JPH0378568B2 - - Google Patents

Info

Publication number
JPH0378568B2
JPH0378568B2 JP57171935A JP17193582A JPH0378568B2 JP H0378568 B2 JPH0378568 B2 JP H0378568B2 JP 57171935 A JP57171935 A JP 57171935A JP 17193582 A JP17193582 A JP 17193582A JP H0378568 B2 JPH0378568 B2 JP H0378568B2
Authority
JP
Japan
Prior art keywords
light
receiving element
light receiving
emitting diode
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57171935A
Other languages
Japanese (ja)
Other versions
JPS5960324A (en
Inventor
Motoo Igari
Yutaka Abe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP57171935A priority Critical patent/JPS5960324A/en
Publication of JPS5960324A publication Critical patent/JPS5960324A/en
Publication of JPH0378568B2 publication Critical patent/JPH0378568B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/52Measurement of colour; Colour measuring devices, e.g. colorimeters using colour charts
    • G01J3/524Calibration of colorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J2003/2866Markers; Calibrating of scan
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/501Colorimeters using spectrally-selective light sources, e.g. LEDs

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Description

【発明の詳細な説明】 本発明は、測定面に対して平行な平面内の円周
上に発光色の異なる複数個の発光ダイオードを配
列して測定面を照射し、測定面での反射光を測定
光用受光素子で受光することにより、測定光用受
光素子の出力に基づいて色測定を行うようにした
色測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention involves arranging a plurality of light emitting diodes with different emission colors on the circumference in a plane parallel to the measurement surface, illuminating the measurement surface, and emitting light reflected from the measurement surface. The present invention relates to a color measuring device that measures color based on the output of the measuring light receiving element by receiving the light with the measuring light receiving element.

この種の色測定装置では、第1図に示すよう
に、測定面4に平行な平面内の円周上に、赤色発
光ダイオード(以下、R−LEDと略す)1、緑
色発光ダイオード(以下、G−LEDと略す2、
青色発光ダイオード(以下、B−LEDと略す)
3をそれぞれ複数個ずつ配列する。R−LED1,
G−LED2,B−LED3は、光軸が測定面4の
一点で交わるとともに、各光軸の測定面4に対す
る交角が等しくなるように配置され、一般には光
軸と測定面4との交角は45゜になるように設定さ
れる。また、測定面4での反射光は、レンズ5で
集光され、測定光用受光素子6で受光される。測
定光用受光素子6の光軸は、R−LED1,G−
LED2,B−LED3の光軸の交点を通り、かつ、
測定面4に対して直交するように設定される。こ
の構成において、R−LED1,G−LED2,B
−LED3によつてそれぞれ測定面4を照射した
ときに、測定光用受光素子6で受光される反射光
のレベルに基づいて、測定面4の色を知ることが
できるのである。
In this type of color measuring device, as shown in FIG. 1, a red light emitting diode (hereinafter referred to as R-LED) 1 and a green light emitting diode (hereinafter referred to as Abbreviated as G-LED2,
Blue light emitting diode (hereinafter abbreviated as B-LED)
Arrange a plurality of each of 3. R-LED1,
G-LED 2 and B-LED 3 are arranged so that their optical axes intersect at one point on the measurement surface 4 and the intersection angles of each optical axis with respect to the measurement surface 4 are equal. Generally, the intersection angle between the optical axis and the measurement surface 4 is The angle is set to 45°. Further, the reflected light from the measurement surface 4 is collected by the lens 5 and received by the measurement light receiving element 6. The optical axis of the light receiving element 6 for measurement light is R-LED1, G-
Pass through the intersection of the optical axes of LED2, B-LED3, and
It is set perpendicular to the measurement plane 4. In this configuration, R-LED1, G-LED2, B
- When the measurement surface 4 is irradiated by each LED 3, the color of the measurement surface 4 can be determined based on the level of reflected light received by the measurement light receiving element 6.

しかしながら、上記構成では、温度変化や経時
変化によるR−LED1,G−LED2,B−LED
3の発光光量の変動に対する補償ができないもの
であるから、測定誤差が生じやすいという問題が
ある。
However, in the above configuration, R-LED1, G-LED2, B-LED
Since it is not possible to compensate for the variation in the amount of emitted light as described in No. 3, there is a problem in that measurement errors are likely to occur.

この問題を解決するために、R−LED1,G
−LED2,B−LED3からの光の一部を光フア
イバを用いて分岐して測定光用受光素子6とは別
に設けた参照光用受光素子で受光し、参照光用受
光素子の出力に基づいて発光光量の変動を補償す
ることが考えられる。
To solve this problem, R-LED1, G
- Part of the light from the LED2, B-LED3 is branched using an optical fiber and received by a reference light receiving element provided separately from the measuring light receiving element 6, and based on the output of the reference light receiving element 6. It is conceivable to compensate for fluctuations in the amount of emitted light.

しかしながら、R−LED1,G−LED2,B
−LED3は複数個ずつ設けられているから、光
フアイバをR−LED1,G−LED2,B−LED
3に一対一に対応させて設けるとすれば、多数の
光フアイバが必要になり光フアイバの配置が難し
くなるという問題が生じる。
However, R-LED1, G-LED2, B
-Since multiple LED3 are provided, the optical fibers are connected to R-LED1, G-LED2, and B-LED.
If the optical fibers are provided in one-to-one correspondence with each other, a problem arises in that a large number of optical fibers are required and the arrangement of the optical fibers becomes difficult.

本発明は上記問題点の解決を目的とするもので
あり、測定面への照射光の一部を分岐して参照光
用受光素子に入射させ、照射光の光量変動を補償
できるようにすることによつて温度変化や経時変
化による測定誤差の発生を抑制し、しかも、参照
光を参照光用受光素子に導く経路に筒状の光伝導
体を用いることによつて、光フアイバを用いる場
合に比較して簡単な構成で安価に提供できる色測
定装置を提供しようとするものである。以下本発
明を実施例に基づいて詳細に説明する。
The present invention aims to solve the above-mentioned problems, and it is possible to compensate for variations in the amount of light irradiated by branching a part of the light irradiated onto the measurement surface and making it incident on a reference light receiving element. In addition, by using a cylindrical photoconductor in the path that guides the reference light to the reference light receiving element, it is possible to suppress the occurrence of measurement errors due to temperature changes and changes over time. The present invention aims to provide a color measuring device that has a relatively simple configuration and can be provided at low cost. The present invention will be described in detail below based on examples.

第2図および第3図に示すように、測定面4に
対して平行な平面内の円周上に、それぞれ複数個
ずつのR−LED1,G−LED2,B−LED3が
配列される。R−LED1,G−LED2,B−
LED3は、各色によつて測定面4がほぼ均等に
照射されるように分布して配置される。また、R
−LED1,G−LED2,B−LED3は、円錐台
状に形成された光伝導体18の壁に挿通された形
で配置される。光伝導体18は、アクリル等の透
明材料により測定面4に平行な断面が円環状にな
るように形成され、測定面4から離れるに従つて
径が小さくなるように配置される。また、光伝導
体18の内周面と外周面とには、白色の塗装や反
射膜のコーテイングが施される。光伝導体18の
内側には測定面4に対して光軸が直交するレンズ
5が配設され、レンズ5により集光された光が、
光伝導体18の小径側の開口を閉塞するように配
置された円板状の測定光用受光素子6に入射する
ようになつている。一方、光伝導体18の壁にお
ける小径側の端面には円環状に形成された参照光
用受光素子10が配設され、R−LED1,G−
LED2,B−LED3において壁内に挿入されて
いる部位から出た光が、光伝導体18の壁の内部
で反射しながら伝達され、参照光用受光素子10
に入射するようになつている。したがつて、参照
光用受光素子10は、すべてのR−LED1,G
−LED2,B−LED3から等距離に位置するこ
とになり、すべてのR−LED1,G−LED2,
B−LED3からの光を等条件で受光できるので
ある。ここにおいて、測定光用受光素子6と参照
光用受光素子10とは一つの基板の上に配設され
ており、温度ドリフトなどによる特性変化が同じ
条件で生じるようにしてある。
As shown in FIGS. 2 and 3, a plurality of R-LEDs 1, G-LEDs 2, and B-LEDs 3 are arranged on the circumference in a plane parallel to the measurement surface 4. R-LED1, G-LED2, B-
The LEDs 3 are distributed and arranged so that the measurement surface 4 is almost uniformly illuminated by each color. Also, R
-LED1, G-LED2, and B-LED3 are arranged so as to be inserted through the wall of the photoconductor 18, which is formed in the shape of a truncated cone. The photoconductor 18 is formed of a transparent material such as acrylic so that its cross section parallel to the measurement surface 4 has an annular shape, and is arranged so that its diameter decreases as it moves away from the measurement surface 4. Further, the inner peripheral surface and outer peripheral surface of the photoconductor 18 are coated with white paint or a reflective film. A lens 5 whose optical axis is perpendicular to the measurement surface 4 is disposed inside the photoconductor 18, and the light focused by the lens 5 is
The light enters a disc-shaped measuring light receiving element 6 arranged so as to close the opening on the small diameter side of the photoconductor 18 . On the other hand, a reference light receiving element 10 formed in an annular shape is arranged on the end face on the small diameter side of the wall of the photoconductor 18, and R-LED1, G-
Light emitted from the portions of the LEDs 2 and B-LEDs 3 inserted into the wall is transmitted while being reflected inside the wall of the photoconductor 18, and is transmitted to the reference light receiving element 10.
It is designed to be incident on . Therefore, the reference light receiving element 10 is for all R-LEDs 1, G
It will be located at the same distance from -LED2, B-LED3, and all R-LED1, G-LED2,
The light from the B-LED 3 can be received under the same conditions. Here, the measuring light receiving element 6 and the reference light receiving element 10 are arranged on one substrate so that changes in characteristics due to temperature drift and the like occur under the same conditions.

ところで、測定光用受光素子6および参照光用
受光素子10の出力は、演算処理部に入力されて
色測定が行われる。演算処理部は、第4図のよう
に、マイクロコンピユータ11を主構成とし、マ
イクロコンピユータ11は、LEDドライバー1
2を介してR−LED1,G−LED2,B−LED
3を点滅制御する。すなわち、マイクロコンピユ
ータ11は、第5図a,b,cのように、R−
LED1,G−LED2,B−LED3をそれぞれ複
数回(n+1回)ずつ点灯させるように、R−
LED1,G−LED2,B−LED3に対して点灯
タイミングパルスを複数個ずつ順に発生する。測
定光用受光素子6および参照光用受光素子10の
出力は、アナログスイツチ13を介してA/Dコ
ンバータ14に入力される。アナログスイツチ1
3は、制御入力が“L”であるときには測定光用
受光素子6の出力をA/Dコンバータ14に入力
し、制御入力が“H”であるときには参照光用受
光素子10の出力をA/Dコンバータ14に入力
する。アナログスイツチ13の制御入力は、第5
図dに示すように、R−LED1,G−LED2,
B−LED3に対してそれぞれn個の点灯タイミ
ングパルスが発生している期間は“L”になり、
残りの1個の点灯タイミングパルスが発生してい
る期間には“H”になる。A/Dコンバータ14
は、R−LED1,G−LED2,B−LED3の消
灯時と点灯時とについて、それぞれ第5図e,f
のようなタイミングで測定光用受光素子6と参照
光用受光素子10の出力である光量値をA/D変
換する。測定光用受光素子6では、消灯時には外
乱光による光量値N、点灯時には外乱光と反射光
とを合わせた光量値N+Sが得られ、参照光用受
光素子10では、消灯時には外乱光による光量値
Ns、点灯時には外乱光と参照光とを合わせた光
量値Ns+Ssが得られる。したがつて、A/Dコ
ンバータ14の出力をマイクロコンピユータ11
でサンプリングし、R−LED1,G−LED2,
B−LED3のそれぞれについて、測定光用受光
素子6により得られる光量値に対しては消灯時と
点灯時との加算平均値ave(N)、ave(S)を計算
し、外乱光成分を除いた反射光に対応する光量値
の加算平均値ave(S)を、次式のようにして求
める。
Incidentally, the outputs of the measuring light receiving element 6 and the reference light receiving element 10 are input to an arithmetic processing section and color measurement is performed. The arithmetic processing section mainly includes a microcomputer 11 as shown in FIG.
R-LED1, G-LED2, B-LED through 2
Controls blinking of 3. That is, the microcomputer 11 has R-
R-
A plurality of lighting timing pulses are sequentially generated for LED1, G-LED2, and B-LED3. The outputs of the measuring light receiving element 6 and the reference light receiving element 10 are input to an A/D converter 14 via an analog switch 13. analog switch 1
3 inputs the output of the measurement light light receiving element 6 to the A/D converter 14 when the control input is "L", and inputs the output of the reference light light receiving element 10 to the A/D converter 14 when the control input is "H". The signal is input to the D converter 14. The control input of the analog switch 13 is the fifth
As shown in Figure d, R-LED1, G-LED2,
During the period when n lighting timing pulses are generated for each B-LED3, it becomes "L",
It becomes "H" during the period in which the remaining one lighting timing pulse is generated. A/D converter 14
are Fig. 5e and f for when R-LED1, G-LED2, and B-LED3 are turned off and turned on, respectively.
The light quantity values, which are the outputs of the measuring light receiving element 6 and the reference light receiving element 10, are A/D converted at timings such as . The measuring light receiving element 6 obtains a light amount value N due to the disturbance light when the light is off, and the light amount value N+S which is the sum of the disturbance light and reflected light when the light is on.The reference light receiving element 10 obtains a light amount value due to the disturbance light when the light is off.
Ns, and when the light is turned on, a light amount value Ns+Ss is obtained, which is the sum of the disturbance light and the reference light. Therefore, the output of the A/D converter 14 is transmitted to the microcomputer 11.
sampled, R-LED1, G-LED2,
For each of the B-LEDs 3, calculate the additive average values ave (N) and ave (S) of when the light is turned off and when the light is turned on for the light intensity value obtained by the measurement light receiving element 6, and remove the disturbance light component. The additive average value ave(S) of the light amount values corresponding to the reflected light is calculated using the following equation.

ave(S)=ave(S+N)−ave(N) また、参照光用受光素子10の出力に対して
は、消灯時と点灯時との光量値に基づいて外乱光
を除去した参照光の光量値Ssを次式のようにし
て求める。
ave (S) = ave (S + N) - ave (N) In addition, for the output of the reference light light receiving element 10, the light intensity of the reference light with disturbance light removed based on the light intensity values when the light is off and when the light is on. The value Ss is found using the following formula.

Ss=(Ss+Ns)−Ns 以上のようにして、測定光と参照光とについ
て、外乱光を除去した光量値を求めることができ
のである。
Ss=(Ss+Ns)-Ns In the above manner, it is possible to obtain the light amount values for the measurement light and the reference light after removing the disturbance light.

次に、参照光による測定光の補正方法について
説明する。サンプルの色測定を行う際には、ま
ず、標準白板に対する測定を行い、このときにR
−LED1,G−LED2,B−LED3がそれぞれ
発光するときに得られる測定光の光量値Rw、
Gw、Bwと、参照光の光量値Rw′、Gw′、Bw′と
をマイクロコンピユータ11に記憶しておく。次
に、サンプルを測定し、反射光の光量値Rr、Gr、
Brと、参照光の光量値Rr′、Br′、とを求めて、
次式の演算によりサンプルの真の色の値を求め
る。
Next, a method of correcting the measurement light using the reference light will be explained. When measuring the color of a sample, first measure against a standard white board, and at this time R
-The light intensity value Rw of the measurement light obtained when LED1, G-LED2, and B-LED3 each emit light,
Gw, Bw and the light quantity values Rw', Gw', Bw' of the reference light are stored in the microcomputer 11. Next, the sample is measured, and the light intensity values of reflected light Rr, Gr,
Br and the light intensity values Rr′, Br′ of the reference light,
The true color value of the sample is determined by calculating the following equation.

R=Rw・Rr′/Rw′・Rr×ρr G=Gw・Gw′/Gw′・Gr×ρg B=Bw・Br′/Bw′・Br×ρb ここにおいて、ρr、ρg、ρbは標準白板のR−
LED1,G−LED2,B−LED3の各発光色に
対する反射率であり、ρr=ρg=ρb=1としてあ
る。
R=Rw・Rr′/Rw′・Rr×ρr G=Gw・Gw′/Gw′・Gr×ρg B=Bw・Br′/Bw′・Br×ρb Here, ρr, ρg, ρb are standard white boards R-
This is the reflectance for each emission color of LED1, G-LED2, and B-LED3, and ρr=ρg=ρb=1.

以上をようにして、参照光を用いてR−LED
1,G−LED2,B−LED3の光量変動に対す
る補正を加えた色測定を行うことができるのであ
る。しかも、一つの光伝導体18の用いて、すべ
てのR−LED1,G−LED2,B−LED3から
の参照光を参照光用受光素子10に入射させるこ
とができるから、構成が簡単であり、かつ正確な
補正が行えるのである。
By doing the above, using the reference light, R-LED
1, G-LED 2, and B-LED 3 color measurement can be performed with correction for light intensity fluctuations. Moreover, the reference light from all the R-LEDs 1, G-LEDs 2, and B-LEDs 3 can be made to enter the reference light receiving element 10 using one photoconductor 18, so the configuration is simple. Moreover, accurate correction can be performed.

上記構成では、光伝導体18を円錐台状として
いるが、円筒形としてもよいのはもちろんのこと
である。
In the above configuration, the photoconductor 18 has a truncated conical shape, but it is of course possible to have a cylindrical shape.

本発明は上述のように、測定面に平行な断面が
円環状である筒状に形成され赤色発光ダイオー
ド、緑色発光ダイオード、青色発光ダイオードか
らの光の一部が壁の内部に導入される光伝導体
と、光伝導体の壁の端面に配設され赤色発光ダイ
オード、緑色発光ダイオード、青色発光ダイオー
ドより光伝導体の壁内を通して伝達された光を受
光する参照光用受光素子を具備しているので、測
定面への照射光の一部を分岐して参照光用受光素
子に入射させ、照射光の光量変動を補償できるよ
うにすることによつて温度変化や経時変化による
測定誤差の発生を抑制することができ、長期に亙
つて色測定を正確に行うことができるという利点
を有する。しかも、参照光を参照光用受光素子に
導く経路に筒状の光伝導体を用いているので、複
数個の光源のそれぞれに光フアイバを用いる場合
に比較して構成が簡単になり安価に提供できると
いう効果を奏するのである。
As described above, the present invention is a light emitting diode that is formed into a cylindrical shape with an annular cross section parallel to the measurement surface, and a part of the light from a red light emitting diode, a green light emitting diode, and a blue light emitting diode is introduced into the inside of the wall. A reference light receiving element is provided on the end face of the wall of the photoconductor and receives light transmitted through the wall of the photoconductor from a red light emitting diode, a green light emitting diode, and a blue light emitting diode. Therefore, by branching a part of the light irradiated onto the measurement surface and making it incident on the reference light receiving element, it is possible to compensate for variations in the light intensity of the irradiation light, thereby eliminating measurement errors caused by temperature changes or changes over time. This has the advantage that color measurements can be carried out accurately over a long period of time. Moreover, since a cylindrical photoconductor is used for the path that guides the reference light to the reference light receiving element, the configuration is simpler and cheaper than when optical fibers are used for each of multiple light sources. This has the effect of making it possible.

さらに、測定光用受光素子と参照光用受光素子
とを同一基板上に配設したものでは、測定光用受
光素子と参照光用受光素子との温度ドリフトによ
る受光感度のばらつきなどを低減することがで
き、補正精度を一層向上できるという効果を奏す
るものである。
Furthermore, when the measuring light receiving element and the reference light receiving element are arranged on the same substrate, variations in light receiving sensitivity due to temperature drift between the measuring light receiving element and the reference light receiving element can be reduced. This has the effect that the correction accuracy can be further improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の色測定装置を示す斜視図、第2
図は本発明の実施例を示す一部切欠した斜視図、
第3図は同上の概略断面図、第4図は同上の信号
処理回路のブロツク図、第5図は同上の動作説明
図である。 1……赤色発光ダイオード、2……緑色発光ダ
イオード、3……青色発光ダイオード、4……測
定面、6……測定光用受光素子、10……参照光
用受光素子、18……光伝導体。
Figure 1 is a perspective view of a conventional color measuring device;
The figure is a partially cutaway perspective view showing an embodiment of the present invention.
FIG. 3 is a schematic sectional view of the same as the above, FIG. 4 is a block diagram of the signal processing circuit of the same, and FIG. 5 is an explanatory diagram of the operation of the same. 1... Red light emitting diode, 2... Green light emitting diode, 3... Blue light emitting diode, 4... Measurement surface, 6... Light receiving element for measurement light, 10... Light receiving element for reference light, 18... Photoconduction body.

Claims (1)

【特許請求の範囲】 1 測定面に対して平行な平面内の円周上に配列
され測定面を斜めに照射する赤色発光ダイオー
ド、緑色発光ダイオード、青色発光ダイオード
と、測定面での反射光を受光する測定光用受光素
子と、測定面に平行な断面が円環状である筒状に
形成され赤色発光ダイオード、緑色発光ダイオー
ド、青色発光ダイオードからの光の一部が壁の内
部に導入される光伝導体と、光伝導体の壁の端面
に配設され赤色発光ダイオード、緑色発光ダイオ
ード、青色発光ダイオードより光伝導体の壁内を
通して伝達された光を受光する参照光用受光素子
と、測定光用受光素子と参照光用受光素子との出
力に基づいて色測定を行う演算処理部とを具備し
て成ることを特徴とする色測定装置。 2 測定光用受光素子と参照光用受光素子とは同
一基板上に配設されて成ることを特徴とする特許
請求の範囲第1項記載の色測定装置。
[Scope of Claims] 1 Red, green, and blue light-emitting diodes arranged on a circumference in a plane parallel to the measurement surface and which obliquely illuminate the measurement surface, and which emit light reflected from the measurement surface. A light-receiving element for measuring light is formed in a cylindrical shape with an annular cross-section parallel to the measurement surface, and a portion of the light from the red light-emitting diode, green light-emitting diode, and blue light-emitting diode is introduced into the inside of the wall. a photoconductor; a reference light receiving element disposed on the end face of the wall of the photoconductor that receives light transmitted through the wall of the photoconductor from a red light emitting diode, a green light emitting diode, and a blue light emitting diode; and a measurement device. 1. A color measuring device comprising: an arithmetic processing section that performs color measurement based on outputs of a light receiving element and a reference light receiving element. 2. The color measuring device according to claim 1, wherein the measuring light receiving element and the reference light receiving element are arranged on the same substrate.
JP57171935A 1982-09-30 1982-09-30 Color measuring device Granted JPS5960324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57171935A JPS5960324A (en) 1982-09-30 1982-09-30 Color measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57171935A JPS5960324A (en) 1982-09-30 1982-09-30 Color measuring device

Publications (2)

Publication Number Publication Date
JPS5960324A JPS5960324A (en) 1984-04-06
JPH0378568B2 true JPH0378568B2 (en) 1991-12-16

Family

ID=15932552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57171935A Granted JPS5960324A (en) 1982-09-30 1982-09-30 Color measuring device

Country Status (1)

Country Link
JP (1) JPS5960324A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE87737T1 (en) * 1987-12-03 1993-04-15 Siemens Ag COLOR SENSOR ARRANGEMENT FOR DETECTING OBJECTS WITH COLORED SURFACES.
DE10246563A1 (en) * 2002-10-05 2004-04-15 november Aktiengesellschaft Gesellschaft für Molekulare Medizin Color determination device for determining the colors on a surface, said colors varying dependent on the angle of observation, e.g. for banknote checking, whereby an arrangement of angled light emitters and detectors is used
DE102004016829B4 (en) * 2004-04-01 2007-06-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for determining the color of bulk material
WO2006107915A2 (en) 2005-04-05 2006-10-12 X-Rite, Incorporated Systems and methods for monitoring a process output with a highly abridged spectrophotometer
EP1877742A2 (en) 2005-04-12 2008-01-16 X-Rite, Inc. Systems and methods for measuring a like-color region of an object
US7557925B2 (en) 2005-08-15 2009-07-07 X-Rite, Inc. Optical instrument and parts thereof for optimally defining light pathways
WO2007022212A2 (en) 2005-08-15 2007-02-22 X-Rite, Incorporated Spectrophotometer with temperatur corrected system response
CN104713644B (en) * 2013-12-17 2017-11-17 南开大学 Waveguide optical illumination colour examining probe
US9958329B2 (en) * 2015-10-08 2018-05-01 Keyence Corporation Photoelectric switch

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5213885B2 (en) * 1972-04-17 1977-04-18
JPS52148183A (en) * 1976-06-03 1977-12-09 Omron Tateisi Electronics Co Method of projecting and receiving light for hue inspecting apparatus
JPS5313975A (en) * 1976-07-26 1978-02-08 Dainichiseika Color Chem Apparatus for measuring color difference
JPS5323564B2 (en) * 1972-10-06 1978-07-15
US4266878A (en) * 1978-12-26 1981-05-12 Norlin Industries, Inc. Apparatus for measurement of soil moisture content

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813303Y2 (en) * 1975-07-16 1983-03-15 株式会社島津製作所 Bunko Koudokei
JPS5323564U (en) * 1976-08-06 1978-02-28
JPS5350679U (en) * 1976-09-30 1978-04-28

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5213885B2 (en) * 1972-04-17 1977-04-18
JPS5323564B2 (en) * 1972-10-06 1978-07-15
JPS52148183A (en) * 1976-06-03 1977-12-09 Omron Tateisi Electronics Co Method of projecting and receiving light for hue inspecting apparatus
JPS5313975A (en) * 1976-07-26 1978-02-08 Dainichiseika Color Chem Apparatus for measuring color difference
US4266878A (en) * 1978-12-26 1981-05-12 Norlin Industries, Inc. Apparatus for measurement of soil moisture content

Also Published As

Publication number Publication date
JPS5960324A (en) 1984-04-06

Similar Documents

Publication Publication Date Title
JP2005183378A (en) Illumination system of light emitting diode having intensity monitor system
JPH0378568B2 (en)
JP2001174335A (en) Quality control device and its method for machined surface in particular
US4514084A (en) Distance measuring apparatus
US4921351A (en) Spectrophotometer comprising a xenon flashtube as a light source
JP2002013981A (en) Photometer
KR20040039344A (en) Method and apparatus for digitizing light measurements by computer control of light source emission
JPH06244396A (en) Testing of image sensor
JPH03133183A (en) Testing equipment for light emitting diode array
JPS5960327A (en) Color measuring device
JPS5926891B2 (en) Light emitting/receiving method of hue inspection device
JPH06207857A (en) Color measuring device
JPH03262931A (en) Light source unit for calibrating sensitivity of photomultiplier tube
WO2017103927A1 (en) Method and apparatus for inspection of substrates
JPS6050403A (en) Distance sensor
JPH05172632A (en) Device for measuring quantity of light
JPS6228605A (en) Optical external form measuring instrument
JPS5997020A (en) Color sensor
JP2000193591A (en) Quantity-of-light measuring apparatus and method therefor
JPS57171250A (en) Detection of defect
JPH03118451A (en) Apparatus for inspecting inner surface of tubular object
JPS5624535A (en) Method and device for measuring color
JPS57128807A (en) Method and apparatus for measuring out of roundness of circular sample
JPS60170708A (en) Measuring instrument for surface roughness
JPH0579928B2 (en)