JPH0380056B2 - - Google Patents

Info

Publication number
JPH0380056B2
JPH0380056B2 JP59260585A JP26058584A JPH0380056B2 JP H0380056 B2 JPH0380056 B2 JP H0380056B2 JP 59260585 A JP59260585 A JP 59260585A JP 26058584 A JP26058584 A JP 26058584A JP H0380056 B2 JPH0380056 B2 JP H0380056B2
Authority
JP
Japan
Prior art keywords
absorbent
absorption
pressure
aromatic compound
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59260585A
Other languages
Japanese (ja)
Other versions
JPS61138531A (en
Inventor
Shunichi Azuma
Sachio Asaoka
Ikuko Kawamura
Isao Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHODA KAKO KENSETSU KK
Original Assignee
CHODA KAKO KENSETSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHODA KAKO KENSETSU KK filed Critical CHODA KAKO KENSETSU KK
Priority to JP59260585A priority Critical patent/JPS61138531A/en
Publication of JPS61138531A publication Critical patent/JPS61138531A/en
Publication of JPH0380056B2 publication Critical patent/JPH0380056B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Gas Separation By Absorption (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は一酸化炭素(以下COとする)の吸収
剤に関し、特にCOを含有する混合ガスからCOを
選択的に吸収し、かつ、圧力変動によつて容易に
COを吸収脱離すう特質を持つ固体状吸収剤の改
質方法に関する。 COは合成化学の基礎原料であり、コークス炉
排ガス中に含まれるCOの有効利用について各方
面で研究が進められている。COを分離・濃縮す
るための吸収剤に関しては銅アルミニウム四塩化
物(CuAlCl4)トルエン溶液(COSORB溶液)
がよく知られている。この溶液を用いた場合に
は、吸収能が高いにも拘らず水による劣化が著し
いこと及び溶媒のトルエンがCO回収時に混入す
る等の欠点がある。しかもこの溶液法ではCOの
吸収脱離に温度を変動せしめることに頼らざるを
えないためトルエンの混入をさけることが更に困
難となる。発明者らはかかる欠点を克服すべく鋭
意研究をすすめた結果本発明の開発をみたもので
ある。さきにCOSORB溶液の長所をそのまま生
かし、かつ上記欠点を排除し、COの高選択性吸
収分離性能を有すると共に、水及び他の被毒ガス
等に対する劣化性が極めて少ない固体状のCO吸
収分離剤として塩化第一銅塩化アルミニウム、芳
香族化合物及び酸性酸化物を含む耐水性一酸化炭
素吸収剤を提案した(特願昭59−40292)。その吸
収剤はCOSORB溶液に比して極めて耐水性が高
い上、塩化第一銅、塩化アルミニウム及び芳香族
化合物からなる三成分が酸性酸化物上で錯体を形
成し安定化し、かつ錯体中の芳香族化合物が担体
として作用する酸性酸化物と何らかの相互作用を
示し、極めて高いCO吸収能を持つ特徴がある。
その吸収剤における第一成分の塩化第一銅の一価
の銅イオン(Cu())はCOをよく吸収すること
が知られている。しかしながら前記の吸収剤にお
いては構成する四成分の一つでも欠けた場合に
は、耐水性を有する吸収剤を提供できない。すな
わち第一成分塩化銅、第二成分塩化アルミニウ
ム、第三成分芳香族化合物及び第四成分酸性酸化
物はいずれも必要不可欠な成分である。しかもこ
の吸収剤は耐水性はあるがCOとの結合が極めて
安定なため、圧力より温度の変化によつて大きな
吸収脱離量の変化を生じさせる必要があつた。し
かるに、酸性酸化物の多く、特にCO吸収に活性
な上記金属種を効率よく分散担持せしめるのに有
効な多孔質体は、熱の変動に対して極めて鈍い応
答しか示さない。そのためこれら吸収剤を用いて
吸収脱離による高純度COの分離回収を行なうと
きそのサイクルが極めて長時間を要することにな
る。これら欠点を克服すべくさらに検討をすすめ
た結果、圧力依存性の高いCO吸収剤に改質する
ことを見出した。例えば上記のCO吸収剤を極性
ガスと接触することによつてCOの吸収脱離が圧
力変動に大きく依存するものへ改質することがで
きる。これについてはその構造に如何なる変化が
もたらされるのか、現在までのとこは明らかでは
ないが、その吸収選択性が保持されたまゝ、その
吸収結合力が弱められ、COの圧力変動に大きく
依存するCO吸収剤特性が発現されたものと思わ
れる。考えられる理由としては錯体を形成してい
る銅のまわりの配位状態がコントロールされ銅と
COとの結合力が、CO吸収選択性を落さない範囲
である変化を生じたものと考えられる。本発明で
いう「改質」とは、構造の変化を含むか、あるい
は構造の変化がなくCOの吸収・脱離性能が改質
されることを意味する。 本発明の方法で改質した吸収剤は、処理前のも
のに比較し、圧力の変動による極めて大きなCO
回収量を示すことを特徴とする。したがつて本発
明の吸収剤を用いることによつて、圧力の変動に
よるCOの吸収脱離を利用した回収工程が組める
ことになり、温度の変動を利用したCOの回収の
場合にくらべサイクルタイムを極めて短くとるこ
とが可能となつた。 本発明の方法の対象となる吸収剤は、塩化第一
銅、塩化アルミニウム、芳香族化合物及び多孔質
体を含み、塩化アルミニウムは塩化第一銅と芳香
族化合物と錯体を形成し銅イオンを一価に安定に
保つように作用する必須成分である。また、第三
成分の芳香族化合物は第一成分の塩化第一銅及び
第二成分の塩化アルミニウムと錯体を形成すると
同時に、本発明の吸収剤の特性である耐水性を与
える上からも必要である。さらに、このものの調
製及び本発明の方法に使用しうる温度範囲は、鎖
体を形成する芳香族化合物の種類によつて異な
る。例えばトルエンを用いた場合、約120℃まで
は安定であるが、一般には使用した芳香族化合物
の沸点より20〜30℃高い温度にまで加熱すると芳
香族化合物は錯体から脱離し、除去されることが
考えられる。従つて吸収剤の調製、改質及びCO
の吸収・脱離の操作条件によつて、使用する芳香
族化合物を適宜選択する必要がある。一般にはベ
ンゼン、トルエン、キシレン、ポリスチレン等の
汎用のものが使用される。ただし塩化銅や塩化ア
ルミニウムを溶解する能力のない溶媒や低沸点溶
媒ないし高揮発性溶媒は好ましくない。第四成分
の多孔質体は塩化第一銅、塩化アルミニウム、及
び芳香族化合物とからなる錯体を均一に分散固定
化する担体としての作用を示す。好ましい多孔質
体の例として酸性酸化物が挙げられる。酸性酸化
物とは表面に低温で安定なブレンステツド酸点あ
るいは高温で生成しやすいルイス酸点のいずれか
の酸点を有するものであり、錯体が十分に分散す
ると同時に、錯体中の芳香族化合物が相互作用を
保持でき得るものが望ましい。例えばアルミナ、
シリカ、シリカ−アルミナ、シリカ−マグネシア
等である。また表面積は、余り大き過ぎると、細
孔が小さくなりすぎて、錯化合物の分散性を低下
させるため好ましくない。通常はBET表面積で
40−400m2/g、好ましくは50〜300m2/gのもの
が好ましい。 多孔質体への錯化合物の担持量は多孔質体100
重量部に対し、第一及び第二成分の合計として1
〜50重量部、好ましくは10〜40重量部である。こ
の場合、塩化アルミニウムが過剰に存在すると、
水と反応してHClを発生し吸収剤を劣化せしめる
こともある。従つて塩化第一銅が僅かに過剰とな
るように担持することが好ましい。さらに、芳香
族化合物は一般的には上記第一成分に対し0.1〜
0.5モルとなるように担持する。特に担持量は
0.25モル以上が好ましい。 本発明の改質は強すぎるCO吸収結合力を好ま
しい範囲に弱めることができる処理であればよ
い。例えば水蒸気、硫化水素などの極性ガスを常
温ないし、必要とあらば昇温した状態において接
触せしめることにより行なうことができる。その
ような処理として簡便な方法の一つに水蒸気との
接触が挙げられる。具体的には銅のモル数の数倍
から数十倍量の水蒸気一般には2乃至3倍量の水
蒸気を、数回から数十回一般には4乃至10回にわ
けて常温から90℃の温度下で接触せしめることに
より行なうことができる。 本発明における圧力変動法に依存するCO分離
吸収剤とはCOの圧力変動によつてCOを吸収分離
するのに効率的な本発明によつて改質された吸収
剤を言い、本発明で用いる圧力範囲は例えば
20atm〜10torr.までの間で選ばれる。 本発明の圧力変動法において製品純度を上げる
方法例えば粒子間隙パージ方法、細孔内パージ方
法、多孔質吸収剤に有効なパージ方法等は当然の
ことながらその適用を妨げるものではない。すな
わち本発明の吸収剤を用い通常昇圧状態において
吸収を行ない、しかる後製品ガスにてパージし、
未吸収ガスを排出し、降圧ないし減圧下において
製品ガスを回収することによつて高純度COを製
品として効率よく回収することができる。 本発明の方法により改質された吸収剤の適用対
象となるCO含有ガスの一例としては製鉄所の高
炉、転炉、コークス炉ガスあるいはそれらの処理
物が挙げられる。 以下に実施例を用いて本発明をさらに詳細に説
明する。 実施例 乾燥窒素下で3000mlのナスフラスコに塩化第一
銅54g、塩化アルミニウム72g、トルエン600ml
をいれて溶解し、60℃で2時間加熱保温した。溶
液はCuCl−AlCl3−トルエン錯体溶液特有の黒透
明色を呈した。ここでは塩化第一銅、塩化アルミ
ニウム、およびトルエンはすべて市販の特級試薬
(それぞれ和光純薬工業(株)製)をそのまま使用し
た。多孔質体として550℃にて3時間焼成した、
活性アルミナビーズ(住友アルミナ(株)製、平均細
孔直径116Å、8ET表面積250m2/g)を200gナ
スフラスコにいれ、真空ポンプを用いてナスフラ
スコ内を十分に脱気した後窒素で圧力を戻し上記
錯体溶液を加え多孔質体を錯体溶液中に浸した。
30分間浸漬した後真空ポンプでナスフラスコ内を
減圧(6mmHg)にして室温で一昼夜排気しトル
エンを十分に排気した。その後窒素で圧力を戻し
た。このものに飽和水蒸気量を含む窒素ガスを
3.5/minの流量で10分間接触させ、次に90℃
に加温した状態で乾燥窒素と接触させ、その後室
温まで冷却した。この操作を8回くり返して吸収
剤を得た。この吸収剤を内径25mm長さ100mmのス
テンレスSUS−304製反応器に40g充てんした。
原料ガスは下記組成の標準ガスを減圧して使用し
た。 CO 66Vol% N2 17Vol% CO2 17Vol% この原料ガスを25℃全圧1.1Kg/cm2Aで流量
300Ncc/minで5分間通気した。吸収終了後真
空ポンプで反応器内を減圧にし、100torrにした。
減圧に要した時間は約1分であつた。 原料ガスと回収されたガスの量と組成は下記の
とおりとなつた。
The present invention relates to a carbon monoxide (hereinafter referred to as CO) absorbent, and in particular to a carbon monoxide (hereinafter referred to as CO) absorbent, which selectively absorbs CO from a mixed gas containing CO, and which easily absorbs CO by changing pressure.
This article relates to a method for modifying a solid absorbent that has the property of absorbing and desorbing CO. CO is a basic raw material in synthetic chemistry, and research is progressing in various fields on the effective use of CO contained in coke oven exhaust gas. Regarding absorbents for separating and concentrating CO, copper aluminum tetrachloride (CuAlCl 4 ) toluene solution (COSORB solution)
is well known. When this solution is used, there are drawbacks such as significant deterioration due to water despite its high absorption capacity and toluene as a solvent being mixed in during CO recovery. Moreover, in this solution method, it is necessary to rely on varying the temperature for absorption and desorption of CO, making it even more difficult to avoid contamination with toluene. The present invention was developed as a result of intensive research by the inventors to overcome these drawbacks. First, we will utilize the advantages of COSORB solution as they are, eliminate the above disadvantages, and use it as a solid CO absorption and separation agent that has high selectivity absorption and separation performance for CO and is extremely resistant to deterioration due to water and other poisonous gases. A water-resistant carbon monoxide absorbent containing cuprous chloride, aluminum chloride, an aromatic compound, and an acidic oxide was proposed (Japanese Patent Application No. 40292/1986). The absorbent has extremely high water resistance compared to COSORB solution, and the three components consisting of cuprous chloride, aluminum chloride, and aromatic compounds form a complex on acidic oxide to stabilize it, and the aromatic The group compounds exhibit some kind of interaction with acidic oxides that act as carriers, and are characterized by extremely high CO absorption capacity.
It is known that monovalent copper ions (Cu()) of cuprous chloride, which is the first component in the absorbent, absorb CO well. However, if the above-mentioned absorbent lacks even one of the four constituent components, an absorbent having water resistance cannot be provided. That is, the first component copper chloride, the second component aluminum chloride, the third component aromatic compound, and the fourth component acidic oxide are all essential components. Moreover, although this absorbent is water resistant, its bond with CO is extremely stable, so it was necessary to cause a larger change in the amount of absorption and desorption due to changes in temperature rather than pressure. However, porous materials that are effective in efficiently dispersing and supporting many acidic oxides, particularly the above-mentioned metal species active in CO absorption, exhibit only an extremely slow response to thermal fluctuations. Therefore, when these absorbents are used to separate and recover high-purity CO through absorption and desorption, the cycle requires an extremely long time. As a result of further investigation to overcome these shortcomings, we discovered that we could modify the CO absorbent to be highly pressure dependent. For example, by contacting the above-mentioned CO absorbent with a polar gas, it is possible to modify the CO absorbent into one in which absorption and desorption of CO largely depends on pressure fluctuations. To date, it is not clear what kind of changes are brought about in its structure, but its absorption selectivity is maintained, its absorption binding force is weakened, and CO, which is highly dependent on CO pressure fluctuations, is It seems that absorbent properties were developed. A possible reason is that the coordination state around the copper forming the complex is controlled and the copper
It is thought that the binding force with CO has changed within a range that does not reduce CO absorption selectivity. "Modification" as used in the present invention means that the CO absorption/desorption performance is modified, including a change in structure, or without a change in structure. The absorbent modified by the method of the present invention has an extremely large amount of CO2 due to pressure fluctuations compared to the absorbent before treatment.
It is characterized by showing the amount recovered. Therefore, by using the absorbent of the present invention, a recovery process that utilizes absorption and desorption of CO due to pressure fluctuations can be established, which reduces cycle time compared to CO recovery that utilizes temperature fluctuations. It became possible to make it extremely short. The absorbent targeted by the method of the present invention includes cuprous chloride, aluminum chloride, an aromatic compound, and a porous material, and aluminum chloride forms a complex with cuprous chloride and the aromatic compound to unify copper ions. It is an essential component that acts to maintain stable levels. Further, the aromatic compound as the third component is necessary to form a complex with cuprous chloride as the first component and aluminum chloride as the second component, and at the same time to provide water resistance, which is a characteristic of the absorbent of the present invention. be. Furthermore, the temperature range that can be used for its preparation and the method of the invention will depend on the type of aromatic compound forming the chain. For example, when toluene is used, it is stable up to about 120°C, but in general, when heated to a temperature 20 to 30°C higher than the boiling point of the aromatic compound used, the aromatic compound desorbs from the complex and is removed. is possible. Therefore, absorbent preparation, modification and CO
It is necessary to appropriately select the aromatic compound to be used depending on the operating conditions for absorption and desorption of. Generally, general-purpose materials such as benzene, toluene, xylene, and polystyrene are used. However, solvents that do not have the ability to dissolve copper chloride or aluminum chloride, low boiling point solvents, or highly volatile solvents are not preferred. The fourth component, the porous body, acts as a carrier to uniformly disperse and immobilize the complex consisting of cuprous chloride, aluminum chloride, and an aromatic compound. An example of a preferred porous material is an acidic oxide. Acidic oxides have either Brønsted acid sites, which are stable at low temperatures, or Lewis acid sites, which are easily generated at high temperatures, on their surfaces, and at the same time the complex is sufficiently dispersed, the aromatic compounds in the complex are Something that can maintain interaction is desirable. For example, alumina
These include silica, silica-alumina, silica-magnesia, and the like. On the other hand, if the surface area is too large, the pores become too small and the dispersibility of the complex compound decreases, which is not preferable. Usually in BET surface area
40-400 m 2 /g, preferably 50-300 m 2 /g is preferred. The amount of complex compound supported on the porous body is 100
1 as the sum of the first and second components per part by weight
-50 parts by weight, preferably 10-40 parts by weight. In this case, if aluminum chloride is present in excess,
It can also react with water to generate HCl, which can degrade the absorbent. Therefore, it is preferable to carry cuprous chloride in a slight excess. Furthermore, the aromatic compound is generally 0.1 to
It is supported so that it becomes 0.5 mol. In particular, the supported amount
It is preferably 0.25 mol or more. The modification of the present invention may be any treatment that can weaken the excessively strong CO absorption binding force to a preferable range. For example, this can be carried out by contacting a polar gas such as water vapor or hydrogen sulfide at room temperature or, if necessary, at an elevated temperature. One of the simple methods for such treatment is contact with water vapor. Specifically, the amount of water vapor is several times to several tens of times the number of moles of copper, generally 2 to 3 times the amount of water vapor, and divided into several to several dozen times, generally 4 to 10 times, at a temperature ranging from room temperature to 90°C. This can be done by making contact at the bottom. The CO separation absorbent that relies on the pressure fluctuation method in the present invention refers to an absorbent modified according to the present invention that is efficient in absorbing and separating CO by pressure fluctuation of CO, and is used in the present invention. The pressure range is e.g.
Selected between 20 atm and 10 torr. Naturally, any method for increasing product purity in the pressure fluctuation method of the present invention, such as interparticle purge method, pore purge method, purge method effective for porous absorbents, etc., is not precluded from being applied. That is, absorption is carried out using the absorbent of the present invention in a normally pressurized state, and then purged with product gas,
High purity CO can be efficiently recovered as a product by discharging unabsorbed gas and recovering the product gas under reduced pressure or reduced pressure. Examples of CO-containing gases to which the absorbent modified by the method of the present invention can be applied include blast furnace, converter, and coke oven gases in steel plants, and processed products thereof. The present invention will be explained in more detail below using Examples. Example: 54 g of cuprous chloride, 72 g of aluminum chloride, and 600 ml of toluene in a 3000 ml eggplant flask under dry nitrogen.
The mixture was dissolved and heated and kept at 60°C for 2 hours. The solution exhibited a transparent black color characteristic of a CuCl-AlCl 3 -toluene complex solution. Here, cuprous chloride, aluminum chloride, and toluene were all commercially available special grade reagents (each manufactured by Wako Pure Chemical Industries, Ltd.) and used as they were. It was fired as a porous body at 550℃ for 3 hours.
200 g of activated alumina beads (manufactured by Sumitomo Alumina Co., Ltd., average pore diameter 116 Å, 8ET surface area 250 m 2 /g) were placed in an eggplant flask, and the inside of the eggplant flask was sufficiently degassed using a vacuum pump, and then the pressure was increased with nitrogen. The above complex solution was returned and the porous body was immersed in the complex solution.
After immersing for 30 minutes, the pressure inside the eggplant flask was reduced (6 mmHg) using a vacuum pump, and the flask was evacuated at room temperature all day and night to sufficiently exhaust the toluene. Afterwards, the pressure was returned to nitrogen. Add nitrogen gas containing saturated water vapor to this material.
Contact for 10 minutes at a flow rate of 3.5/min, then 90℃
The sample was brought into contact with dry nitrogen in a heated state, and then cooled to room temperature. This operation was repeated eight times to obtain an absorbent. 40 g of this absorbent was filled into a stainless steel SUS-304 reactor with an inner diameter of 25 mm and a length of 100 mm.
A standard gas having the following composition was used as a raw material gas under reduced pressure. CO 66Vol% N 2 17Vol% CO 2 17Vol% The flow rate of this raw material gas at 25℃ and a total pressure of 1.1Kg/cm 2 A
Aerated at 300Ncc/min for 5 minutes. After the absorption was completed, the pressure inside the reactor was reduced to 100 torr using a vacuum pump.
The time required to reduce the pressure was about 1 minute. The amounts and compositions of the raw material gas and recovered gas were as follows.

【表】 比較例 実施例の改質処理(この場合、飽和水蒸気量を
含む窒素ガスとのくり返し接触)をほどこしてい
ない吸収剤40gを使用する以外は実施例の方法を
繰返した。 結果は下記の通りであつた。
[Table] Comparative Example The method of the example was repeated except that 40 g of the absorbent which had not been subjected to the modification treatment (in this case, repeated contact with nitrogen gas containing a saturated amount of water vapor) of the example was used. The results were as follows.

【表】【table】

Claims (1)

【特許請求の範囲】 1 多孔質体、塩化第一銅、塩化アルミニウムお
よび芳香族化合物よりなる一酸化炭素吸収剤を極
性ガスと接触せしめることを特徴とする圧力変動
により一酸化炭素を吸収分離する固体状一酸化炭
素吸収剤の改質方法。 2 極性ガスが水蒸気である特許請求の範囲第1
項の改質方法。 3 極性ガスとの接触を複数回行う特許請求の範
囲第1または2項の改質方法。 4 極性ガスとの接触を加熱下に行う特許請求の
範囲第1〜3項の何れか1項の改質方法。
[Claims] 1. Absorbing and separating carbon monoxide through pressure fluctuations characterized by bringing a carbon monoxide absorbent made of a porous material, cuprous chloride, aluminum chloride, and an aromatic compound into contact with a polar gas. Method for modifying solid carbon monoxide absorbent. 2 Claim 1 in which the polar gas is water vapor
Modification method of terms. 3. The reforming method according to claim 1 or 2, wherein contact with the polar gas is carried out multiple times. 4. The reforming method according to any one of claims 1 to 3, wherein the contact with the polar gas is carried out under heating.
JP59260585A 1984-12-10 1984-12-10 Reforming method of carbon monoxide absorbent Granted JPS61138531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59260585A JPS61138531A (en) 1984-12-10 1984-12-10 Reforming method of carbon monoxide absorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59260585A JPS61138531A (en) 1984-12-10 1984-12-10 Reforming method of carbon monoxide absorbent

Publications (2)

Publication Number Publication Date
JPS61138531A JPS61138531A (en) 1986-06-26
JPH0380056B2 true JPH0380056B2 (en) 1991-12-20

Family

ID=17349986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59260585A Granted JPS61138531A (en) 1984-12-10 1984-12-10 Reforming method of carbon monoxide absorbent

Country Status (1)

Country Link
JP (1) JPS61138531A (en)

Also Published As

Publication number Publication date
JPS61138531A (en) 1986-06-26

Similar Documents

Publication Publication Date Title
US4210628A (en) Removal of nitrogen oxides
US4433981A (en) CO2 Removal from gaseous streams
US4917711A (en) Adsorbents for use in the separation of carbon monoxide and/or unsaturated hydrocarbons from mixed gases
US4587114A (en) Method for separating carbon dioxide from mixed gas
EP0324071B1 (en) Process for producing a desulfurization agent
EP0159056A2 (en) Process for removing hydrogen sulphide from gases and absorbent for use in such a process
GB2213401A (en) Adsorbent for separation and recovery of co
CN108067181B (en) High-selectivity carbon monoxide absorbent and preparation method thereof
JPH0687766A (en) Purification of unsaturated hydrocarbon
WO1992011202A1 (en) Process for producing formed active coke for desulfurization and denitrification with high denitrification performance
CN106607005A (en) Nitrogen-containing compound solid adsorbent and preparation method thereof
JPH0421641A (en) Purification of high-concentration alcohol and absorbent for purification
JPH0380056B2 (en)
JPH01123627A (en) Production of desulfurizing agent
JPS61293548A (en) Carbon monoxide separating and adsorbing agent
JPH0475049B2 (en)
JPS5869724A (en) Oxygen-stabilized intermetallic compound able to absorbing hydrogen reversibly
KR102677862B1 (en) A method for manufacturing a granular adsorbent for separating carbon monoxide or carbon disulfide, a granular adsorbent for separating carbon monoxide and carbon disulfide produced therefrom, and a separation device comprising the granular adsorbent
JPH0424093B2 (en)
JPH0424092B2 (en)
JP3155037B2 (en) How to keep fruits and vegetables fresh
JPS62193633A (en) Reducing agent for nitrogen oxide
Fang et al. Redox catalysis in zeolites: investigation of the behavior of iron-exchanged mordenite toward carbon monoxide reduction
JP3292311B2 (en) Purification method of methanol
JPS6039417B2 (en) Method for regenerating solid reactants