JPH0381042A - Constant-temperature plastic working method for nial -based intermetallic compound - Google Patents

Constant-temperature plastic working method for nial -based intermetallic compound

Info

Publication number
JPH0381042A
JPH0381042A JP21771389A JP21771389A JPH0381042A JP H0381042 A JPH0381042 A JP H0381042A JP 21771389 A JP21771389 A JP 21771389A JP 21771389 A JP21771389 A JP 21771389A JP H0381042 A JPH0381042 A JP H0381042A
Authority
JP
Japan
Prior art keywords
working
blank material
based intermetallic
strain rate
nial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21771389A
Other languages
Japanese (ja)
Inventor
Noriyuki Fujitsuna
宣之 藤綱
Yoshio Ashida
芦田 喜郎
Hideto Oyama
英人 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP21771389A priority Critical patent/JPH0381042A/en
Publication of JPH0381042A publication Critical patent/JPH0381042A/en
Pending legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PURPOSE:To improve quality characteristics by subjecting a blank material consisting of an NiAl -based intermetallic compd. to plastic working under the working conditions under which the hydrostatic stress acting on the blank material is within the value of specific times the deformation stress of the blank material and the Z parameter attains a specific value or above at the time of subjecting the blank material to constant-temp. plastic working. CONSTITUTION:The blank material consisting of the NiAl -based intermetalic compd. is subjected to the constant-temp. plastic working at the working temp. and strain rate under which dynamic recrystallization arises. The plastic work ing is executed at the working temp. and strain rate at which the hydrostatic stress acting on the blank material at the time of the working is within the value of <= -0.2 times the deformation stress of the blank material and the Z parameter determined by the above-mentioned working temp. and strain rate attains >=3X10<12>. The intermediate blank material or product of the NiAl -based intermetallic compd. which is free from working cracks and intergranular corrosion and has the uniform and fine equiaxed crystals and the excellent quality and characteristics is obtd. in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、Ni5Al基金属間化合物の恒温塑性加工方
法に関し、詳細には、Ni、AI基金属間化合物からな
る素材を、均一な@細等軸晶を有し且つ品質特性に優れ
た中間素材または製品に底形するための恒温塑性加工方
法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for isothermal plastic processing of Ni5Al-based intermetallic compounds, and more specifically, the present invention relates to a method for isothermal plastic processing of Ni5Al-based intermetallic compounds. The present invention relates to a constant temperature plastic working method for forming a bottom shape into an intermediate material or product having equiaxed crystals and excellent quality characteristics.

〔従来の技術〕[Conventional technology]

Niff^l基金属間化合物は、Bの微量添加によって
延性が改善され(特開昭55−58346号公報参照)
、冷間加工が可能となっているが、高温での延性はほと
んどゼロであり、熱間加工は非常に困難である。そして
、この問題を解決するために、Bの微量添加に加えて、
Fe、 Cr、 Iff等を添加したNi基合金(特開
昭62−93333号公報)等が研究開発されているが
、現在のところ未だ充分なものとは言えない、このため
、N15AI基金属間化合物からなる微細等軸晶を有す
る中間素材または製品は、従来通り、常温での延性能を
生かして冷間加工を行い、その後の熱処理によって再結
晶させる方法によるか、あるいは微粉末をHIP等によ
り焼結する粉末冶金法によるかして製造されているが、
前者の方法は、熱処理によって再結晶させても、全て微
細等軸晶にならず未再結晶領域が残る混粒になったり、
または部分的に再結晶後の粒成長の度合いが異なるため
に粒径に差が生じたりして、均一な微細等軸晶が得にく
い問題がある。一方、後者の方法は、均一な微細等軸晶
を得ることは可能であるが、HIP等の処理前に十分脱
気を行っても微粉末の表面に吸着されていたガス成分等
によって生成した介在物が結晶粒界に存在することは避
けられず、その後の品質特性に悪影響を及ぼす問題があ
る。
The ductility of Niff^l-based intermetallic compounds is improved by adding a small amount of B (see JP-A-55-58346).
Although cold working is possible, the ductility at high temperatures is almost zero, making hot working extremely difficult. In order to solve this problem, in addition to adding a small amount of B,
Although Ni-based alloys containing Fe, Cr, Iff, etc. (Japanese Patent Laid-Open No. 62-93333) have been researched and developed, they are still not sufficient at present. Intermediate materials or products made of compounds with fine equiaxed crystals can be produced by cold working, taking advantage of their ductility at room temperature, and recrystallization by subsequent heat treatment, or by HIPing fine powder, etc. It is manufactured using the powder metallurgy method of sintering,
In the former method, even if the grains are recrystallized by heat treatment, they do not become fine equiaxed grains, resulting in mixed grains with unrecrystallized regions remaining.
Alternatively, the degree of grain growth after recrystallization may be partially different, resulting in a difference in grain size, making it difficult to obtain uniform fine equiaxed crystals. On the other hand, with the latter method, it is possible to obtain uniform fine equiaxed crystals, but even if sufficient deaeration is performed before processing such as HIP, the particles may be generated due to gas components adsorbed on the surface of the fine powder. The presence of inclusions at grain boundaries is unavoidable, and there is a problem of adversely affecting subsequent quality characteristics.

そこで、本発明者等は、上記問題を解決すべく鋭意研究
を重ね、先に、均一な微細等軸晶を有し且つ結晶粒界に
介在物が存在しない品質特性に優れた中間素材または製
品を得るためのNi3Al基金属間化合物の恒温鍛造方
法として、Ni3^l基金属間化合物からなる粉末の焼
結体を、温度1000〜1350’C,歪速度1〜lX
l0−’/秒、加工率50%以上で恒温鍛造する技術を
開発し、特願平1−167764号として出願した。
Therefore, the present inventors have conducted extensive research in order to solve the above problems, and have developed an intermediate material or product that has excellent quality characteristics, having uniform fine equiaxed crystals and no inclusions at grain boundaries. As a method for isothermal forging of Ni3Al-based intermetallic compounds to obtain
We developed a technology for isothermal forging at 10-'/sec and a processing rate of 50% or more, and filed an application as Japanese Patent Application No. 1-167764.

この開発された技術によれば、HIP等により得られた
焼結体を、動的再結晶によって結晶粒径をより微細なも
のにし得ると同時に、結晶粒界に存在する介在物を破壊
して拡散消滅し得、以て均一な微細等軸晶を有し且つ結
晶粒界に介在物が存在しない品質特性に優れたNi5A
l基金属間化合物の中間素材または製品を得ることがで
きた。
According to this developed technology, the crystal grain size of a sintered body obtained by HIP etc. can be made finer by dynamic recrystallization, and at the same time, inclusions existing at grain boundaries can be destroyed. Ni5A can be diffused and annihilated, has uniform fine equiaxed crystals, and has excellent quality characteristics with no inclusions at grain boundaries.
An intermediate material or product of l-based intermetallic compound could be obtained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、その後の研究において、上記した先願の
加T温度と歪速度の条件であっても、鍛造加工中に割れ
を生じたり、あるいは得られた成形品に粒界三重点にボ
イド(以下粒界割れと言う)が発生しているものが見出
された。
However, subsequent research revealed that even with the T temperature and strain rate conditions described in the earlier application, cracks occurred during the forging process, or voids (hereinafter referred to as grain grains) were found at the grain boundary triple points in the resulting molded product. It was found that some parts had a phenomenon called "boundary cracking".

そこで、本発明者等は、加工割れや粒界割れの無いN1
zAI基金属間化合物からなる成形品を得べく、さらに
研究を重ね、本発明を威すに至ったものである。
Therefore, the present inventors have developed an N1 material that is free from processing cracks and intergranular cracks.
In order to obtain a molded article made of a zAI-based intermetallic compound, further research has been carried out and the present invention has been successfully applied.

ci題を解決するための手段〕 本発明は、上記事情に鑑みてなされたものであって、そ
の要旨は、Ni5Al基金属間化合物からなる素材を動
的再結晶の起こる加工温度、歪速度の下で恒温塑性加工
するに際し、加工時に素材に作用する静水圧応力がその
素材の変形応力の−0,2倍以下の埴内で、且つ前記加
工温度と歪速度とによって決まるZパラメーターが3X
10”以上になる加工温度と歪速度とで塑性加工するN
i5A1基金属間化合物の恒温塑性加工方法である。
[Means for Solving the Problem] The present invention has been made in view of the above circumstances, and the gist thereof is to process a material made of a Ni5Al-based intermetallic compound at a processing temperature and strain rate at which dynamic recrystallization occurs. When carrying out isothermal plastic working under the conditions below, the hydrostatic stress acting on the material during processing is less than -0.2 times the deformation stress of the material, and the Z parameter determined by the processing temperature and strain rate is 3X.
N is plastically worked at a processing temperature and strain rate of 10" or higher.
This is a method for isothermal plastic processing of i5A1-based intermetallic compounds.

(作  用〕 N1Jl基金属間化合物からなる素材に対する動的再結
晶の起こる加工温度および歪速度としては、先願に述べ
たように、加工温度は、1000〜1350°Cが好ま
しく、この範囲であれば安定した加工と同時に熱処理が
十分に与えられるので、恒温塑性加工後の組織は、均一
な微細再結晶となる。また歪速度は、l〜1xlO−’
/秒が好ましく、この範囲であれば歪速度の早すぎによ
る表面割れの心配、あるいは加工時間が長くかかること
による生産性の弊害や結晶粒径の成長を心配する必要が
ない。
(Function) As stated in the previous application, the processing temperature and strain rate at which dynamic recrystallization occurs for the material made of the N1Jl-based intermetallic compound are preferably 1000 to 1350°C, and within this range. Since sufficient heat treatment is given simultaneously with stable processing, the structure after isothermal plastic processing becomes uniform fine recrystallization.Also, the strain rate is 1~1xlO-'
/second is preferable, and within this range, there is no need to worry about surface cracking due to too high strain rate, or adverse effects on productivity or growth of crystal grain size due to long processing time.

一方、上記加工温度および歪速度の条件の下で恒温塑性
加工しても、前述したように、塑性加工中に割れを生じ
たり、あるいは得られた成形品に粒界割れのあるものが
見出された。そこで、これらの欠陥の無い、且つ微細等
軸晶組織を有するNi3Al基金属間化合物を得るため
の方法を種々検討した結果、塑性加工時に素材内部に作
用する静水圧応力成分の大きさによって、塑性加工中に
割れが生じるかどうか判断できるという知見を得、また
、加工に伴う動的再結晶によって得られる粒径と加工条
件、および、粒径と粒界に発生する微細欠陥との関係も
分かるようになった。
On the other hand, even if isothermal plastic processing is performed under the above processing temperature and strain rate conditions, cracks may occur during plastic processing, or the resulting molded products may have intergranular cracks. It was done. Therefore, as a result of investigating various methods to obtain a Ni3Al-based intermetallic compound free of these defects and having a fine equiaxed crystal structure, we found that, depending on the magnitude of the hydrostatic stress component that acts inside the material during plastic working, We gained the knowledge that it is possible to determine whether cracks will occur during processing, and also learned the relationship between the grain size obtained by dynamic recrystallization during processing, processing conditions, and the relationship between grain size and micro defects that occur at grain boundaries. It became so.

詳細に述べると、直径と高さの比が1 : 1.5であ
るHIP処理された焼結体を摩擦条件μ・0.1の条件
下で恒温鍛造加工した場合の素材内部に作用する静水圧
応力を有限要素法によって計算した(第1図参照)、そ
の計算結果と、実際に恒温鍛造加工を行ったもののマク
ロ&IItsとを比較することによって、割れが発生し
易い部位の予測が立つことが知見され、例えば第1図に
おいて、静水圧応力が変形抵抗の−0,2倍を超える張
出し部(a)や、上下端面の中心部(C)では割れが発
生したものが見受けられ、割れが発生し易く、一方、動
的再結晶によって微細化され、且つ静水圧応力が変形抵
抗の−0,2倍以下である中心部(b)では割れは見受
けられなかった。従って、静水圧応力が変形抵抗の0.
2倍以下となる素材形状、摩擦条件等の条件で恒温塑性
加工すれば、動的再結晶によって微細等軸晶M織が得ら
れる。
In detail, when a HIP-treated sintered body with a diameter to height ratio of 1:1.5 is isothermal forged under the friction condition μ・0.1, the static force acting inside the material is Hydraulic stress was calculated using the finite element method (see Figure 1). By comparing the calculation results with the macro & IIts of the actual isothermal forging process, it is possible to predict areas where cracks are likely to occur. For example, in Fig. 1, cracks can be seen in the overhanging part (a) where the hydrostatic stress exceeds -0.2 times the deformation resistance, and in the central part of the upper and lower end faces (C). On the other hand, no cracks were observed in the center part (b), which had been refined by dynamic recrystallization and had a hydrostatic stress less than -0.2 times the deformation resistance. Therefore, the hydrostatic stress is 0.0% of the deformation resistance.
If isothermal plastic processing is performed under conditions such as the material shape and friction conditions that are twice or less, a fine equiaxed M weave can be obtained by dynamic recrystallization.

静水圧応力を変形抵抗の一〇、N3以下とするための具
体的な手法としては、例えば摩擦条件の工夫の点からは
、潤滑剤を選択し、g擦係数を低下させる等がある。
A specific method for reducing the hydrostatic stress to 10, N3 or less of the deformation resistance includes, for example, selecting a lubricant and lowering the g-friction coefficient from the viewpoint of improving the friction conditions.

また、恒温塑性加工としては、前述した恒温鍛造加工の
他に、恒温での静水圧押出し加工や、素材の側面を拘束
して行う側圧付加押出し加工等が適用し得る。
Further, as the isothermal plastic working, in addition to the above-mentioned isothermal forging, isostatic extrusion at a constant temperature, lateral pressure extrusion performed by restraining the side surface of the material, etc. can be applied.

また、動的再結晶によって良好な組織となっている部分
について詳細に検討した結果、動的再結晶粒径Dp(μ
l11)は、加工温度と歪速度とによって決まるZパラ
メーターによって、下記式のように表すことができ、初
期粒径に影響されないことが知見された。また、Zパラ
メーターが3X10”以下になると、動的再結晶粒径が
粗大になり、粒界に微細欠陥が発生することも分かった
In addition, as a result of a detailed study of the parts that have a good structure due to dynamic recrystallization, we found that the dynamic recrystallized grain size Dp (μ
It was found that 11) can be expressed as the following formula by the Z parameter determined by the processing temperature and strain rate, and is not affected by the initial grain size. It was also found that when the Z parameter was 3×10” or less, the dynamic recrystallization grain size became coarse and micro defects were generated at the grain boundaries.

Dp = 3.6X 103XZ−’・2′但し、Z 
= e x exp(4X10’/RHT)ε:歪速度
(sec −’) T:加工温度(K) R:気体定数 従って、恒温塑性加工において所望の動的再結晶粒径D
p(μm)を有するN!J+基金属間化合物の成形具を
得るためには、上記式において、Zパラメーターが3X
10”を超える範囲の歪速度と加工温度で恒温塑性加工
することにより得られる。
Dp = 3.6X 103XZ-'・2'However, Z
= e x exp (4X10'/RHT) ε: Strain rate (sec -') T: Processing temperature (K) R: Gas constant Therefore, the desired dynamic recrystallized grain size D in isothermal plastic working
N! with p (μm) In order to obtain a forming tool of a J+ group intermetallic compound, in the above formula, the Z parameter is 3X
It is obtained by isothermal plastic working at a strain rate and working temperature in the range exceeding 10".

尚、恒温塑性加工する場合の加工率は、均一な微細等軸
晶が確実に得られる50%以上で行うことが好ましい。
Note that the processing rate in isothermal plastic working is preferably 50% or more to ensure that uniform fine equiaxed crystals are obtained.

次に、本発明に係わるN1zAI基金属間化合物素材に
ついて説明する。
Next, the N1zAI-based intermetallic compound material according to the present invention will be explained.

Ni5A1基金属間化合物素材は、Ni、AI基金属間
化合物のアトマイズ粉をHIP等の粉末冶金法によって
焼結体としたもの、あるいは鋳造材等が使用可能である
As the Ni5A1-based intermetallic compound material, a sintered body made of atomized powder of Ni or AI-based intermetallic compound by a powder metallurgy method such as HIP, or a cast material can be used.

しかしながら、通常の鋳造法により得られた鋳造材の鋳
造組織は、粒径が粗大になり易く、それに伴い、加工が
中々困難であり、また加工中割れが発生するため、凝固
速度を速くしたりすることによって、粒径が細かくなる
ように制御した方が好ましい、この点、わ)末冶金法に
よる素材の粒径は、30〜100//II程度と比較的
細かい粒径のものが得られるため、好適に使用し得る。
However, the cast structure of cast materials obtained by ordinary casting methods tends to have coarse grain sizes, which makes machining difficult and cracks occur during machining. It is preferable to control the particle size so that it becomes fine by doing this.In this point, iii) the particle size of the material by the advanced metallurgical method is relatively small, about 30 to 100//II. Therefore, it can be suitably used.

さらに、化学成分の点であるが、本発明に係わる素材は
、先の従来技術に示された、■やFe、 Cr114等
の目的による添加を許容する。即ち、延性改善のためF
eを12wL%まで、強度向上のためllfを20w 
1%までかZrを411t%まで、耐酸化性向上のため
Crを25wt%まで添加する場合がある。また、常温
近傍での延性改善のため、あるいは粒径の微細化のため
に、Bを3st%まで添加してもよい。
Furthermore, in terms of chemical components, the material according to the present invention allows the addition of 2, Fe, Cr114, etc., as shown in the prior art described above, for purposes. That is, F to improve ductility
e to 12wL%, llf to 20w to improve strength
Zr may be added up to 1% or up to 411t%, and Cr may be added up to 25wt% to improve oxidation resistance. Further, up to 3% of B may be added to improve ductility near room temperature or to refine the grain size.

本発明において、最終製品は、本発明の恒温塑性加工後
、超塑性加工や冷間加工を行い、タービンブレード、エ
ンジン、ディスク等の機械部品の如き精密および複雑な
形状の製品に仕上げられるものであり、このような後工
程を考慮するならば、先のB添加により、冷間加工性を
向上させることは、特に好ましい。
In the present invention, the final product is subjected to superplastic working and cold working after the isothermal plastic working of the present invention, and is finished into products with precision and complex shapes such as mechanical parts such as turbine blades, engines, and disks. If such post-processes are taken into account, it is particularly preferable to improve the cold workability by adding B.

〔実 施 例〕〔Example〕

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

高周波誘導溶解によって溶製したインゴットをArガス
アトマイズ法により、成分組成がAl:12.0O−1
%、  B:0.046wt%、  Ni:残からなる
Ni3Al、l金属間化合物の粉末とした後、この粉末
を1200°C×11000at X211rの条件の
下でHI P処理を施し焼結体とした。得られた焼結体
の平均粒径は約4011−で、この焼結体から直径8叩
×高さ12mmの円柱材を切り出し、この円柱材を静水
圧応力が変形抵抗の−0,2倍以下となる条件で、且つ
下表に示す加工温度と歪速度で、加工率50%の恒温鍛
造を施し、恒温鍛造後の成形具の粒界割れを調査した。
The ingot produced by high-frequency induction melting is processed by Ar gas atomization method, and the component composition is Al: 12.0O-1.
%, B: 0.046wt%, Ni: Ni: After preparing a powder of the intermetallic compound consisting of Ni3Al, l, this powder was subjected to HIP treatment under the conditions of 1200 ° C × 11000 at x 211r to form a sintered body. . The average grain size of the obtained sintered body was approximately 4011-, and a cylindrical material with a diameter of 8 mm and a height of 12 mm was cut from this sintered body, and the hydrostatic stress was -0.2 times the deformation resistance of the cylindrical material. Isothermal forging was performed at a processing rate of 50% under the following conditions and at the processing temperature and strain rate shown in the table below, and intergranular cracking of the forming tool after isothermal forging was investigated.

その調査結果を併せて下表に示す。また、上記加工温度
と歪速度とを元に、前記動的再結晶粒径(Dp)とZパ
ラメーターとの式から動的再結晶粒径(Dp)とZパラ
メーターとを計算した。このil算結果も併せて下表に
示す。
The survey results are also shown in the table below. Further, based on the processing temperature and strain rate, the dynamic recrystallized grain size (Dp) and the Z parameter were calculated from the equation of the dynamic recrystallized grain size (Dp) and the Z parameter. The results of this il calculation are also shown in the table below.

また、理解し易くするために下表を、動的再結晶粒径(
Dp)とZパラメーターとの関係において整理し第2図
に示す。
In addition, for ease of understanding, the table below has been changed to dynamic recrystallized grain size (
The relationship between Dp) and Z parameter is summarized and shown in FIG.

上表および第2図から明らかなように、本発明法により
恒温鍛造した咀1. 2. 5. 6.10.1114
、15は、加工中の割れおよび粒界割れが無く、均一な
微細等軸晶からなる成形品が得られた。
As is clear from the table above and FIG. 2, the chewing material 1. 2. 5. 6.10.1114
, No. 15 had no cracks during processing or intergranular cracks, and a molded product consisting of uniform fine equiaxed crystals was obtained.

これに対し、比較例であるNL13. 4. 7. 8
. 9、12.13.16は、粒界割れが発生し、また
Nα8などは、第3図に示すように、加工中に割れが発
生した。
On the other hand, the comparative example NL13. 4. 7. 8
.. 9, 12, 13, and 16, grain boundary cracking occurred, and as for Nα8, as shown in FIG. 3, cracking occurred during processing.

そして、このような結果となった理由は、Zパラメータ
ーが小さいほど、動的再結晶粒(Dp)が粗大になるた
め、それに伴い、加工中割れや粒界割れが発生し易くな
るためと考えられる。特に加工中割れは、恒温鍛造時、
円柱材の静水圧応力が変形抵抗の−0,2倍以下となる
条件で加工したにもかかわらず第3図に示すように、張
出し部で認められた。これは、Ni5Al基金属間化合
物の高温変形では、粒界割れと動的再結晶とが競合して
おり、どちらが優先するかは、負荷方向が大きく関与し
ていることを示していると考えられる。即ち、圧縮応力
成分の大きい中心部では、機械的に粒界割れが起こりに
くい状況にあるので、動的再結晶が促進されて微細な組
織となり、その結果、その後も粒界に欠陥が生じにくく
なる。一方、引張り応力成分の大きい張出し部では、動
的再結晶が起こるために必要な塑性歪みが与えられる前
に、粒界割れが発生し、前記のような微細化による延性
の付加もほとんど無いために、大きな割れにまで進行す
るものと考えられる。
The reason for this result is thought to be that the smaller the Z parameter, the coarser the dynamic recrystallized grains (Dp), which makes it easier for cracks during processing and intergranular cracks to occur. It will be done. In particular, cracking during processing is caused by constant temperature forging.
Even though the hydrostatic stress of the cylindrical material was processed under conditions such that it was less than -0.2 times the deformation resistance, it was observed in the overhang as shown in FIG. 3. This is thought to indicate that grain boundary cracking and dynamic recrystallization compete with each other during high-temperature deformation of Ni5Al-based intermetallic compounds, and the load direction has a large influence on which one takes precedence. . In other words, in the center where the compressive stress component is large, intergranular cracking is mechanically difficult to occur, so dynamic recrystallization is promoted and a fine structure is formed, resulting in less defects at grain boundaries. Become. On the other hand, in overhanging parts where the tensile stress component is large, intergranular cracking occurs before the plastic strain necessary for dynamic recrystallization to occur, and there is almost no additional ductility due to the above-mentioned refinement. It is thought that the cracks will progress to large cracks.

〔発明の効果〕〔Effect of the invention〕

上述したように、本発明に係わるNi5A1基金属間化
合物の恒温塑性加工方法によれば、NjJ1基金属間化
合物粉末の素材を元にして、加工割れや粒界割れの無い
、均一な微細等軸晶を有する品質特性に優れたNi3A
l基金属間化合物の中間素材または製品を得ることがで
きる。
As described above, according to the method for isothermal plastic processing of Ni5A1-based intermetallic compounds according to the present invention, uniform fine equiaxed particles with no processing cracks or intergranular cracks are produced based on the NjJ1-based intermetallic compound powder material. Ni3A with excellent quality characteristics
Intermediate materials or products of l-based intermetallic compounds can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、直径と高さの比が1 : 1.5の素材に作
用する静水圧応力を有限要素法によって計算した結果の
解析図、第2図は、加工後に得られる動的再結晶粒径と
、加工条件によって決定されるZパラメーターとの関係
を示した図、割れの発生領域を説明するための図、第3
図は、恒温鍛造後の成形品のマクロ組織を示す図面代用
写真である。
Figure 1 is an analysis diagram of the results of calculating the hydrostatic stress acting on a material with a diameter to height ratio of 1:1.5 using the finite element method, and Figure 2 is the dynamic recrystallization obtained after processing. Diagram showing the relationship between grain size and Z parameter determined by processing conditions, Diagram for explaining the area where cracks occur, Part 3
The figure is a photograph substituted for a drawing showing the macrostructure of a molded product after isothermal forging.

Claims (1)

【特許請求の範囲】[Claims] Ni_3Al基金属間化合物からなる素材を動的再結晶
の起こる加工温度、歪速度の下で恒温塑性加工するに際
し、加工時に素材に作用する静水圧応力がその素材の変
形応力の−0.2倍以下の値内で、且つ前記加工温度と
歪速度とによって決まるZパラメーターが3×10^1
^2以上になる加工温度と歪速度とで塑性加工すること
を特徴とするNi_3Al基金属間化合物の恒温塑性加
工方法。
When a material made of a Ni_3Al-based intermetallic compound is subjected to isothermal plastic processing at a processing temperature and strain rate at which dynamic recrystallization occurs, the hydrostatic stress acting on the material during processing is -0.2 times the deformation stress of the material. The Z parameter determined by the processing temperature and strain rate is 3×10^1 within the following values.
A method for isothermal plastic working of a Ni_3Al-based intermetallic compound, characterized by plastic working at a working temperature and strain rate of ^2 or higher.
JP21771389A 1989-08-23 1989-08-23 Constant-temperature plastic working method for nial -based intermetallic compound Pending JPH0381042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21771389A JPH0381042A (en) 1989-08-23 1989-08-23 Constant-temperature plastic working method for nial -based intermetallic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21771389A JPH0381042A (en) 1989-08-23 1989-08-23 Constant-temperature plastic working method for nial -based intermetallic compound

Publications (1)

Publication Number Publication Date
JPH0381042A true JPH0381042A (en) 1991-04-05

Family

ID=16708571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21771389A Pending JPH0381042A (en) 1989-08-23 1989-08-23 Constant-temperature plastic working method for nial -based intermetallic compound

Country Status (1)

Country Link
JP (1) JPH0381042A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5451416A (en) * 1992-10-30 1995-09-19 Johnston; Robert W. Nondigestible fat compositions containing cocrystallized blend of polyol polyester hardstock and crystal modifier as a passive oil loss control agent
US6261628B1 (en) 1992-10-30 2001-07-17 The Procter & Gamble Company Nondigestible fat compositions containing solid polyglycerol ester particles for passive oil loss control
JP2013541661A (en) * 2010-08-10 2013-11-14 ロンネル カンパニー インク Dipole friction electric injector nozzle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5451416A (en) * 1992-10-30 1995-09-19 Johnston; Robert W. Nondigestible fat compositions containing cocrystallized blend of polyol polyester hardstock and crystal modifier as a passive oil loss control agent
US6261628B1 (en) 1992-10-30 2001-07-17 The Procter & Gamble Company Nondigestible fat compositions containing solid polyglycerol ester particles for passive oil loss control
JP2013541661A (en) * 2010-08-10 2013-11-14 ロンネル カンパニー インク Dipole friction electric injector nozzle
US9574494B2 (en) 2010-08-10 2017-02-21 Ronnell Company, Inc. Dipole triboelectric injector nozzle

Similar Documents

Publication Publication Date Title
US11566313B2 (en) Method for manufacturing Ni-based alloy member
RU2703670C1 (en) Cobalt-based alloy made from additive technology, article from cobalt-based alloy and method of making said alloy
JP2782189B2 (en) Manufacturing method of nickel-based superalloy forgings
Chen et al. Additive manufacturing of titanium aluminides
US3975219A (en) Thermomechanical treatment for nickel base superalloys
Loria The status and prospects of alloy 718
US3850702A (en) Method of making superalloy bodies
JPS60228659A (en) Malleable improvement for nickel base superalloy
US4714587A (en) Method for producing very fine microstructures in titanium alloy powder compacts
US5584947A (en) Method for forming a nickel-base superalloy having improved resistance to abnormal grain growth
JPS6362584B2 (en)
JPH07504711A (en) Alloy of molybdenum, rhenium and tungsten
JP2008138249A (en) Magnesium alloy material and method for manufacturing the same
JPH02255268A (en) Production of disk made of super heat resisting alloy
US3698962A (en) Method for producing superalloy articles by hot isostatic pressing
JP2004322206A (en) Method for manufacturing magnesium alloy billet for semi-solidified forming
JPH0381042A (en) Constant-temperature plastic working method for nial -based intermetallic compound
WO2010023210A1 (en) Process for preparing a nickel-based superalloy part and part thus prepared
JP7485243B1 (en) Hot forging die and manufacturing method thereof
JPH0617486B2 (en) Method for forging powder-made Ni-base superalloy
CN115466882B (en) Nickel-based superalloy preparation process with low segregation and reduced dendrite spacing
JP2001152208A (en) OXIDE DISPERSION STRENGTHENED TYPE Ni BASE ALLOY WIRE AND PRODUCING METHOD THEREFOR
de Barbadillo et al. Recent developments and challenges in the application of mechanically alloyed, oxide dispersion strengthened alloys
JP3905674B2 (en) Method for manufacturing metal article
JPS5887204A (en) Constant temperature forging method for superalloy using quickly soldified powder