JPH038093B2 - - Google Patents

Info

Publication number
JPH038093B2
JPH038093B2 JP29366085A JP29366085A JPH038093B2 JP H038093 B2 JPH038093 B2 JP H038093B2 JP 29366085 A JP29366085 A JP 29366085A JP 29366085 A JP29366085 A JP 29366085A JP H038093 B2 JPH038093 B2 JP H038093B2
Authority
JP
Japan
Prior art keywords
electrolytic solution
aprotic solvent
electrolytic
carbon atoms
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP29366085A
Other languages
Japanese (ja)
Other versions
JPS62156809A (en
Inventor
Ikuhiko Shinozaki
Yutaka Yokoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP60293660A priority Critical patent/JPS62156809A/en
Priority to US06/917,637 priority patent/US5112511A/en
Priority to CA000521752A priority patent/CA1339592C/en
Priority to KR1019860009282A priority patent/KR900005559B1/en
Priority to DE8686308729T priority patent/DE3686869T2/en
Priority to EP86308729A priority patent/EP0228790B1/en
Publication of JPS62156809A publication Critical patent/JPS62156809A/en
Publication of JPH038093B2 publication Critical patent/JPH038093B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Glass Compositions (AREA)
  • Primary Cells (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、非プロトン溶媒中に窒素複素2縮合
環化合物のヘキサフルオロリン酸塩を電解質とし
て含む電解コンデンサ用電解液に関するものであ
る。 〔従来の技術〕 従来、電解コンデンサ用電解液として有機酸又
はその塩・グルコール系ペーストが通常の用途に
対し主流をなして使用されるが、近年の電子機器
の利用範囲の増大からコンデンサ性能の向上改善
の要求が高まり、ペースト中の水の存在が大きな
問題となり、非プロトン溶媒を使用することによ
り有機酸又はその塩・グリコールペーストに代わ
る電解液が注目されるに至つている。 しかし、非プロトン溶媒系電解液の最も大きな
問題は、いかにして高電導度の電解液を得るかに
あり、この目的達成のためには、これら非プロト
ン溶媒に良く溶解し、かつ解離度の高い有機カル
ボン酸若しくはその塩の検索が主体をなしている
が、まだその目的を達し得ず、やむを得ず依然と
してアルコール類、グリコール類などの酸と反応
して水を生成する溶媒、更には水を非プロトン溶
媒に配合して高導電度を得ようとしているが、十
分に高電導化できない、含水量の増加、電解質の
増加で高温での安定性が欠如する欠点を免れない
のが現状である。 それ故、本発明の目的は、非プロトン溶媒を使
用し実質的に非水系の高電導度の電解液を提供す
るにある。 〔発明が解決しようとする問題点〕 本発明者等は、非プロトン溶媒を使用しかつア
ルコール類、グリコール類などの酸と反応して水
を生成する溶媒を使用することなく、実質的に非
水系の電解液でかつ高導電度を与える電解質につ
き鋭意研究を重ねた結果、ヘキサフルオロリン酸
(HPF6)の窒素複素2縮合環化合物塩が非プロ
トン溶媒に溶解性が高く、かつ解離度も高く高電
導度を付与することを見出し本発明に到達したも
のである。 すなわち、本発明に係る電解コンデンサ用電解
液は、非プロトン溶媒中に一般式 (式中m=0又は1、m+n=2又は3、R1
炭素原子数1〜3のアルキル置換基が存在又は不
存在、R=H又は炭素数1〜5のアルキル基の1
又は2個により窒素原子は3級又は4級アミンを
構成する窒素複素2縮合環化合物で環中に相互に
共役の2重結合0〜5個含有する化合物)のヘキ
サフルオロリン酸塩を電解質として含むことを特
徴とする。 本発明の対象となる窒素複素2縮合環化合物と
しては、キノリン、2−メチルキノリン(キナル
ジン)、イソキノリン及びこれらの部分水素化物
又は完全水素化物、及び以上の化合物類につきN
−アルキル化物類;インドール、3−メチルイン
ドール(スカトール)、イソインドール、プソイ
ドインドール、及びこれらの部分水素化物又は完
全水素化物、及び以上の化合物類につきN−アル
キル化物類が挙げられる。 使用される非プロトン溶媒としては、 (1) アミド系溶媒 N−メチルホルムアミド、N−ジメチルホル
ムアミド、N−エチルホルムアミド、N−ジエ
チルホルムアミド、N−メチルアセトアミド、
N−ジメチルアセトアミド、N−エチルアセト
アミド、N−ジエチルアセトアミド、ヘキサメ
チルホスホリンアミド。 (2) オキシド系 ジメチルスルホキシド (3) ニトリル系 アセトニトリル (4) 環状エステル、アミド系 γ−ブチロラクトン、N−メチルル−2−ピ
ロリドンエチレンカーボネート、プロピレンカ
ーボネート などが代表として挙げられるが、これに限定され
るものでない。 本発明に係る電解コンデンサ用電解液は、一般
的に、ヘキサフルオロリン酸の水溶液に所望の窒
素複素2縮合環化合物類の当量を添加反応後減圧
乾燥して無水塩を得ている。 〔実施例〕 以下、本発明に係る電解コンデンサ用電解液の
実施例につき、各種窒素複素2縮合環化合物・ヘ
キサフルオロリン酸塩の各種非プロトン溶媒に対
する13重量%溶液の電導度を第1表に示す。電解
質濃度は1例を示すものであつてこれに限定され
るものでないことは勿論である。尚、比較例とし
て従来の標準的電解液(エチレングリコール78重
量%、水12%、アジピン酸アンモニウム10%)を
示してある。
[Industrial Field of Application] The present invention relates to an electrolytic solution for an electrolytic capacitor, which contains a hexafluorophosphate of a nitrogen hetero-condensed ring compound as an electrolyte in an aprotic solvent. [Prior Art] Traditionally, organic acids or their salts/glucol-based pastes have been mainly used as electrolytes for electrolytic capacitors for normal purposes, but due to the recent increase in the range of use of electronic devices, improvements in capacitor performance have been required. As demands for improvements have increased, the presence of water in pastes has become a major problem, and electrolytic solutions that use aprotic solvents to replace organic acids or their salts/glycol pastes are attracting attention. However, the biggest problem with aprotic solvent-based electrolytes is how to obtain electrolytes with high conductivity. The search for organic carboxylic acids or their salts has been the main focus, but this goal has not yet been achieved, and it is unavoidable that solvents that react with acids such as alcohols and glycols to produce water, and furthermore, that Attempts have been made to obtain high conductivity by blending it into a proton solvent, but the current situation is that it cannot achieve a sufficiently high conductivity, and that it lacks stability at high temperatures due to increased water content and electrolyte. Therefore, it is an object of the present invention to provide a substantially non-aqueous highly conductive electrolyte using an aprotic solvent. [Problems to be Solved by the Invention] The present inventors have solved the problem by using an aprotic solvent and without using a solvent that reacts with acids such as alcohols and glycols to produce water. As a result of extensive research into an aqueous electrolyte that provides high conductivity, we have found that a nitrogen hetero-condensed ring compound salt of hexafluorophosphoric acid (HPF 6 ) has high solubility in aprotic solvents and has a low degree of dissociation. The present invention was achieved by discovering that a high degree of conductivity can be imparted. That is, the electrolytic solution for electrolytic capacitors according to the present invention has the general formula (In the formula, m=0 or 1, m+n=2 or 3, R 1 =
Presence or absence of an alkyl substituent having 1 to 3 carbon atoms, R=H or 1 of an alkyl group having 1 to 5 carbon atoms
Or as an electrolyte, hexafluorophosphate of a compound containing 0 to 5 mutually conjugated double bonds in the ring (a compound containing 0 to 5 mutually conjugated double bonds in the ring), in which two nitrogen atoms constitute a tertiary or quaternary amine. It is characterized by containing. The nitrogen hetero two condensed ring compounds that are the object of the present invention include quinoline, 2-methylquinoline (quinaldine), isoquinoline, their partially or completely hydrides, and the above compounds.
-Alkylated compounds: Indole, 3-methylindole (skatole), isoindole, pseudoindole, partially or fully hydrided products thereof, and N-alkylated compounds of the above compounds. The aprotic solvents used include (1) amide solvents N-methylformamide, N-dimethylformamide, N-ethylformamide, N-diethylformamide, N-methylacetamide,
N-dimethylacetamide, N-ethylacetamide, N-diethylacetamide, hexamethylphosphorinamide. (2) Oxide-based dimethyl sulfoxide (3) Nitrile-based acetonitrile (4) Cyclic ester, amide-based γ-butyrolactone, N-methyl-2-pyrrolidone ethylene carbonate, propylene carbonate, etc. are representative examples, but are not limited to these. It's not something. The electrolytic solution for an electrolytic capacitor according to the present invention is generally prepared by adding an equivalent amount of a desired nitrogen hetero-condensed ring compound to an aqueous solution of hexafluorophosphoric acid, followed by drying under reduced pressure to obtain an anhydrous salt. [Example] Table 1 below shows the conductivity of a 13% by weight solution of various nitrogen hetero-condensed ring compounds/hexafluorophosphates in various aprotic solvents as an example of the electrolytic solution for electrolytic capacitors according to the present invention. Shown below. It goes without saying that the electrolyte concentration is merely an example and is not limited thereto. As a comparative example, a conventional standard electrolytic solution (78% by weight of ethylene glycol, 12% of water, 10% of ammonium adipate) is shown.

【表】【table】

【表】【table】

【表】 次に、実施例1乃至12及び参考例の電解液につ
き25V1μFでのライフ特性を第2表に示す。
[Table] Next, Table 2 shows the life characteristics at 25V1 μF for the electrolytes of Examples 1 to 12 and Reference Examples.

〔発明の効果〕〔Effect of the invention〕

本発明に係る電解液によると、従来のグリコー
ル類、水、有機酸塩よりなる高電導度に匹敵若し
くはそれ以上の高電導度を有する非水系電解液が
提供可能とされ、電解コンデンサの設計分野に新
しく広範囲な性能の選択手段を提供できる。
According to the electrolytic solution of the present invention, it is possible to provide a non-aqueous electrolytic solution having a high conductivity comparable to or higher than that of conventional glycols, water, and organic acid salts, and is suitable for use in the design field of electrolytic capacitors. provides a new and wide range of performance options.

Claims (1)

【特許請求の範囲】 1 非プロトン溶媒中に一般式 式中m=0又は、1、m+n=2又は3、R1
=炭素原子数1〜3のアルキル置換基が存在又は
不存在、R=H又は炭素原子数1〜5のアルキル
基の1又は2個により窒素原子は3級又は4級ア
ミンを構成する窒素複素2縮合環化合物で環中に
相互に共役の2重結合0〜5個含有する化合物の
ヘキサフルオロリン酸塩を電解質として含む電解
コンデンサ用電解液。 2 非プロトン溶媒はN−メチルホルムアミド、
N−ジメチルホルムアミド、N−エチルホルムア
ミド、N−ジエチルホルムアミド、N−メチルア
セトアミド、N−ジメチルアセトアミド、N−エ
チルアセトアミド、N−ジエチルアセトアミド、
γ−ブチロラクトン、N−メチル−2−ピロリド
ン、エチレンカーボネート、プロピレンカーボネ
ート、ジメチルスルホキシド、アセトニトリル又
はこれらの混合物の群より選択される特許請求の
範囲第1項記載の電解コンデンサ用電解液。
[Claims] 1. General formula in an aprotic solvent In the formula, m=0 or 1, m+n=2 or 3, R 1
= Presence or absence of an alkyl substituent having 1 to 3 carbon atoms, R = H or one or two alkyl groups having 1 to 5 carbon atoms, and the nitrogen atom is a nitrogen heterogeneous compound constituting a tertiary or quaternary amine. An electrolytic solution for an electrolytic capacitor containing, as an electrolyte, a hexafluorophosphate salt of a two-fused ring compound containing 0 to 5 mutually conjugated double bonds in the ring. 2 The aprotic solvent is N-methylformamide,
N-dimethylformamide, N-ethylformamide, N-diethylformamide, N-methylacetamide, N-dimethylacetamide, N-ethylacetamide, N-diethylacetamide,
The electrolytic solution for an electrolytic capacitor according to claim 1, which is selected from the group of γ-butyrolactone, N-methyl-2-pyrrolidone, ethylene carbonate, propylene carbonate, dimethyl sulfoxide, acetonitrile, or a mixture thereof.
JP60293660A 1985-12-28 1985-12-28 Electrolyte for electrolytic capacitor Granted JPS62156809A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP60293660A JPS62156809A (en) 1985-12-28 1985-12-28 Electrolyte for electrolytic capacitor
US06/917,637 US5112511A (en) 1985-12-28 1986-10-10 Electrolyte for electrolytic capacitor
CA000521752A CA1339592C (en) 1985-12-28 1986-10-29 An electrolyte for electrolytic capacitor
KR1019860009282A KR900005559B1 (en) 1985-12-28 1986-11-04 Electrolyte for electrolytic capacitor
DE8686308729T DE3686869T2 (en) 1985-12-28 1986-11-10 ELECTROLYT FOR ELECTROLYTIC CAPACITOR.
EP86308729A EP0228790B1 (en) 1985-12-28 1986-11-10 An electrolyte for electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60293660A JPS62156809A (en) 1985-12-28 1985-12-28 Electrolyte for electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS62156809A JPS62156809A (en) 1987-07-11
JPH038093B2 true JPH038093B2 (en) 1991-02-05

Family

ID=17797597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60293660A Granted JPS62156809A (en) 1985-12-28 1985-12-28 Electrolyte for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS62156809A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4521928B2 (en) * 2000-04-10 2010-08-11 三洋化成工業株式会社 Electrolytic solution for electrolytic capacitor and element for electrolytic capacitor using the same

Also Published As

Publication number Publication date
JPS62156809A (en) 1987-07-11

Similar Documents

Publication Publication Date Title
JPH036646B2 (en)
JPH0612746B2 (en) Electrolytic solution for electrolytic capacitors
JPH08298229A (en) Electrolyte for electric double-layer capacitor
JPS62219908A (en) Electrolyte for electrolytic capacitor
JPH01194313A (en) Electrolytic solution for electrolytic capacitor
JPH038093B2 (en)
JPH0376775B2 (en)
JPH033370B2 (en)
JPH0340495B2 (en)
KR900005559B1 (en) Electrolyte for electrolytic capacitor
JPH0376774B2 (en)
JPS62145714A (en) Electrolyte for electrolytic capacitor
US4786428A (en) Electrolyte for electrolytic capacitor
JPS62171110A (en) Electrolyte for electrolytic capacitor
JP2572021B2 (en) Electrolyte for electrolytic capacitors
JP2701875B2 (en) Electrolyte for electrolytic capacitors
JPH0426774B2 (en)
JPH0342693B2 (en)
JP2004134458A (en) Electrolyte for driving electrolytic capacitor
JPH0254919A (en) Electrolytic solution for electrolytic capacitor
JP2004193435A (en) Electrolyte for electrolytic capacitor
JP2741609B2 (en) Electrolyte for electrolytic capacitors
JPH0332204B2 (en)
JPH0810663B2 (en) Electrolytic solution for electrolytic capacitors
JP2004134655A (en) Electrolyte for driving electrolytic capacitor