(b). Thereafter, a plastic film was placed on the upper surface and heat sealed with the lower plastic film to obtain a sealed storage battery. The size of the battery was 54 mm x 85 mm. 20 of this battery
The hourly capacity was approximately 70 mAh.

この電池を用いて25℃、2.45Vの定電圧、最大充
電電流17.5mAの条件下でトリクル充電を行ない、
30日毎に放電電流17.5mA、放電終止電圧1.7
Vの条件で容量試験を行なった。その容量変化の結果は
第2図に示したとおりであった。
Using this battery, trickle charging was performed under the conditions of 25°C, constant voltage of 2.45V, and maximum charging current of 17.5mA,
Discharge current 17.5mA, discharge end voltage 1.7 every 30 days
A capacity test was conducted under the condition of V. The results of the capacitance change were as shown in FIG.

(比較例1) 電解質の高さが負極板と同じ高さになるように正極板と
負極板との間に圧入法で硫酸含有のスノーチック20(
商標名)を充填させる以外は実施例1と同様にして密閉
型蓄電池を作製した。この電池の容量は40mAhと実
施例に比べて低い値であった。
(Comparative Example 1) A sulfuric acid-containing Snowtic 20 (
A sealed storage battery was produced in the same manner as in Example 1, except that the battery was filled with the battery. The capacity of this battery was 40 mAh, which was a lower value than that of the example.

(比較例2) 電解質が正極板と同じ高さに充填された上に、さらに3
0μmの厚さの電解質を同一平面上の正極板と電解質ゲ
ル面の全面にスクリーン印刷法で硫酸含有スノーチック
20(商標名)を塗布して電解質層を正極板上面にも形
成させた以外は実施例と同様にして密閉型蓄電池を作製
した。この電池の容量は約70mAhであった。この電
池を用いて、実施例に示したトリクル充電の条件でトリ
クル充電を行ない容量試験を行なった。その容量変化の
結果は第2図に示したとおりであり、実施例のものに比
べて著しい低下が認められた。
(Comparative Example 2) In addition to the electrolyte being filled to the same height as the positive electrode plate, an additional 3
Except that sulfuric acid-containing Snowtick 20 (trade name) was applied to the entire surface of the positive electrode plate and electrolyte gel surface on the same plane with a thickness of 0 μm using a screen printing method to form an electrolyte layer also on the upper surface of the positive electrode plate. A sealed storage battery was produced in the same manner as in the example. The capacity of this battery was approximately 70 mAh. Using this battery, a capacity test was performed by performing trickle charging under the trickle charging conditions shown in the examples. The results of the capacitance change are as shown in FIG. 2, and a significant decrease was observed compared to that of the example.

実施例の電池は、比較例1のものに比べて容量が大きく
十分なエネルギー密度を有しており、比較例2のものに
比べてトリクル充電に対しての容量低下が認められず十
分な電池寿命を有している。
The battery of Example has a larger capacity than that of Comparative Example 1 and has sufficient energy density, and compared to that of Comparative Example 2, there is no decrease in capacity against trickle charging, making it a sufficient battery. It has a long lifespan.

(発明の効果) 以上説明したように、この発明においては同一平面上に
正横板と負極板とが配置され、その正極板の高さは負極
板より高くなっている密閉型蓄電池であって、正・負極
板の端面間の空間及び負極板上部の正極板端面間の空間
に電解質を充填した構造を有しているために、従来の薄
形の密閉型蓄電池に比べて高容量化と長寿命化の両性能
を同時に満足させているので、工業的価値は絶大なるも
のである。
(Effects of the Invention) As explained above, in the present invention, the positive and horizontal plates and the negative electrode plate are arranged on the same plane, and the height of the positive electrode plate is higher than the negative electrode plate. Because it has a structure in which the space between the end faces of the positive and negative electrode plates and the space between the end faces of the positive electrode plate above the negative electrode plate is filled with electrolyte, it has a higher capacity than conventional thin sealed storage batteries. Since it simultaneously satisfies both properties of long life, it has tremendous industrial value.

第2図 面の簡単な説明 第1図は本発明の密閉型蓄電池の(a)平面図及び(b
)A−A’面の断面図であり、第2図は本発明の実施例
及び比較例2に示した電池のトリクル充電期間における
容量変化曲線である。
Brief explanation of the second drawing FIG. 1 shows (a) a plan view and (b) a plan view of the sealed storage battery of the present invention.
) is a cross-sectional view taken along the plane AA', and FIG. 2 is a capacitance change curve during trickle charging period of the batteries shown in the example of the present invention and comparative example 2.

1・・・正極板、2・・・負極板、3・・・電解質、4
・・・プラスチックフィルム、5・・・安全弁。
1... Positive electrode plate, 2... Negative electrode plate, 3... Electrolyte, 4
...Plastic film, 5...Safety valve.

放電期間(日)Discharge period (days)

Claims (4)

【特許請求の範囲】[Claims] (1)負極板と該負極板厚みよりも厚くなっている正極
板とをプラスチックフィルムの同一平面上に互いに離間
対向させて配置した密閉型蓄電池であって、前記正極板
と前記負極板の両電極端面間及び前記負極板の上部にお
ける空間に電解質を設けたことを特徴とする密閉型蓄電
池。
(1) A sealed storage battery in which a negative electrode plate and a positive electrode plate that is thicker than the negative electrode plate are arranged on the same plane of a plastic film so as to be spaced apart from each other, and in which both the positive electrode plate and the negative electrode plate A sealed storage battery characterized in that an electrolyte is provided in a space between electrode end faces and above the negative electrode plate.
(2)前記電解質が硫酸を含んだゲル状電解質であるこ
とを特徴とする特許請求の範囲第1項記載の密閉型蓄電
池。
(2) The sealed storage battery according to claim 1, wherein the electrolyte is a gel electrolyte containing sulfuric acid.
(3)前記負極板と前記負極板厚みより厚くなっている
前記正極板とがプラスチックフィルム基板の同一平面上
に互いに離間対向して配置されている電極構造を有する
密閉型蓄電池の製造方法であって、前記正極板と前記負
極板の両電極端面間及び前記負極板の上部における空間
に前記ゲル状電解質を充填させることを特徴とする密閉
型蓄電池の製造方法。
(3) A method for manufacturing a sealed storage battery having an electrode structure in which the negative electrode plate and the positive electrode plate, which is thicker than the negative electrode plate, are arranged on the same plane of a plastic film substrate so as to be spaced apart from each other and facing each other. A method for manufacturing a sealed storage battery, characterized in that the space between the electrode end faces of the positive electrode plate and the negative electrode plate and the space above the negative electrode plate is filled with the gel electrolyte.
(4)前記ゲル状電解質の充填はスクリーン印刷、圧入
又は滴下により行なうことを特徴とする特許請求の範囲
第3項記載の密閉型蓄電池の製造方法。
(4) The method for manufacturing a sealed storage battery according to claim 3, wherein the gel electrolyte is filled by screen printing, press-fitting, or dropping.
JP1140794A 1989-06-02 1989-06-02 Sealed storage battery and manufacturing method thereof Expired - Fee Related JPH0744040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1140794A JPH0744040B2 (en) 1989-06-02 1989-06-02 Sealed storage battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1140794A JPH0744040B2 (en) 1989-06-02 1989-06-02 Sealed storage battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH038268A true JPH038268A (en) 1991-01-16
JPH0744040B2 JPH0744040B2 (en) 1995-05-15

Family

ID=15276896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1140794A Expired - Fee Related JPH0744040B2 (en) 1989-06-02 1989-06-02 Sealed storage battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0744040B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1049530C (en) * 1992-06-22 2000-02-16 王振川 Pasty colloid accumulator and its mfg. method
JP2005174617A (en) * 2003-12-08 2005-06-30 Nissan Motor Co Ltd Battery and vehicle having battery
US7682738B2 (en) 2002-02-07 2010-03-23 Kvg Technologies, Inc. Lead acid battery with gelled electrolyte formed by filtration action of absorbent separators and method for producing it

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1049530C (en) * 1992-06-22 2000-02-16 王振川 Pasty colloid accumulator and its mfg. method
US7682738B2 (en) 2002-02-07 2010-03-23 Kvg Technologies, Inc. Lead acid battery with gelled electrolyte formed by filtration action of absorbent separators and method for producing it
JP2005174617A (en) * 2003-12-08 2005-06-30 Nissan Motor Co Ltd Battery and vehicle having battery
JP4581384B2 (en) * 2003-12-08 2010-11-17 日産自動車株式会社 Battery and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0744040B2 (en) 1995-05-15

Similar Documents

Publication Publication Date Title
US11355816B2 (en) Separators for three-dimensional batteries
KR102551899B1 (en) Electrode structures for three-dimensional batteries
US20190221878A1 (en) Longitudinal constraints for energy storage devices
EP2248217B1 (en) Three-dimensional microbattery and method for the production thereof
EP0302520A1 (en) Secondary battery and method of manufacturing the same
US5916706A (en) Honeycomb battery structure
US5045415A (en) Electrode plate structure
EP0301647B1 (en) Electrochemical cell
JPH038268A (en) Sealed storage battery and manufacture thereof
KR0141967B1 (en) Improved electrode plate structure
JP2003036831A (en) Sealed lead storage battery having gel electrolyte
CN112928270A (en) Energy storage element and method for producing an energy storage element
CN220138344U (en) Pole piece structure and electric core for improving electrolyte wettability
JP2768176B2 (en) Lead storage battery and method of manufacturing the same
JPH0658808B2 (en) Sealed lead acid battery
JP2023519702A (en) Lithium ion secondary battery and manufacturing method thereof
CN114614022A (en) Pole piece and preparation method thereof, lithium battery and preparation method thereof
JP2737227B2 (en) Sealed lead-acid battery
JPH1173985A (en) Lead-acid battery
JP2004014290A (en) Flat battery
JPH07142062A (en) Plate for sealed lead-acid battery
JPH05174864A (en) Hermetic type lead-acid battery
JPH08171894A (en) Sealed storage battery
JPS6116469A (en) Enclosed lead storage battery
JPH01143159A (en) Sealed lead storage battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees