JPH0380361B2 - - Google Patents

Info

Publication number
JPH0380361B2
JPH0380361B2 JP11324482A JP11324482A JPH0380361B2 JP H0380361 B2 JPH0380361 B2 JP H0380361B2 JP 11324482 A JP11324482 A JP 11324482A JP 11324482 A JP11324482 A JP 11324482A JP H0380361 B2 JPH0380361 B2 JP H0380361B2
Authority
JP
Japan
Prior art keywords
diodes
strip line
diode
micro
bias
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11324482A
Other languages
Japanese (ja)
Other versions
JPS593372A (en
Inventor
Norio Hidaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP11324482A priority Critical patent/JPS593372A/en
Publication of JPS593372A publication Critical patent/JPS593372A/en
Publication of JPH0380361B2 publication Critical patent/JPH0380361B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Description

【発明の詳細な説明】 発明の技術分野 本発明は、例えばGaAs−FET等の半導体デバ
イスに於ける特性を測定する際に使用して好適な
スタブ・チユーナに関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a stub tuner suitable for use in measuring characteristics of semiconductor devices such as GaAs-FETs.

従来技術と問題点 一般に、GaAs−FET等の半導体デバイスに於
ける出力パワー、利得、雑音等の特性測定には該
半導体デバイスと測定器等を接続する為のスタ
ブ・チユーナを必要とする。
Prior Art and Problems Generally, in order to measure the characteristics of semiconductor devices such as GaAs-FETs, such as output power, gain, and noise, a stub tuner is required to connect the semiconductor device to a measuring instrument, etc.

第1図は、従来のスタブ・チユーナの説明図で
あつて、1はスタブ・チユーナ、1Aは同軸ケー
ブルの内導体、1Bはスタブ、2は同軸ケーブ
ル、3は同軸コネクタ、4は変換治具、5はマイ
クロ・ストリツプ線路型チツプ・キヤリヤ、6は
半導体チツプをそれぞれ示す。
FIG. 1 is an explanatory diagram of a conventional stub tuner, in which 1 is a stub tuner, 1A is an inner conductor of a coaxial cable, 1B is a stub, 2 is a coaxial cable, 3 is a coaxial connector, and 4 is a conversion jig. , 5 represents a micro-strip line type chip carrier, and 6 represents a semiconductor chip.

この従来例では、スタブ1Bを機械的に移動さ
せてチユーニングを行うようにしているが、種々
の欠点を持つている。
In this conventional example, tuning is performed by mechanically moving the stub 1B, but it has various drawbacks.

例えば、コネクタ部分が同軸型であるから、マ
イクロ・ストリツプ線路型のチツプ・キヤリヤ5
と直に接続することができず、図に見られるよう
に、同軸コネクタ3とチツプ・キヤリヤ5との間
に同軸ケ−ブルからマイクロ・ストリツプ線路へ
の変換治具4を用いなければならない。また、変
換治具4使用すれば、多かれ少なかれ必ず不整合
が発生するので、電力の反射及び損失は避けられ
ず、半導体デバイスと50〔Ω〕ソースとの間のイ
ンピーダンス比が大きい場合にはチユーニング損
失の増大を招来する。更にまた、チユーニングは
スタブ1Bを機械的にスライドして行うので、微
細なインピーダンスの制御を必要とする際には操
作性の面で限界がある。
For example, since the connector part is a coaxial type, a micro strip line type chip carrier 5
As shown in the figure, a coaxial cable to micro strip line conversion jig 4 must be used between the coaxial connector 3 and the chip carrier 5. Furthermore, if the conversion jig 4 is used, a mismatch will more or less always occur, so reflection and loss of power are unavoidable, and if the impedance ratio between the semiconductor device and the 50 [Ω] source is large, tuning This will lead to increased losses. Furthermore, since tuning is performed by mechanically sliding the stub 1B, there is a limit in terms of operability when fine impedance control is required.

発明の目的 本発明は、低損失で、マイクロ・ストリツプ線
路型チツプ・キヤリヤに結合するのが容易である
スタブ・チユーナを提供するものである。
OBJECTS OF THE INVENTION The present invention provides a stub tuner that has low losses and is easy to couple to a micro-stripline chip carrier.

発明の実施例 第2図は、本発明一実施例の要部切断斜面図で
ある。
Embodiment of the Invention FIG. 2 is a cutaway perspective view of essential parts of an embodiment of the invention.

図に於いて、10は例えばGaAsからなる半絶
縁性基板、11,12,13,14は二酸化シリ
コン膜等の誘導体膜、15,16,17,18,
19はマイクロ・ストリツプ線路、20,21,
22は例えばGaAsからなるn型半導体領域(活
性層)、23,24,25は例えばGaAsからな
るn+型半導体領域(アノード)、26,27,2
8は例えばアルミニウムからなるカソード電極、
29はn+型半導体領域23,24,25の下に
形成されたバイア(via)・ホールと呼ばれている
貫通孔に充填された金(Au)等の導体、30は
導体29と接続されている接地導体、31はスト
リツプ線路、32は高周波バイパス用コンデンサ
をそれぞれ示している。
In the figure, 10 is a semi-insulating substrate made of, for example, GaAs, 11, 12, 13, 14 are dielectric films such as silicon dioxide films, 15, 16, 17, 18,
19 is a micro strip line, 20, 21,
22 is an n-type semiconductor region (active layer) made of, for example, GaAs; 23, 24, 25 are n + -type semiconductor regions (anode) made of, for example, GaAs; 26, 27, 2
8 is a cathode electrode made of aluminum, for example;
29 is a conductor such as gold (Au) filled in through-holes called vias formed under the n + type semiconductor regions 23, 24, and 25, and 30 is connected to the conductor 29. 31 is a strip line, and 32 is a high frequency bypass capacitor.

本実施例に於いて、カソード電極26,27,
28はn型半導体領域20,21,22にシヨツ
トキ・コンタクトしているので、そこにはシヨツ
トキ・ダイオードD1,D2,D3が形成されて
いる。このシヨツトキ・ダイオードはλ/4の距
離をおいて配置されている。そして、カソード電
極26,27,28はマイクロ・ストリツプ線路
15乃至19の内16,17,18の部分に接続
され、活性層であるn型半導体領域20,21,
22はアノードであるn+型半導体領域23,2
4,25及び導体29を介して接地導体30に接
続されている。この構成に依るとダイオードD
1,D2,D3の直列抵抗分は極めて小さくな
り、従つて、該ダイオードD1,D2,D3での
電力損失は低減される。
In this embodiment, the cathode electrodes 26, 27,
Since 28 is in shot contact with the n-type semiconductor regions 20, 21, and 22, shot diodes D1, D2, and D3 are formed there. The shot diodes are placed at a distance of λ/4. The cathode electrodes 26, 27, 28 are connected to portions 16, 17, 18 of the micro strip lines 15 to 19, and the n-type semiconductor regions 20, 21, which are active layers,
22 is an n + type semiconductor region 23, 2 which is an anode.
4, 25 and a ground conductor 30 via a conductor 29. According to this configuration, the diode D
The series resistance of diodes D1, D2, and D3 becomes extremely small, and therefore the power loss in the diodes D1, D2, and D3 is reduced.

さて、本実施例に於いて、ダイオードD1乃至
D3に印加する電圧を適宜変化させて容量を制御
すると、マイクロ・ストリツプ線路15から19
に至るまでのリアクタンスが制御されることにな
り、それに依りチユーニングをとることができ
る。即ち、ダイオードD1乃至D3はスタブの役
割をはたしている。これら、ダイオードD1乃至
D3に電圧を印加するには、λ/4共振器を構成
しているストリツプ線路31及びコンデンサ32
からなるバイアス回路を介して行うようになつて
いる。尚、電圧は、電源(図示せず)から高周波
バイパス用コンデンサ32の上側電極に印加され
るようになつている。また、測定すべき半導体デ
バイスにバイアス電圧を供給する回路も前記の如
き共振器となつている。第3図は前記実施例の3
スタブ・チユーナを用いた測定治具の要部斜面図
である。
Now, in this embodiment, if the capacitance is controlled by appropriately changing the voltage applied to the diodes D1 to D3, the micro strip lines 15 to 19
The reactance up to this point is controlled, and tuning can be achieved accordingly. That is, the diodes D1 to D3 serve as stubs. In order to apply voltage to these diodes D1 to D3, a strip line 31 and a capacitor 32 constituting a λ/4 resonator are required.
This is done via a bias circuit consisting of: Note that the voltage is applied to the upper electrode of the high frequency bypass capacitor 32 from a power source (not shown). Further, the circuit for supplying a bias voltage to the semiconductor device to be measured is also a resonator as described above. Figure 3 shows the third example of the above embodiment.
FIG. 2 is a perspective view of a main part of a measurement jig using a stub tuner.

図に於いて、33は銅製の基台、34は基台3
3に搭載したスタブ・チユーナ、35は測定すべ
き半導体デバイスをそれぞれ示す。
In the figure, 33 is the copper base, 34 is the base 3
3 is a stub tuner mounted thereon, and 35 is a semiconductor device to be measured.

この測定治具に依れば、半導体デバイス35に
対する入出力のチユーニングを容易に行うことが
でき、そして、チユーニングは半導体デバイス3
5のごく近傍で行なわれるので、電力の損失は極
めて少ない。
According to this measurement jig, input/output tuning to the semiconductor device 35 can be easily performed, and the tuning can be performed easily.
5, the power loss is extremely small.

本発明に於いては、種々の改変をすることがで
き、例えば、シヨツトキ・ダイオードD1乃至D
3をpn接合ダイオードに代替するなどは任意で
ある。
Various modifications can be made to the present invention, for example, the shot diodes D1 to D
It is optional to replace 3 with a pn junction diode.

発明の効果 本発明に依るスタブ・チユーナに於いては、半
絶縁性基板上に略λ/4の距離をおいて形成され
た3個のダイオード、該各ダイオードの一方の電
極に結合されて延在するマイクロ・ストリツプ線
路、該各ダイオードの他方の側と前記基板に形成
された貫通孔を埋める導体を介して結合された接
地導体膜、前記各ダイオードに接続されてバイア
ス電圧を印加する為のストリツプ線路並びに高周
波バイパス用コンデンサからなる複数のバイアス
回路、前記各ダイオードにそれぞれ独立のバイア
ス電圧を印加する為に隣接する前記バイアス回路
間の前記マイクロ・ストリツプ線路に設けられた
電流直流成分カツト用コンデンサを備える構成に
なつていて、各ダイオードに印加される電圧を制
御して容量を変え、それに依り、前記マイクロ・
ストリツプ線路のリアクタンスを変化させチユー
ニングをとるものであり、測定すべき半導体デバ
イスとスタブ・チユーナのマイクロ・ストリツプ
線路とは直に接続できるので従来技術に於けるよ
うな変換治具を必要とせず、電力の反射及び損失
は極めて少ない。
Effects of the Invention In the stub tuner according to the present invention, three diodes are formed on a semi-insulating substrate at a distance of approximately λ/4, and the diodes are coupled to one electrode of each diode. a ground conductor film connected to the other side of each of the diodes via a conductor filling the through hole formed in the substrate; A plurality of bias circuits consisting of strip lines and high-frequency bypass capacitors, and a current DC component cutting capacitor provided on the micro strip line between adjacent bias circuits in order to apply independent bias voltages to each of the diodes. The capacitance is changed by controlling the voltage applied to each diode, thereby controlling the micro-
Tuning is achieved by changing the reactance of the strip line, and since the semiconductor device to be measured and the micro strip line of the stub tuner can be directly connected, there is no need for a conversion jig as in conventional technology. Power reflections and losses are extremely low.

そして、チユーニングはダイオードに印加する
電圧を制御するだけで良いから、簡単であるとと
もに微細なインピーダンス制御を必要とする際の
操作性が良好である。
Since tuning only requires controlling the voltage applied to the diode, it is simple and has good operability when fine impedance control is required.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例の説明図、第2図は本発明一実
施例の要部切断斜面図、第3図は第2図実施例を
用いた測定治具の要部斜面図である。 図に於いて、10は半絶縁性基板、11,1
2,13,14は誘電体膜、15,16,17,
18,19はマイクロ・ストリツプ線路、20,
21,22はn型半導体領域、23,24,25
n+型半導体領域、26,27,28はカソード
電極、29は導体、30は接地導体、31はスト
リツプ線路、32は高周波バイパス用コンデン
サ、D1,D2,D3はダイオードである。
FIG. 1 is an explanatory diagram of a conventional example, FIG. 2 is a cutaway perspective view of a main part of an embodiment of the present invention, and FIG. 3 is a perspective view of a main part of a measuring jig using the embodiment shown in FIG. In the figure, 10 is a semi-insulating substrate, 11, 1
2, 13, 14 are dielectric films, 15, 16, 17,
18, 19 are micro strip lines, 20,
21, 22 are n-type semiconductor regions, 23, 24, 25
n + -type semiconductor regions, 26, 27, and 28 are cathode electrodes, 29 is a conductor, 30 is a ground conductor, 31 is a strip line, 32 is a capacitor for high frequency bypass, and D1, D2, and D3 are diodes.

Claims (1)

【特許請求の範囲】 1 半絶縁性基板上に略λ/4の距離をおいて形
成された3個のダイオード、 該各ダイオードの一方の電極に結合されて延在
するマイクロ・ストリツプ線路、 該各ダイオードの他方の側と前記基板に形成さ
れた貫通孔を埋める導体を介して結合された接地
導体膜、 前記各ダイオードに接続されてバイアス電圧を
印加する為のストリツプ線路並びに高周波バイパ
ス用コンデンサからなる複数のバイアス回路、 前記各ダイオードにそれぞれ独立のバイアス電
圧を印加する為に隣接する前記バイアス回路間の
前記マイクロ・ストリツプ線路に設けられた電流
直流成分カツト用コンデンサ を備えてなることを特徴とするスタブ・チユー
ナ。
[Scope of Claims] 1. Three diodes formed on a semi-insulating substrate at a distance of approximately λ/4; a micro-strip line connected to one electrode of each diode and extending; A ground conductor film connected to the other side of each diode via a conductor filling the through hole formed in the substrate, a strip line connected to each diode to apply a bias voltage, and a high frequency bypass capacitor. a plurality of bias circuits, comprising a current DC component cutting capacitor provided on the micro-strip line between adjacent bias circuits in order to apply independent bias voltages to each of the diodes. Stub Chiyuna.
JP11324482A 1982-06-30 1982-06-30 Stub tuner Granted JPS593372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11324482A JPS593372A (en) 1982-06-30 1982-06-30 Stub tuner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11324482A JPS593372A (en) 1982-06-30 1982-06-30 Stub tuner

Publications (2)

Publication Number Publication Date
JPS593372A JPS593372A (en) 1984-01-10
JPH0380361B2 true JPH0380361B2 (en) 1991-12-24

Family

ID=14607217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11324482A Granted JPS593372A (en) 1982-06-30 1982-06-30 Stub tuner

Country Status (1)

Country Link
JP (1) JPS593372A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006064543A (en) * 2004-08-26 2006-03-09 Kyocera Corp Tuner for load-pull or source-pull measurement

Also Published As

Publication number Publication date
JPS593372A (en) 1984-01-10

Similar Documents

Publication Publication Date Title
AU681050B2 (en) Coplanar waveguide-mounted flip chip
US4843440A (en) Microwave field effect transistor
US5583468A (en) High frequency transition from a microstrip transmission line to an MMIC coplanar waveguide
US4789840A (en) Integrated capacitance structures in microwave finline devices
US4604591A (en) Automatically adjustable delay circuit having adjustable diode mesa microstrip delay line
US4032865A (en) Radial impedance matching device package
US7068115B2 (en) Monolithic microwave integrated circuit voltage controlled coupled feedback oscillator
US4251784A (en) Apparatus for parallel combining an odd number of semiconductor devices
JPH0380361B2 (en)
JPS61285746A (en) Semiconductor device
US3274459A (en) Low impedance coupled transmission line and solid state tunnel diode structure
CA1305219C (en) Test jig for measuring the static characteristics of microwave 3-terminal active components
US4617528A (en) Compact combiner for use with semiconductor devices in the microwave frequency range
JPS5838613Y2 (en) Hybrid integrated high frequency transistor amplifier
EP0245048B1 (en) Finline millimeter wave detector
JPS6349922B2 (en)
US20230341880A1 (en) Voltage source and method for calibrating this voltage source
JP4547823B2 (en) High frequency module
JP3176667B2 (en) Microwave circuit
US3450902A (en) Structure for reducing mismatch between symmetrical and asymmetrical transmission line and fast rise time generator utilizing same
Bollu et al. Realization and Characterization of RF Modules for X-band Phased Array Antenna Applications
JPH0249733Y2 (en)
JPH02140969A (en) Semiconductor integrated circuit device
JPS5924162Y2 (en) Microwave integrated circuit with improved power supply structure
RU2421857C2 (en) Semiconductor laser emitter with band modulation in microwave range