JPH0378545A - Engine controller - Google Patents

Engine controller

Info

Publication number
JPH0378545A
JPH0378545A JP21362589A JP21362589A JPH0378545A JP H0378545 A JPH0378545 A JP H0378545A JP 21362589 A JP21362589 A JP 21362589A JP 21362589 A JP21362589 A JP 21362589A JP H0378545 A JPH0378545 A JP H0378545A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
target air
engine
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21362589A
Other languages
Japanese (ja)
Inventor
Ikuo Musa
郁夫 撫佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP21362589A priority Critical patent/JPH0378545A/en
Publication of JPH0378545A publication Critical patent/JPH0378545A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent knock generation without decreasing engine output by varying a target air-fuel ratio uncontinuously so as to refuse a specified air-fuel ratio range, in the case that the target air-duel ratio based on engine operation condition is in the specified air-fuel ratio range which is easy to generate the knocking. CONSTITUTION:Output signals of an intake sensor 28, a throttle position sensor 29, an water temperature sensor 30, an air-fuel ratio sensor 31, a crank angle sensor 32 and an intake pipe negative pressure sensor 48 are inputted in an electronic control part 40. A standard target air-fuel ratio is then calculated based on engine speed and intake pipe negative pressure. The standard target air-fuel ratio is compensated based on water temperature, engine speed at the time of start-up and the like so as to calculate the target air-fuel ratio, and an injector 41 is drivingly controlled for fuel injection in response to difference between the target air-fuel ratio and a real air-fuel ratio. In this case, the target air-fuel ratio is judged whether it is in the specified air-fuel ratio range to easily generate knocking or not. When it is judged YES, the target air-fuel ratio is uncontinuously varied so as to refuse the specified air-fuel ratio range.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、エンジン制御装置に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to an engine control device.

〔従来の技術〕[Conventional technology]

従来のエンジン制御装置においては、エンジンの回転数
と空気量に対してエンジンの運転状態に遺した空燃比デ
ータを有し、エンジンの運転ゾーンが連続的に変化した
ときその各時点での運転ゾーンに応じてエンジンの空燃
比を連続的に変化させていた。なお、空気量の代りにイ
ンテークマニホールド内負圧、シリンダの吸入空気充填
効率、スロットル弁開度等を用いてもよい。
Conventional engine control devices have air-fuel ratio data related to engine speed and air flow that correspond to engine operating conditions, and when the engine operating zone changes continuously, the operating zone at each point in time is determined. The air-fuel ratio of the engine was continuously changed according to the Note that instead of the air amount, the negative pressure inside the intake manifold, the cylinder intake air filling efficiency, the throttle valve opening, etc. may be used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、上記した従来装置においては、中速度定速走
行時には空燃比を理論空燃比即ち14.7にして運転す
るが、全開走行時は出力増大及びエンジン保護のため空
燃比を11−13程度にリッチ化する。ところが、ノッ
クが一番発生しゃすい空燃比が14.7と13との間例
えば14.0付近に存在する場合があり、空燃比を14
.7から13に連続的に変化させると空燃比14.Oの
運転状態においてノッキングが発生する恐れがあり、こ
れを防止するためには点火時期を全体的に遅角設定する
必要があり、エンジン出力が低下するという課題があっ
た。
By the way, in the above-mentioned conventional device, when driving at a constant medium speed, the air-fuel ratio is set to the stoichiometric air-fuel ratio, that is, 14.7, but when driving at full throttle, the air-fuel ratio is set to about 11-13 in order to increase output and protect the engine. Become richer. However, there are cases where the air-fuel ratio at which knock is most likely to occur is between 14.7 and 13, for example around 14.0.
.. When the air-fuel ratio is changed continuously from 7 to 13, the air-fuel ratio becomes 14. There is a possibility that knocking may occur in the operating state of O, and in order to prevent this, it is necessary to retard the ignition timing as a whole, which poses a problem that the engine output decreases.

この発明は上記のような課題を解決するために成された
ものであり、エンジン出力を低減させることなくノック
の発生を防止することができ、エンジンの耐久性を向上
させることができるエンジン制御装置を得ることを目的
とする。
This invention was made to solve the above-mentioned problems, and provides an engine control device that can prevent knocking without reducing engine output and improve engine durability. The purpose is to obtain.

〔課題を解決するための手段〕[Means to solve the problem]

この発明の請求項1に係るエンジン制御装置は、エンジ
ンの運転状態に応じて算出された目標空燃比がノックを
発生しやすい所定の空燃比範囲に入った場合にこの所定
の空燃比範囲を避けるように目標空燃比を不連続に変化
させる手段を設けたものである。
The engine control device according to claim 1 of the present invention avoids the predetermined air-fuel ratio range when the target air-fuel ratio calculated according to the operating state of the engine falls within the predetermined air-fuel ratio range where knocking is likely to occur. A means for discontinuously changing the target air-fuel ratio is provided.

この発明の請求項2に係るエンジン制御装置は、エンジ
ンの運転状態がノックを発生しやすいゾーンであるか否
かを判定する手段と、算出された目標空燃比がノックを
発生し易いゾーンにおいてノックを発生し易い所定の空
燃比範囲に入った場合にこの所定の空燃比範囲を避ける
ように目標空燃比を不連続に変化させる手段を設けたも
のである。
The engine control device according to claim 2 of the present invention includes means for determining whether or not the operating state of the engine is in a zone where knocking is likely to occur; The target air-fuel ratio is provided with a means for discontinuously changing the target air-fuel ratio so as to avoid the predetermined air-fuel ratio range when the target air-fuel ratio falls within a predetermined air-fuel ratio range in which it is likely to occur.

〔作 用〕[For production]

この発明の請求項1においては、ノックを発生しやすい
所定の空燃比範囲が避けられ、ノックの発生が防止され
る。
In claim 1 of the present invention, a predetermined air-fuel ratio range in which knocking is likely to occur is avoided, thereby preventing the occurrence of knocking.

この発、明の請求項2においては、ノックを発生しやす
い所定の運転ゾーンではノックを発生しやすい所定の空
燃比範囲が避けられる。従って、ノックを発生しやすい
所定の空燃比範囲でもノックを発生しやすい所定の運転
ゾーンでなければ、目標空燃比の不連続な変化は生じな
い。
In the second aspect of the present invention, in a predetermined driving zone where knock is likely to occur, a predetermined air-fuel ratio range where knock is likely to occur is avoided. Therefore, even in a predetermined air-fuel ratio range in which knock is likely to occur, a discontinuous change in the target air-fuel ratio does not occur unless it is in a predetermined operating zone in which knock is likely to occur.

〔実施例〕〔Example〕

以下、この発明の実施例を図面とともに説明する。第1
図はこの実施例装置の構成を示し、エアクリーナ1から
吸入された空気は絞り弁3、サージタンク4、吸気ポー
ト5及び吸気弁6を含む吸気通路12を介して機関本体
7の燃焼室8へ送られる。吸気通路12には負圧センサ
48が設けられ、負圧センサ48は電子IIN御部40
に接続されている。絞り弁3は運転室のアクセルペダル
13と連動する。燃焼室8はシリンダヘッド9、シリン
ダブロックIO及びピストン11によって区画され、混
合気の燃焼によって生成された排気ガスは排気弁15、
排気ポート16、排気多岐管17及び排気管18を介し
て大気へ放出される。バイパス通路21は絞り弁3の上
流側とサージタンク4とを接続し、バイパス流量制御弁
22はバイパス通路21の流通断面積を制御して、アイ
ドリング時の機関回転速度を一定に維持する。吸気温セ
ンサ28は吸気通路12に設けられて吸気温を検出し、
スロットル位置センサ29は絞り弁3の開度を検出する
。又、水温センサ30はシリンダブロック10に取り付
けられて冷却水温度を検出し、空燃比センサ31は排気
多岐管17の集合部に取り付けられてバッテリ已にスイ
ッチ79を介して接続され、集合部における空燃比を検
出する。クランク角センサ32は機関本体7のクランク
軸(図示せず)に結合する配電器330軸34の回転か
ら、クランク軸のクランク角及びクランク軸回転数を検
出する。又、変速機36のギヤ位置センサ35は変速機
36がニュートラル位置なのか、あるいはドライブ位置
なのか、などのミッションの位置を検出する。これらの
吸気温センサ28、スロットル位置センサ29、水温セ
ンサ30、空燃比センサ31、クランク角センサ32、
ギヤ位置センサ35、負圧センサ48の出力及び蓄電池
37の電圧は電子制御部40へ送られる。インジェクタ
41は各気筒に対応して各吸気ボート5の近傍にそれぞ
れ設けられ、ポンプ42は燃料タンク43から燃料通路
44を介して燃料をインジェクタ41に送る。電子制御
部40は各センサからの入力信号をパラメータとして燃
料噴射量を計算し、計算した燃料噴射量に対応したパル
ス幅の電気パルスをインジェクタ41へ送る。インジェ
クタ41はこのパルス幅に応じて開弁し、燃料を噴射す
る。又、電子制御部40は、2次側が配電器33に接続
された点火コイル46及びバイパス流量制御弁22を制
御する。この第1図の電子制御噴射式内燃機関のシステ
ムはD−J方式の燃料噴射システムであり、少なくとも
負圧センサ48の出力値とクランク角センサ32の出力
に基づいて基本噴射パルス時間を演算し、この基本噴射
パルス時間に吸気温センサ28からの信号による補正、
過渡補正ならびに空燃比センサフィードバック補正など
が行われて、インジェクタ41の燃料噴射が目標空燃比
になるように決定される。
Embodiments of the present invention will be described below with reference to the drawings. 1st
The figure shows the configuration of this example device, in which air taken in from an air cleaner 1 passes through an intake passage 12 including a throttle valve 3, a surge tank 4, an intake port 5, and an intake valve 6 to a combustion chamber 8 of an engine body 7. Sent. A negative pressure sensor 48 is provided in the intake passage 12, and the negative pressure sensor 48 is connected to the electronic IIN control unit 40.
It is connected to the. The throttle valve 3 is interlocked with an accelerator pedal 13 in the driver's cab. The combustion chamber 8 is divided by a cylinder head 9, a cylinder block IO, and a piston 11, and the exhaust gas generated by combustion of the air-fuel mixture is passed through an exhaust valve 15,
It is discharged to the atmosphere via exhaust port 16, exhaust manifold 17 and exhaust pipe 18. The bypass passage 21 connects the upstream side of the throttle valve 3 and the surge tank 4, and the bypass flow control valve 22 controls the flow cross-sectional area of the bypass passage 21 to maintain a constant engine rotational speed during idling. The intake temperature sensor 28 is provided in the intake passage 12 to detect the intake temperature,
The throttle position sensor 29 detects the opening degree of the throttle valve 3. Further, the water temperature sensor 30 is attached to the cylinder block 10 to detect the cooling water temperature, and the air-fuel ratio sensor 31 is attached to the collecting part of the exhaust manifold 17 and connected to the battery via a switch 79, and the air-fuel ratio sensor 31 is attached to the collecting part of the exhaust manifold 17 and connected to the battery via a switch 79. Detects air fuel ratio. The crank angle sensor 32 detects the crank angle of the crankshaft and the number of revolutions of the crankshaft from the rotation of the shaft 34 of the power distributor 330 coupled to the crankshaft (not shown) of the engine body 7. Further, a gear position sensor 35 of the transmission 36 detects the mission position, such as whether the transmission 36 is in a neutral position or a drive position. These intake temperature sensor 28, throttle position sensor 29, water temperature sensor 30, air-fuel ratio sensor 31, crank angle sensor 32,
The outputs of the gear position sensor 35, the negative pressure sensor 48, and the voltage of the storage battery 37 are sent to the electronic control section 40. An injector 41 is provided near each intake boat 5 in correspondence with each cylinder, and a pump 42 sends fuel from a fuel tank 43 to the injector 41 via a fuel passage 44. The electronic control unit 40 calculates the fuel injection amount using input signals from each sensor as parameters, and sends an electric pulse having a pulse width corresponding to the calculated fuel injection amount to the injector 41. The injector 41 opens according to this pulse width and injects fuel. Further, the electronic control unit 40 controls the ignition coil 46 whose secondary side is connected to the power distributor 33 and the bypass flow control valve 22 . The system of the electronically controlled injection type internal combustion engine shown in FIG. , correction based on the signal from the intake air temperature sensor 28 during this basic injection pulse time,
Transient correction, air-fuel ratio sensor feedback correction, etc. are performed, and the fuel injection of the injector 41 is determined to be at the target air-fuel ratio.

第2図は電子制御部40の詳細な構成を示し、電子制御
部40はマイクロプロセッサがらなり、演算及び制御を
行うCPU (中央処理装置)56、補正処理プログラ
ム及びバイパス流量制御処理などを行うためのプログラ
ムが格納されたROM57、演算途中のデータあるいは
入力情報等を一体的に記憶するRAM58、機関停止時
にも補助電源より電力供給を受けて必須のデータの記憶
を保持する不揮発性記憶素子としての第2のRAM59
、A/D変換器60、I10器61及びこれらを接続す
るバス62から構成される。吸気温センサ28、スロッ
トル位置センサ29、水温センサ30、空燃比センサ3
1.蓄電池37及び負圧センサ48の出力はA/D変換
器60に入力される。
FIG. 2 shows a detailed configuration of the electronic control unit 40, which includes a microprocessor, a CPU (central processing unit) 56 for calculation and control, a correction processing program, bypass flow rate control processing, etc. A ROM 57 stores programs, a RAM 58 integrally stores data during calculations or input information, and a non-volatile memory element that receives power from the auxiliary power supply and retains essential data even when the engine is stopped. 2nd RAM59
, an A/D converter 60, an I10 device 61, and a bus 62 connecting these. Intake temperature sensor 28, throttle position sensor 29, water temperature sensor 30, air-fuel ratio sensor 3
1. The outputs of the storage battery 37 and the negative pressure sensor 48 are input to an A/D converter 60.

一方、クランク角センサ32及びギヤ位置センサ35の
出力はI10器61へ入力され、CP U 56はI1
0器61を介してバイパス流量制御弁22、インジェク
タ41及び点火コイル46に出力する。
On the other hand, the outputs of the crank angle sensor 32 and gear position sensor 35 are input to the I10 unit 61, and the CPU 56
It is output to the bypass flow control valve 22, the injector 41, and the ignition coil 46 via the zero device 61.

次に、電子制御部40を用いて目標空燃比を算出し、目
標空燃比となるように燃料制御を行う例を説明する。な
お、処理のためのプログラムはROM57に格納されて
いる。第3図はこの処理のためのフローチャートを示す
、まず、ステップ101では機関回転数を読み込み、ス
テップ102では吸気管負圧を読み込み、ステップ10
3では機関状態パラメータ例えば水温センサ30の出力
から暖機状態あるいはスロットル位置センサ29の出力
から機関の加減速状態を読み込む、ステップ104では
空燃比センサ31の出力から実空燃比を読み込む、ステ
ップ105では、機関回転数、吸気管負圧及び状態パラ
メータよりその運転状態での目標空燃比を算出するが、
その詳細を第4図(a)のフローチャートによって説明
する。
Next, an example will be described in which a target air-fuel ratio is calculated using the electronic control unit 40 and fuel control is performed so that the target air-fuel ratio is achieved. Note that a program for processing is stored in the ROM 57. FIG. 3 shows a flowchart for this process. First, in step 101, the engine speed is read, in step 102, the intake pipe negative pressure is read, and in step 10
In step 3, the engine condition parameters such as the warm-up state from the output of the water temperature sensor 30 or the acceleration/deceleration state of the engine are read from the output of the throttle position sensor 29.In step 104, the actual air-fuel ratio is read from the output of the air-fuel ratio sensor 31.In step 105, the engine condition parameter is read. , the target air-fuel ratio in the operating state is calculated from the engine speed, intake pipe negative pressure, and state parameters.
The details will be explained with reference to the flowchart of FIG. 4(a).

まず、ステップ201では機関回転数と吸気管負圧より
基本目標空燃比を算出する。これは例えば第5図に示す
ように回転数と吸気管負圧よりなるマツプデータで設定
されており、そのときの回転数と吸気管負圧より任意の
一点のデータが選択される。ステップ202では、水温
センサ30の出力によって基本目標空燃比を補正する。
First, in step 201, a basic target air-fuel ratio is calculated from the engine speed and intake pipe negative pressure. For example, as shown in FIG. 5, this is set using map data consisting of the rotational speed and intake pipe negative pressure, and data at an arbitrary point is selected from the rotational speed and intake pipe negative pressure at that time. In step 202, the basic target air-fuel ratio is corrected based on the output of the water temperature sensor 30.

これは例えば第6図に示すように、吸気管負圧と水温よ
りなるマツプで補正係数が設定されており、基本的には
低温時には目標空燃比がリッチになるように設定されて
いる。ステップ203では始動後機関回転数が例えば5
00rpm以上になってから所定時間(例えば5秒)経
過したか否かが判定され、所定時間以内であればステッ
プ204で第7図に示すように時間に応じて漸減するよ
うな補正係数により空燃比がリッチ側から徐々にリーン
側に変化するように補正される。なお、上記補正時間は
水温センサ30の出力により可変され、水温が低いほど
長く、かつリッチ側の度合が大きくなるように設定され
ている。所定時間以上経過した場合には、ステップ20
5で燃料カット条件から復帰して所定時間以内か否かが
判定され、所定時間以内であればステップ206へ進み
、所定時間経過していればステップ207へ進む、ステ
ップ206では第8図に示すように時間に応じて漸減す
るような補正係数により空燃比がリーン側から徐々にリ
ッチ側に変化するように補正され、急激に空燃比が変化
して機関に大きなトルク変動が発生するのを抑える。ス
テップ207では、スロットル位置センサ29の出力信
号の時間的偏差により、機関の加減速状態か否か又は加
減速状態が終了して所定時間以内かどうかが判定され、
判定条件成立時にはステップ20日で第7図又は第8図
に示すように時間と共に変化する補正係数により、空燃
比をリッチ側からリーン側またはリーン側からリッチ側
に滑らかに変化させ、機関に大きなトルク変動を与えな
いようにし、判定条件不成立時にはステップ209に進
む、ステップ209ではスロットル位置センサ29の出
力信号と機関回転数により、絞り弁3が十分閉じられか
つ回転数が十分低いアイドル状態又はアイドルに近い状
態か否かが判定され、判定条件成立時にはステップ21
0で機関の回転数偏差に対応して第9図に示すような補
正係数で空燃比を補正し、回転数が低下した場合には空
燃比がリッチに、回転数が高くなると空燃比がリーンと
なるように目標値を補正し、回転数の変動を抑える。ス
テップ211ではギヤ位置センサ35に変速機36がニ
ュートラル位置からドライブ位置に切換った直後か否か
が判定され、判定条件成立時にはステップ212で第7
図のように時間と共に漸減する補正係数により、負荷変
動直後の目標空燃比を一時的にリッチ側にセットし、回
転数の落ち込みを防止する。
For example, as shown in FIG. 6, a correction coefficient is set based on a map consisting of intake pipe negative pressure and water temperature, and is basically set so that the target air-fuel ratio becomes rich at low temperatures. In step 203, the engine speed after starting is set to 5, for example.
It is determined whether a predetermined period of time (for example, 5 seconds) has elapsed since the speed reached 00 rpm or higher, and if it is within the predetermined period, the idle speed is adjusted in step 204 using a correction coefficient that gradually decreases with time as shown in FIG. The fuel ratio is corrected so that it gradually changes from the rich side to the lean side. The correction time is varied by the output of the water temperature sensor 30, and is set so that the lower the water temperature is, the longer it is, and the richer the correction time is. If the predetermined time or more has elapsed, step 20
In step 5, it is determined whether or not the return from the fuel cut condition is within a predetermined time. If it is within the predetermined time, the process proceeds to step 206, and if the predetermined time has elapsed, the process proceeds to step 207. In step 206, as shown in FIG. A correction coefficient that gradually decreases over time is used to correct the air-fuel ratio so that it gradually changes from the lean side to the rich side, thereby suppressing the occurrence of large torque fluctuations in the engine due to sudden changes in the air-fuel ratio. . In step 207, based on the temporal deviation of the output signal of the throttle position sensor 29, it is determined whether the engine is in an acceleration/deceleration state or whether the acceleration/deceleration state has ended within a predetermined time;
When the judgment condition is satisfied, the air-fuel ratio is smoothly changed from rich side to lean side or from lean side to rich side using a correction coefficient that changes over time as shown in Figure 7 or Figure 8 in step 20, and the engine is If the determination condition is not satisfied, the process proceeds to step 209. In step 209, the output signal of the throttle position sensor 29 and the engine speed are used to determine whether the throttle valve 3 is sufficiently closed and the engine speed is in an idle state or idle state where the engine speed is sufficiently low. It is determined whether the state is close to , and if the determination condition is satisfied, step 21
At 0, the air-fuel ratio is corrected using the correction coefficient shown in Figure 9 in response to engine speed deviation, and when the engine speed decreases, the air-fuel ratio becomes rich, and when the engine speed increases, the air-fuel ratio becomes lean. Correct the target value so that the rotation speed changes. In step 211, the gear position sensor 35 determines whether or not the transmission 36 has just switched from the neutral position to the drive position, and when the determination condition is satisfied, the seventh
As shown in the figure, the correction coefficient that gradually decreases over time temporarily sets the target air-fuel ratio to the rich side immediately after a load change, thereby preventing a drop in rotational speed.

次に、ステップ301で目標空燃比のスキップ処理を行
う、スキップ処理とは特定空燃比範囲をスキップさせる
処理である。即ち、第11図に示すように理論空燃比1
4.7と全開時目標空燃比11〜13との間の空燃比1
4.0付近で最もノッキングが発生しやすい領域がある
。このため、例えば運転ゾーンが第12図のP点からQ
点に連続的に変化したとき空燃比14.0の運転ゾーン
も存在するため、ノンキングを発生し易い、そこで、第
13図〜第16図に示すように目標空燃比K。
Next, in step 301, target air-fuel ratio skip processing is performed. Skip processing is processing for skipping a specific air-fuel ratio range. That is, as shown in FIG. 11, the stoichiometric air-fuel ratio 1
Air-fuel ratio 1 between 4.7 and the target air-fuel ratio 11 to 13 at full throttle
There is a region near 4.0 where knocking is most likely to occur. For this reason, for example, the operating zone changes from point P to Q in FIG.
Since there is also an operating zone where the air-fuel ratio is 14.0 when the air-fuel ratio changes continuously to a point, non-king is likely to occur, so the target air-fuel ratio K is set as shown in FIGS. 13 to 16.

を定める。まず、第13図では本来目標値すべき空燃比
データに、が13.5を越えると目標空燃比を13.5
から14.5に不連続的に変化させ、以後14、’5ま
では目標空燃比を14.5に固定する。第14図は別の
例を示し、運転ゾーンに応じた目標空燃比が13.5〜
14.5の間は実際の目標空燃比を13.5に固定し、
空燃比が14.5になると実際の目標値を13.5から
14.5に不連続的に変化させる。第15図及び第16
図の場合には空燃比がリーン方向に移動した場合とリッ
チ方向に移動した場合でヒステリシスを持たせたもので
ある。第13図〜第16図のいずれの場合もノッキング
を発生し易い空燃比領域をスキップさせており、ノッキ
ングは発生し難い、なお、第11図は従来のように設定
データ通りに目標空燃比を定める場合を示す。
Establish. First, in Figure 13, when the air-fuel ratio data that should originally be the target value exceeds 13.5, the target air-fuel ratio is set to 13.5.
The target air-fuel ratio is changed discontinuously from 14 to 14.5, and thereafter is fixed at 14.5 until 14 and '5. Figure 14 shows another example in which the target air-fuel ratio according to the operating zone is 13.5~
During 14.5, the actual target air-fuel ratio is fixed at 13.5,
When the air-fuel ratio reaches 14.5, the actual target value is discontinuously changed from 13.5 to 14.5. Figures 15 and 16
In the case shown in the figure, hysteresis is provided when the air-fuel ratio moves in the lean direction and when it moves in the rich direction. In all of the cases shown in Figures 13 to 16, the air-fuel ratio region where knocking is likely to occur is skipped, and knocking is unlikely to occur. Indicates the case where it is specified.

次に、第4図(a)のフローチャートにもどると、ステ
ップ213では最終目標空燃比をRAM5Bに格納し、
目標空燃比算出のステップ105を終了する。ステップ
106では、上記のように定められた目標空燃比と実空
燃比の偏差が算出され、目標空燃比の方が大きい場合に
は燃料噴射パルス幅が小さくなるように、また目標空燃
比の方が小さい場合には燃料噴射パルス幅が大きくなる
ような補正係数が上記偏差に応じて決定される。ステッ
プ107では、回転数と吸気管負圧により決定される燃
料基本パルス幅を算出し、ステップ108ではステップ
106で算出された補正係数、あるいは吸気温センサ2
日の出力による基本燃料補正係数などにより基本燃料パ
ルス幅を補正し、ステップ109では補正された燃料パ
ルス幅でインジェクタ41が駆動される。
Next, returning to the flowchart of FIG. 4(a), in step 213, the final target air-fuel ratio is stored in the RAM 5B,
Step 105 of calculating the target air-fuel ratio is ended. In step 106, the deviation between the target air-fuel ratio determined as described above and the actual air-fuel ratio is calculated, and if the target air-fuel ratio is larger, the fuel injection pulse width is A correction coefficient that increases the fuel injection pulse width when is small is determined in accordance with the deviation. In step 107, the fuel basic pulse width determined by the rotation speed and intake pipe negative pressure is calculated, and in step 108, the correction coefficient calculated in step 106 or the intake air temperature sensor 2 is calculated.
The basic fuel pulse width is corrected using a basic fuel correction coefficient based on the daily output, and in step 109, the injector 41 is driven with the corrected fuel pulse width.

第4図ら)はこの発明の第2の実施例を示し、ステップ
300が第1の実施例と異なるのみである。
FIG. 4 et al.) shows a second embodiment of the invention, which differs only in step 300 from the first embodiment.

即ち、ステップ300では、第17図に示すように運転
ゾーンをノックが発生しゃすいAゾーンとノックが発生
し難いBゾーンとに分け、そのAゾーンかBゾーンを判
定し、Aゾーンの場合にはステップ301で目標空燃比
のスキップ処理を行い、Bゾーンの場合には従来同様に
スキップ処理を行わない、従って、ノックが発生し難い
運転ゾーンでは空燃比の連続制御を行うことができるの
で、運転上シ四ツクが少な(、ドライバビリティが向上
する。
That is, in step 300, as shown in FIG. 17, the driving zone is divided into zone A, where knocking is likely to occur, and zone B, where knocking is unlikely to occur, and it is determined whether the zone is A or B. In step 301, skip processing of the target air-fuel ratio is performed, and in the case of the B zone, the skip processing is not performed as in the conventional case. Therefore, the air-fuel ratio can be continuously controlled in the operating zone where knocking is difficult to occur. There is less movement during driving (and drivability is improved).

なお、上記実施例においては、機関負荷パラメータとし
て、吸気管負圧を引用したが、スロットル位置センサ信
号あるいは吸気管負圧に代え、直接吸入空気量を計測す
るいわゆるL−J方式の燃料噴射システムにおける単位
回転数当りの吸入空気量(Q/N)で行っても同様の効
果が得られることは云うまでもない。
In the above embodiment, the intake pipe negative pressure was cited as the engine load parameter, but instead of the throttle position sensor signal or the intake pipe negative pressure, a so-called L-J type fuel injection system that directly measures the intake air amount may be used. It goes without saying that the same effect can be obtained even if the intake air amount per unit rotational speed (Q/N) is used.

さらに、上記実施例では、機関状態パラメータとして、
燃料カット復帰後所定時間あるいは加減速後所定時間の
時間パラメータとして補正係数を決定したが、時間パラ
メータの代わりに、点火回数のパラメータとしてもよい
Furthermore, in the above embodiment, as the engine state parameter,
Although the correction coefficient has been determined as a time parameter for a predetermined time after return from fuel cut or a predetermined time after acceleration/deceleration, the number of ignitions may be used as a parameter instead of the time parameter.

又、第12図の空燃比データの縦軸を吸入空気量とした
が、インテークマニホールド内負圧、シリンダへの吸入
空気充填効率、カルマン式吸気量センサの出力周波数、
スロットル弁開度あるいは単位回転数当りの吸入空気量
としてもよい、又、第12図の縦軸、横軸のどちらか一
方だけのパラメータに対して設定した空燃比データとし
てもよい、又、第17図の縦軸も吸入空気量としたが、
第12図と同様にインテークマニホールド内負圧、シリ
ンダへの吸入空気充填効率などにしてもよく、また縦軸
と横軸のどちらか一方のパラメータとしてもよい6例え
ば、回転数NeをNe>KよでAゾーン、Ne5Kgで
Bゾーンとしてもよく、又吸入空気量QをQ>KsでA
ゾーン、Q≦KsでBゾーンとしてもよい。
In addition, although the vertical axis of the air-fuel ratio data in Fig. 12 is the intake air amount, the intake manifold internal negative pressure, the intake air filling efficiency into the cylinder, the output frequency of the Karman type intake air amount sensor,
It may be the intake air amount per throttle valve opening or unit rotational speed, or it may be air-fuel ratio data set for only one of the parameters on either the vertical axis or the horizontal axis in FIG. The vertical axis in Figure 17 is also the intake air amount.
Similarly to Fig. 12, the negative pressure inside the intake manifold, the intake air filling efficiency into the cylinder, etc. may be used as a parameter, or it may be used as a parameter on either the vertical axis or the horizontal axis6. For example, if the rotation speed Ne is Ne>K It can be used as A zone, and B zone with Ne5Kg, and A with intake air amount Q > Ks.
zone, Q≦Ks, it may be a B zone.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明の請求項1によれば、目標空燃比
がノックを発生しやすい所定の空燃比範囲には入らない
ので、点火時期遅角設定によるエンジン出力の低減を生
じることなくノック発生を防止することができ、エンジ
ンの耐久性能を向上することができる。又、この発明の
請求項2によれば、上記効果に加えて目標空燃比がノッ
クを発生しやすい所定の空燃比範囲に入らないようにす
るのはノックを発生しやすい運転ゾーンにおいてのみ行
われるので、ノックを発生し難い運転ゾーンでは空燃比
の不連続な制御が行われず、シタツクがなくドライバビ
リティを向上することができる。
As described above, according to claim 1 of the present invention, since the target air-fuel ratio does not fall within the predetermined air-fuel ratio range where knock is likely to occur, knock occurs without reducing the engine output due to the ignition timing retard setting. can be prevented and the durability performance of the engine can be improved. According to claim 2 of the present invention, in addition to the above-mentioned effects, preventing the target air-fuel ratio from falling within a predetermined air-fuel ratio range where knocking is likely to occur is performed only in the driving zone where knocking is likely to occur. Therefore, discontinuous control of the air-fuel ratio is not performed in the driving zone where knocking is less likely to occur, and drivability can be improved without shuttling.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の内燃機関の空燃比制御装置の一実施
例が適用される自動車用の電子制御燃料噴射式内燃機関
のシステム図、第2図は第1図の自動車用の電子燃料噴
射式内燃機関における電子制御部のブロック図、第3図
および第4図はそれぞれこの発明装置の第1及び第2の
実施例における電子制御部による空燃比制御を行うため
の動作の流れを示すフローチャート、第5図はこの発明
装置の電子制御部による目標空燃比を演算するための機
関の回転数対吸入管負圧の補正係数を示す図、第6図は
同上空燃比を演算するための機関の水温対吸気管負圧の
補正係数を示す図、第7図および第8図は同上目標空燃
比を演算するために時間とともに変化する経時時間対補
正係数の関係を示す図、第9図は同上目標空燃比を演算
するための機関の回転数偏差対補正係数の関係を示す図
、第10図は従来の空燃比データと実際の目標空燃比と
の関係図、第11図は空燃比とノック発生度との関係図
、第12図は空燃比データと吸入空気量との関係図、第
13図〜第16図はこの発明による空燃比データと実際
の目標空燃比との関係図、第17図はこの発明の第2の
実施例によるノックを生じ易いゾーンと生じ難いゾーン
の区分図である。 28・・・吸気温センサ、29・・・スロットル位置セ
ンサ、30・・・水温センサ、31・・・空燃比センサ
、32・・・クランク角センサ、40・・・電子制御部
、41・・・インジェクタ、48・・・吸気管負圧セン
サ。 なお、図中同一符号は同一または相当部分を示す。
FIG. 1 is a system diagram of an electronic fuel injection type internal combustion engine for an automobile to which an embodiment of the air-fuel ratio control device for an internal combustion engine of the present invention is applied, and FIG. 2 is a system diagram of an electronic fuel injection type internal combustion engine for an automobile as shown in FIG. 1. 3 and 4 are flowcharts showing the flow of operations for controlling the air-fuel ratio by the electronic control unit in the first and second embodiments of the device of the present invention, respectively. , Fig. 5 is a diagram showing the correction coefficient of engine rotation speed versus suction pipe negative pressure for calculating the target air-fuel ratio by the electronic control unit of this invention device, and Fig. 6 is a diagram showing the engine for calculating the air-fuel ratio of the same. 7 and 8 are diagrams showing the relationship between the correction coefficient and the elapsed time that changes over time to calculate the target air-fuel ratio. A diagram showing the relationship between engine speed deviation and correction coefficient for calculating the target air-fuel ratio, Figure 10 is a diagram showing the relationship between conventional air-fuel ratio data and the actual target air-fuel ratio, and Figure 11 is a diagram showing the relationship between the air-fuel ratio and the actual target air-fuel ratio. 12 is a diagram showing the relationship between the air-fuel ratio data and the intake air amount. FIGS. 13 to 16 are diagrams showing the relationship between the air-fuel ratio data and the actual target air-fuel ratio according to the present invention. FIG. 17 is a diagram illustrating a zone where knocking is likely to occur and a zone where knocking is unlikely to occur according to the second embodiment of the present invention. 28... Intake temperature sensor, 29... Throttle position sensor, 30... Water temperature sensor, 31... Air-fuel ratio sensor, 32... Crank angle sensor, 40... Electronic control unit, 41... - Injector, 48... Intake pipe negative pressure sensor. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)エンジンの運転状態を検出する手段と、エンジン
の運転状態に応じて目標空燃比を算出する手段と、算出
された目標空燃比がノックを発生しやすい所定の空燃比
範囲に入った場合にこの所定の空燃比範囲を避けるよう
に目標空燃比を不連続に変化させる手段と、エンジンの
空燃比を検出する手段と、目標空燃比と実空燃比の偏差
に応じた燃料噴射量となるようにインジェクタを駆動す
る手段を備えたことを特徴とするエンジン制御装置。
(1) A means for detecting the operating state of the engine, a means for calculating a target air-fuel ratio according to the operating state of the engine, and a case in which the calculated target air-fuel ratio falls within a predetermined air-fuel ratio range where knocking is likely to occur. means for discontinuously changing the target air-fuel ratio so as to avoid this predetermined air-fuel ratio range, means for detecting the air-fuel ratio of the engine, and a fuel injection amount according to the deviation between the target air-fuel ratio and the actual air-fuel ratio. An engine control device characterized by comprising means for driving an injector in the following manner.
(2)エンジンの運転状態を検出する手段と、エンジン
の運転状態に応じて目標空燃比を算出する手段と、エン
ジンの運転状態がノックを発生しやすいゾーンか否かを
判定する手段と、算出された目標空燃比がノックを発生
しやすいゾーンにおいてノックを発生しやすい所定の空
燃比範囲に入った場合にこの所定の空燃比範囲を避ける
ように目標空燃比を不連続に変化させる手段と、エンジ
ンの空燃比を検出する手段と、目標空燃比と実空燃比の
偏差に応じた燃料噴射量となるようにインジェクタを駆
動する手段を備えたことを特徴とするエンジン制御装置
(2) means for detecting the operating state of the engine; means for calculating the target air-fuel ratio according to the operating state of the engine; means for determining whether the operating state of the engine is in a zone where knocking is likely to occur; means for discontinuously changing the target air-fuel ratio so as to avoid the predetermined air-fuel ratio range when the target air-fuel ratio falls within a predetermined air-fuel ratio range where knock is likely to occur in a knock-prone zone; An engine control device comprising: means for detecting an air-fuel ratio of an engine; and means for driving an injector so that a fuel injection amount corresponds to a deviation between a target air-fuel ratio and an actual air-fuel ratio.
JP21362589A 1989-08-19 1989-08-19 Engine controller Pending JPH0378545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21362589A JPH0378545A (en) 1989-08-19 1989-08-19 Engine controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21362589A JPH0378545A (en) 1989-08-19 1989-08-19 Engine controller

Publications (1)

Publication Number Publication Date
JPH0378545A true JPH0378545A (en) 1991-04-03

Family

ID=16642260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21362589A Pending JPH0378545A (en) 1989-08-19 1989-08-19 Engine controller

Country Status (1)

Country Link
JP (1) JPH0378545A (en)

Similar Documents

Publication Publication Date Title
JP2855952B2 (en) Idle speed control method for internal combustion engine
JP3201936B2 (en) Control device for in-cylinder injection engine
US5857445A (en) Engine control device
US4442812A (en) Method and apparatus for controlling internal combustion engines
EP1079089B1 (en) Control apparatus for internal combustion engine and method of controlling internal combustion engine
US6055476A (en) Engine torque control system
JPH1047121A (en) Control device of in-cylinder injection type spark ignition type internal combustion engine
US4799467A (en) Throttle valve control system for an internal combustion engine
EP0924420B1 (en) Torque controller for internal combustion engine
JPH1182090A (en) Internal combustion engine control system
JPS5839306A (en) Learning control method for electronic control engine
JP3945070B2 (en) Engine control device
JPH0378545A (en) Engine controller
JP3307306B2 (en) Combustion system control device for internal combustion engine
JP2929895B2 (en) Idle speed control device
JPH0742876B2 (en) Electronic control unit for internal combustion engine
JP3812111B2 (en) Control device for internal combustion engine
JP3435760B2 (en) Idle control device for internal combustion engine
JP2001090581A (en) Control device for internal combustion engine
JP2002180873A (en) Driving force controller for vehicle
JP2580045B2 (en) Fuel control device for internal combustion engine
JP3591133B2 (en) Engine speed control device
JP3651275B2 (en) Control device for internal combustion engine
JP4269503B2 (en) Lean combustion engine control system
JP3533890B2 (en) Control device for internal combustion engine