JPH0381082A - Method and apparatus for controlling diameter of laser beam - Google Patents

Method and apparatus for controlling diameter of laser beam

Info

Publication number
JPH0381082A
JPH0381082A JP1216715A JP21671589A JPH0381082A JP H0381082 A JPH0381082 A JP H0381082A JP 1216715 A JP1216715 A JP 1216715A JP 21671589 A JP21671589 A JP 21671589A JP H0381082 A JPH0381082 A JP H0381082A
Authority
JP
Japan
Prior art keywords
beam diameter
optical system
analyzers
laser
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1216715A
Other languages
Japanese (ja)
Inventor
Toshihide Takeda
俊秀 武田
Kaoru Adachi
馨 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP1216715A priority Critical patent/JPH0381082A/en
Publication of JPH0381082A publication Critical patent/JPH0381082A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To automatically adjust the position of an optimum beam diameter by calculating the focal distance and the beam diameter at the necessary part o the sample surface from the beam diameters of at least two beam analyzers at upper and lower positions and relatively shifting a condensing optical system and the sample. CONSTITUTION:This apparatus is composed of at least two beam analyzers 1, 2 placed at a prescribed interval, the condensing optical system 5 such as lenses, arranged between the beam analyzers 1, 2 receiving laser beams 4 from a laser generator 3, a motor 6 for integrally lifting both analyzers 1, 2 containing the condensing optical system 5, a data recorder 7 for detecting each of the beam diameters 11, 12 at the time of receiving the laser beam 4 with both analyzers 1, 2 beam diameter arithmetic means 8 calculating based on information of the beam diameters from the data recorder 7, optical system vertical motor driving means 9 for driving the motor 6 based on signal of the arithmetic means 8 and the sample surface 10, and automatically controlled to the optimum beam diameter.

Description

【発明の詳細な説明】 (産業上の利用分野〉 本発明はレーザビームに係り、特にレーザビーム径の制
御方法とその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a laser beam, and more particularly to a method and apparatus for controlling a laser beam diameter.

(従来の技術) 従来からレンズや放物面鏡においては必要ビーム径(エ
ネルギー密度〉を得る場合に、アクリル板にレーザを照
射し、このアクリル板のレーザにより蒸発(昇化)した
部分の形状からビーム径を測定し、集光光学系の焦点距
離や集光光学系から試料までの距離を求めるようになっ
ていた。
(Prior technology) Conventionally, in order to obtain the required beam diameter (energy density) for lenses and parabolic mirrors, an acrylic plate is irradiated with a laser, and the shape of the part of the acrylic plate that is evaporated (elevated) by the laser is calculated. The beam diameter was measured from the center, and the focal length of the focusing optical system and the distance from the focusing optical system to the sample were determined.

(発明が解決しようとする課題〉 しかし実際には各レンズミラー等においては特に長期間
使用すると、第3図(a)、(b)に示すように試料表
面16にレーザ照射するレンズ15等の温度上昇に伴い
、“熱レンズ効果”と云う現象で(a)の凸レンズ15
は(b)のようにさらに凸になって焦点距離も(a)よ
り(b)のようにさらに短くなり、レーザ発振装置のシ
ャッタが閉じて、レーザのレンズへの照射が終わると冷
えて再び元に戻ると云うことの繰り返しとなって焦点位
置が刻々と変わると云う問題があった。
(Problems to be Solved by the Invention) However, in reality, when each lens mirror etc. is used for a particularly long period of time, as shown in FIGS. As the temperature rises, a phenomenon called "thermal lens effect" causes the convex lens 15 in (a) to
becomes more convex, as shown in (b), and the focal length becomes even shorter than that in (a), as shown in (b). When the shutter of the laser oscillator closes and the laser irradiates the lens, it cools down again. There was a problem in that the focus position changed every moment due to repeated returning to the original position.

またレーザ出力が変わるとレンズへの入熱量が変わり各
々の使用レーザ出力によって焦点位置が違うため、出力
を変更する毎に焦点距離を変更しなければならなかった
Furthermore, when the laser output changes, the amount of heat input to the lens changes, and the focal position differs depending on the laser output used, so the focal length has to be changed each time the output is changed.

そのために切断においては突然切断が出来なくなったり
、溶接においては必要溶は込みが得られなかったり、表
面処理においても第3図のような試料表面16のビーム
径の変化によるエネルギ密度変化で、焼入れやタラッデ
ィングが出来なくなると云う不具合が発生していた。
As a result, cutting may suddenly become impossible, welding may not achieve the required penetration, and surface treatment may suffer from quenching due to energy density changes due to changes in the beam diameter of the sample surface 16 as shown in Figure 3. There was a problem where it was not possible to perform or tarading.

本発明はこれに鑑み、切断溶接および表面処理等におい
てビーム径を最適ビーム径に自動的に調整することので
きるレーザビーム径の制御方法とその装置を提供して従
来技術の持つ欠点の解消を図ることを目的としてなされ
たものである。
In view of this, the present invention provides a laser beam diameter control method and device that can automatically adjust the beam diameter to the optimum beam diameter in cutting, welding, surface treatment, etc., thereby eliminating the drawbacks of the prior art. This was done for the purpose of achieving this goal.

(課題を解決するための手段) 上記目的を達成するため本発明の請求項1は少なくとも
上下2個のビームアナライザのビーム径より演算し、焦
点距離や試料表面等必要部分でのビーム径を算出して、
集光光学系と試料を相対移動させることにより最適ビー
ム径に自動調整する方法を特徴とする請求項2は所定間
隔に置かれた少なくとも2個のビームアナライザと、レ
ーザ発信器からのレーザ光を受ける該ビームアナライザ
の間に設けられた集光光学系と、前記両アナライザを該
集光光学系を含めて一体に昇降動させるモータと、前記
レーザ光を両ビームアナライザが受けたときのビーム径
を検出するデータレコーダと、該データレコーダからの
情報により演算するビム径演算手段と、該演算手段の信
号に基づいて前記モータを駆動させる前記光学系上下用
モータ駆動手段、および資料表面とからなり、最適ビー
ム径に自動的に制御するようにしたことを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, claim 1 of the present invention calculates the beam diameters of at least two beam analyzers, the upper and lower beam analyzers, and calculates the beam diameter at necessary parts such as the focal length and the sample surface. do,
Claim 2 is characterized by a method of automatically adjusting the beam diameter to an optimum beam diameter by relatively moving the condensing optical system and the sample. a condensing optical system provided between the beam analyzers that receives the laser beam; a motor that moves both the analyzers up and down together including the condensing optical system; and a beam diameter when both beam analyzers receive the laser beam. a data recorder that detects the beam diameter, a beam diameter calculating means that calculates based on information from the data recorder, a motor driving means for driving the optical system up and down that drives the motor based on a signal from the calculating means, and a material surface. The beam diameter is automatically controlled to the optimum beam diameter.

(作用〉 上記構成によれば請求項2の装置を使用して請求項1の
方法によりレーザビーム径を最適ビーム径に自sinす
ることが可能となる。
(Function) According to the above configuration, it becomes possible to self-sin the laser beam diameter to the optimum beam diameter by using the apparatus of the second aspect and the method of the first aspect.

(実施例) 以下、本発明を第1図乃至第2図に示す実施例を参照し
て説明する。
(Example) The present invention will be described below with reference to the example shown in FIGS. 1 and 2.

本発明の請求項1にかかるレーザビーム径の制御方法は
、請求項2の制御装置を用いて行うものである。
A method for controlling a laser beam diameter according to a first aspect of the present invention is performed using a control device according to a second aspect.

請求項2にかかる発明は所定間隔に置がれた少なくとも
2個のビームアナライザ1.2と、レーザ発振器3から
のレーザ光4を受ける該ビームアナライザ1.2の同に
設けられたレンズなどの集光光学系5と、前記両アナラ
イザ1.2を該集光光学系5を含めて一体に昇降動させ
るモータ6と、前記レーザ光4を両ビームアナライザ1
,2が受けたときのそれぞれのビーム径11.12を検
出するデータレコーダ7と、該データレコーダ7がらの
ビーム径の情報により演算するビーム径演算手段8と、
該演算手段8の信号に基づいて前記モータを駆動させる
前記光学系上下用モータ駆動手段9、および資料表面1
0とからなり、最適ビム径に自動的に制御するようにし
たものである。
The invention according to claim 2 includes at least two beam analyzers 1.2 placed at a predetermined interval, and lenses of the beam analyzers 1.2 that receive laser light 4 from a laser oscillator 3. A condensing optical system 5, a motor 6 that moves the two analyzers 1.2 up and down together including the condensing optical system 5, and a motor 6 that moves the laser beam 4 to both beam analyzers 1.
.
the optical system upper and lower motor drive means 9 for driving the motor based on the signal of the calculation means 8; and the material surface 1.
0, and the beam diameter is automatically controlled to the optimum beam diameter.

第1因においてビームアナライザ1のビーム径11(発
振器3の生ビーム径を示す)と集光光学系5よりある距
離×4におけるビームアナライザ2でのビーム径12よ
り下記演算によって集光光学系5の焦点距離f1と集光
光学系5より×3の距離部分でのビーム径D(3)を算
出し、 X4X (D  (XI) +D  (Yl))DfX
l)  +o(y+)     f、  −X  30
(3)= × ここに 0[X11  :ビームアナライザ1のX方向ビーム径
D(Yl)   :         ノ/     
         Y      nDfX2)  :
ビームアナライザ2のX方向ビーム径D(Y21:  
    71           Y     nf
l :集光光学系5の焦点距離 ×4 :集光光学系5とビームアナライザ2の距離 ×3 :集光光学系5と試料表面10など必要部分との
距離 1N31:集光光学系5より×3の距離の部分における
ビーム径 したがって請求項14.t、ビームアナライザ1゜2を
用いて、その各々の径11.12のX方向、Y方向をデ
ータレコーダ7でそれぞれ検出し、ビム演算手段8によ
り演算して、この演算によりレーザ処理するに必要な焦
点圧if、の距離や試料表面IOなどの必要部分でのビ
ーム径口(3)を算出する。この演算手段8からの情報
により集光光学系5と試料とを光学系上下動用モータ駆
動手段9からの信号によりモータ6を相対移動させ、最
適ビーム径の位置に自動調整するものである。
In the first factor, from the beam diameter 11 of the beam analyzer 1 (indicating the raw beam diameter of the oscillator 3) and the beam diameter 12 of the beam analyzer 2 at a certain distance from the focusing optical system 5 x 4, the focusing optical system 5 Calculate the beam diameter D(3) at a distance of x3 from the focal length f1 and the condensing optical system 5, and calculate the beam diameter D(3) as follows:
l) +o(y+) f, -X 30
(3) = × 0 here [X11: X-direction beam diameter D (Yl) of beam analyzer 1: /
YnDfX2):
Beam diameter D in the X direction of beam analyzer 2 (Y21:
71 Y nf
l: Focal length of the focusing optical system 5 x 4: Distance between the focusing optical system 5 and the beam analyzer 2 x 3: Distance between the focusing optical system 5 and necessary parts such as the sample surface 10 1N31: From the focusing optical system 5 The beam diameter at the distance x3, therefore, claim 14. t, using a beam analyzer 1°2, detect the X direction and Y direction of each diameter 11.12 with the data recorder 7, calculate with the beam calculation means 8, and use this calculation to perform laser processing. The distance of the focal pressure if, and the beam aperture (3) at a necessary portion such as the sample surface IO are calculated. Based on the information from the calculation means 8, the motor 6 is moved relative to the condensing optical system 5 and the sample using a signal from the optical system vertical movement motor drive means 9, and the beam diameter is automatically adjusted to the position of the optimum beam diameter.

この場合溶接や切断においては、集光光学系5がf、の
焦点距離になるようにモータ6により高さを変更し、焦
点ズレを補正する。
In this case, during welding or cutting, the height of the condensing optical system 5 is changed by the motor 6 so that it has a focal length of f, thereby correcting the focal shift.

また焼入れやクラツデイング等では試料面10での必要
ビーム径をD(5)とし、そのときの集光光学系5と試
料表面10の距離を×5とすると、2×f 1×口(5
) X5=f。
In addition, for hardening, crazing, etc., if the required beam diameter at the sample surface 10 is D(5) and the distance between the condensing optical system 5 and the sample surface 10 is x5, then 2 x f 1 x aperture (5
) X5=f.

D(Xll  +DIYIl を計算しくXS−X3)の距離をモータ6で補正する、
このようにして焦点値W f +および試料表面10の
ビーム径11(51を自動制御すればよい。
Correct the distance of D(Xll +DIYIl by calculating XS-X3) with the motor 6,
In this way, the focus value W f + and the beam diameter 11 (51) of the sample surface 10 may be automatically controlled.

また、よりビーム径、v制御精度を向上させるために、
第1図に示す17のような距wl測定装置をさらに取り
付けて、集光光学系と試料表面の距離を絶えず正確に測
定し、この値を×3として第1図装置(演算手段8〉に
取り込むことが望ましい。
In addition, in order to further improve the beam diameter and v control accuracy,
A distance wl measuring device such as 17 shown in Fig. 1 is further attached to constantly and accurately measure the distance between the condensing optical system and the sample surface, and this value is multiplied by 3 and sent to the Fig. 1 device (calculating means 8). It is desirable to incorporate them.

さらに、レンズやミラーの寿命設定のために、(XS−
X3)の補正量がある設定値を超えた場合、異常警報を
出すシステムにしておくことが望ましい、そして第1図
において3の発振器出口にもう1台のアナライザ18を
追加し、アラナイザ1とよりレーザビーム発振器の発散
角の補正を行い、さらに高精度のシステムにしても良い
Furthermore, in order to set the lifespan of lenses and mirrors,
It is desirable to have a system that issues an abnormality alarm when the correction amount of The divergence angle of the laser beam oscillator may be corrected to provide a more accurate system.

なお、第1図の実施例では光学系としてレンズの場合を
示したが、第2図(a)に示す・ように平面鏡13、放
物面鏡14を傾斜させて組み合わせたもの、あるいは(
b)に示すように千面鎖13、放物面鏡14を水平方向
に組み合わせたものを使用しても良い。
In the embodiment shown in FIG. 1, a lens is used as the optical system, but a combination of a plane mirror 13 and a parabolic mirror 14 tilted as shown in FIG. 2(a), or (
As shown in b), a horizontal combination of a thousand-faced chain 13 and a parabolic mirror 14 may be used.

(発明の効果) 本発明は以上説明したような制御方法とそれを適用する
装置とを備えたから、従来のような調整の煩わしさは全
くなくなり、リアルタイムでV&細突変化微調整が可能
であり、長期的な変動に対しても補正が可能となるので
レーザの信頼性の向上が図れる。
(Effects of the Invention) Since the present invention is equipped with the control method as described above and a device applying the same, the troublesome adjustment as in the conventional method is completely eliminated, and it is possible to fine-tune V and protrusion changes in real time. Since it is possible to correct even long-term fluctuations, the reliability of the laser can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかるレーザビーム径の制御装置の一
実施例を示す系統図、第2図(a)、(b)は第1図の
集光光学系を鏡面とした場合の構造図、第3図は従来の
熱レンズ効果による不具合の一例を示し、(a)はレン
ズの温度上昇前、(b)はレンズの温度上昇後の場合の
状態図である1、2・・・ビームアナライザ、3・・・
レーザ発振器、4・・・レーザ光、5・・−集光光学系
、6・・・モータ、7・・・データレコーダ、8・・−
ビーム径演算手段、9・・・光学系上下用モータ駆動手
段、10・・・試料表面11.12・・−ビーム径、1
3−・・平面鏡、14・・・凹面鏡または放物面鏡、1
5・−・レンズ、16・・・試料表面、17・・・距w
1i1′!l定装置。
Figure 1 is a system diagram showing an embodiment of the laser beam diameter control device according to the present invention, and Figures 2 (a) and (b) are structural diagrams when the condensing optical system in Figure 1 is made into a mirror surface. , Fig. 3 shows an example of a problem caused by the conventional thermal lens effect, where (a) is a state diagram before the temperature of the lens increases, and (b) is a state diagram after the temperature of the lens increases. Analyzer, 3...
Laser oscillator, 4...Laser light, 5...-Condensing optical system, 6...Motor, 7...Data recorder, 8...-
Beam diameter calculation means, 9... Optical system upper and lower motor drive means, 10... Sample surface 11.12...-Beam diameter, 1
3--Plane mirror, 14--Concave mirror or parabolic mirror, 1
5... Lens, 16... Sample surface, 17... Distance w
1i1′! l-determining device.

Claims (1)

【特許請求の範囲】 1)少なくとも上下2個のビームアナライザのビーム径
より演算し、焦点距離や試料表面等必要部分でのビーム
径を算出して、集光光学系と試料を相対移動させること
により最適ビーム径に自動調整することを特徴とするレ
ーザビーム径の制御方法。 2)所定間隔に置かれた少なくとも2個のビームアナラ
イザと、レーザ発信器からのレーザ光を受ける該ビーム
アナライザの間に設けられた集光光学系と、前記両アナ
ライザを該集光光学系を含めて一体に昇降動させるモー
タと、前記レーザ光を両ビームアナライザが受けたとき
のビーム径を検出するデータレコーダと、該データレコ
ーダからの情報により演算するビーム径演算手段と、該
演算手段の信号に基づいて前記モータを駆動させる前記
光学系上下用モータ駆動手段、および試料表面とからな
り、最適ビーム径に自動的に制御するようにしたことを
特徴とするレーザビーム径の制御装置。
[Claims] 1) Calculate the beam diameters of at least two upper and lower beam analyzers to calculate the focal length and beam diameter at a necessary portion such as the sample surface, and move the condensing optical system and the sample relative to each other. A method for controlling a laser beam diameter, which is characterized by automatically adjusting the beam diameter to an optimal beam diameter. 2) at least two beam analyzers placed at a predetermined interval; a condensing optical system provided between the beam analyzers that receives laser light from a laser transmitter; a motor that moves the laser beam up and down integrally; a data recorder that detects the beam diameter when both beam analyzers receive the laser beam; a beam diameter calculation means that calculates based on information from the data recorder; 1. A laser beam diameter control device comprising: an optical system upper and lower motor drive means for driving the motor based on a signal; and a sample surface; and the laser beam diameter is automatically controlled to an optimum beam diameter.
JP1216715A 1989-08-22 1989-08-22 Method and apparatus for controlling diameter of laser beam Pending JPH0381082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1216715A JPH0381082A (en) 1989-08-22 1989-08-22 Method and apparatus for controlling diameter of laser beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1216715A JPH0381082A (en) 1989-08-22 1989-08-22 Method and apparatus for controlling diameter of laser beam

Publications (1)

Publication Number Publication Date
JPH0381082A true JPH0381082A (en) 1991-04-05

Family

ID=16692785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1216715A Pending JPH0381082A (en) 1989-08-22 1989-08-22 Method and apparatus for controlling diameter of laser beam

Country Status (1)

Country Link
JP (1) JPH0381082A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5961861A (en) * 1996-01-15 1999-10-05 The University Of Tennessee Research Corporation Apparatus for laser alloying induced improvement of surfaces
US6173886B1 (en) 1999-05-24 2001-01-16 The University Of Tennessee Research Corportion Method for joining dissimilar metals or alloys
US6229111B1 (en) 1999-10-13 2001-05-08 The University Of Tennessee Research Corporation Method for laser/plasma surface alloying
US6284067B1 (en) 1999-07-02 2001-09-04 The University Of Tennessee Research Corporation Method for producing alloyed bands or strips on pistons for internal combustion engines
US6291796B1 (en) * 1994-10-17 2001-09-18 National University Of Singapore Apparatus for CFC-free laser surface cleaning
US6294225B1 (en) 1999-05-10 2001-09-25 The University Of Tennessee Research Corporation Method for improving the wear and corrosion resistance of material transport trailer surfaces
US6299707B1 (en) 1999-05-24 2001-10-09 The University Of Tennessee Research Corporation Method for increasing the wear resistance in an aluminum cylinder bore
US6328026B1 (en) 1999-10-13 2001-12-11 The University Of Tennessee Research Corporation Method for increasing wear resistance in an engine cylinder bore and improved automotive engine
US6350326B1 (en) 1996-01-15 2002-02-26 The University Of Tennessee Research Corporation Method for practicing a feedback controlled laser induced surface modification
US6423162B1 (en) 1999-07-02 2002-07-23 The University Of Tennesse Research Corporation Method for producing decorative appearing bumper surfaces
US6497985B2 (en) 1999-06-09 2002-12-24 University Of Tennessee Research Corporation Method for marking steel and aluminum alloys
WO2023083586A1 (en) * 2021-11-10 2023-05-19 Nanoscribe Holding Gmbh Beam-shaping device and lithography apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291796B1 (en) * 1994-10-17 2001-09-18 National University Of Singapore Apparatus for CFC-free laser surface cleaning
US5961861A (en) * 1996-01-15 1999-10-05 The University Of Tennessee Research Corporation Apparatus for laser alloying induced improvement of surfaces
US6350326B1 (en) 1996-01-15 2002-02-26 The University Of Tennessee Research Corporation Method for practicing a feedback controlled laser induced surface modification
US6294225B1 (en) 1999-05-10 2001-09-25 The University Of Tennessee Research Corporation Method for improving the wear and corrosion resistance of material transport trailer surfaces
US6173886B1 (en) 1999-05-24 2001-01-16 The University Of Tennessee Research Corportion Method for joining dissimilar metals or alloys
US6299707B1 (en) 1999-05-24 2001-10-09 The University Of Tennessee Research Corporation Method for increasing the wear resistance in an aluminum cylinder bore
US6497985B2 (en) 1999-06-09 2002-12-24 University Of Tennessee Research Corporation Method for marking steel and aluminum alloys
US6284067B1 (en) 1999-07-02 2001-09-04 The University Of Tennessee Research Corporation Method for producing alloyed bands or strips on pistons for internal combustion engines
US6423162B1 (en) 1999-07-02 2002-07-23 The University Of Tennesse Research Corporation Method for producing decorative appearing bumper surfaces
US6229111B1 (en) 1999-10-13 2001-05-08 The University Of Tennessee Research Corporation Method for laser/plasma surface alloying
US6328026B1 (en) 1999-10-13 2001-12-11 The University Of Tennessee Research Corporation Method for increasing wear resistance in an engine cylinder bore and improved automotive engine
WO2023083586A1 (en) * 2021-11-10 2023-05-19 Nanoscribe Holding Gmbh Beam-shaping device and lithography apparatus

Similar Documents

Publication Publication Date Title
JPH0381082A (en) Method and apparatus for controlling diameter of laser beam
CN110773841B (en) Trajectory tracking method for welding
US20020041376A1 (en) Light scattering particle size distribution measuring apparatus and method of use
JP6794458B2 (en) Scan Reflective Mirror Surveillance System and Method, Focus Leveling System
JPH0369025A (en) Method for focus adjustment of optical disk device
US5202740A (en) Method of and device for determining the position of a surface
JP2002219591A (en) Laser beam irradiation device
JP2002239768A (en) Laser beam machining device
JPS6161178B2 (en)
EP0189482A1 (en) Shape evaluating apparatus
JPS60147606A (en) Thickness measuring device
JP2001304831A (en) Optical angle measuring apparatus
JPS5933078B2 (en) Laser welding method and device
JP2005311057A (en) Exposure device
JP7411887B2 (en) Laser processing equipment and focus control method for laser processing equipment
JPS6295742A (en) Laser exposure equipment
JPS623280A (en) Diffraction grating exposure device
JPS61223604A (en) Gap measuring instrument
JPS6053804A (en) Thickness measuring device
JPH02259711A (en) Method for controlling autofocusing
JPS61181127A (en) Automatic correction mechanism of optical system
JPH0227606B2 (en) ICHISOKUTEISOCHI
JPH01267407A (en) Displacement measuring apparatus
JPH06235873A (en) Scanning optical device
JPH03229113A (en) Distance measuring instrument