JPH0378488B2 - - Google Patents

Info

Publication number
JPH0378488B2
JPH0378488B2 JP24460983A JP24460983A JPH0378488B2 JP H0378488 B2 JPH0378488 B2 JP H0378488B2 JP 24460983 A JP24460983 A JP 24460983A JP 24460983 A JP24460983 A JP 24460983A JP H0378488 B2 JPH0378488 B2 JP H0378488B2
Authority
JP
Japan
Prior art keywords
spacer
preload
bearing
outer ring
spindle unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24460983A
Other languages
Japanese (ja)
Other versions
JPS60139911A (en
Inventor
Yoshiaki Onose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP24460983A priority Critical patent/JPS60139911A/en
Publication of JPS60139911A publication Critical patent/JPS60139911A/en
Publication of JPH0378488B2 publication Critical patent/JPH0378488B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • F16C25/08Ball or roller bearings self-adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/08Rigid support of bearing units; Housings, e.g. caps, covers for spindles
    • F16C35/12Rigid support of bearing units; Housings, e.g. caps, covers for spindles with ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/39General build up of machine tools, e.g. spindles, slides, actuators

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Support Of The Bearing (AREA)

Description

【発明の詳細な説明】 本発明は、工作機械等において使用されるスピ
ンドルユニツトの改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in spindle units used in machine tools and the like.

近年、生産性の向上や加工精度の向上を目的と
して、工作機械の主軸の高速化には著しいものが
ある。主軸の高速化の程度を所謂dm・n値
(dm:軸受の平均直径、n:回転数)で表わす
と、従来dm・n値が30〜40万であつたのが、最
近では60〜70万の工作機械が生産されており、更
に80万を超えるようなスピンドルユニツトが要求
され始めている。
In recent years, there has been a remarkable increase in the speed of the spindles of machine tools with the aim of improving productivity and machining accuracy. The degree of speed increase in the spindle is expressed by the so-called dm・n value (dm: average diameter of the bearing, n: rotational speed). Conventionally, the dm・n value was 300,000 to 400,000, but recently it has increased to 60 to 70. Thousands of machine tools have been produced, and more than 800,000 spindle units are now in demand.

一方、上記スピンドルユニツトにおいては、軸
受の回転速度を高めるとともにその剛性を高める
目的や、軸の振動あるいは異音の発生を防止する
目的で、アンギユラ軸受に予圧をかけることが一
般に行なわれており、予圧の方法には定位置予圧
と定圧予圧とがある。ここに定位置予圧とは、間
座やシムを寸法調整する等の方法により、予圧さ
れた軸受の相対的な位置が使用中にも変化せず一
定となるような予圧方法であり、また定圧予圧と
は、ばね部材等を用いることにより、予圧された
軸受の相対的な位置は使用中に変化するが、予圧
はほぼ一定となるような予圧方法である。従つ
て、定位置予圧は剛性が高く、定圧予圧は剛性が
低い。
On the other hand, in the above-mentioned spindle unit, preload is generally applied to the angular bearing in order to increase the rotational speed of the bearing and increase its rigidity, and to prevent shaft vibration or abnormal noise. Preloading methods include fixed position preloading and constant pressure preloading. Here, fixed position preloading is a preloading method in which the relative position of the preloaded bearing remains constant without changing during use, by adjusting the dimensions of spacers and shims, etc. Preloading is a preloading method that uses a spring member or the like so that the relative position of a preloaded bearing changes during use, but the preload remains approximately constant. Therefore, fixed position preload has high rigidity, and constant pressure preload has low rigidity.

前記dm・n値が80万を超えるようなスピンド
ルユニツトはこれまでにも皆無だつたわけではな
いが(例えば高周波スピンドル、ジエツトエンジ
ンにおいて)、これらは定圧予圧で使用されるの
が一般的であつた。しかしながら、切削工作機械
のスピンドルユニツトには定圧予圧は不向きであ
る。即ち、切削工作機械のスピンドルユニツトに
あつては、軽予圧で高速回転するのみでなく、低
速回転時には重予圧即ち剛性が大きい状態で回転
する機能も要求されるので、高速回転に適した定
圧予圧は低剛性のため採用することはできないの
である。従つて、切削工作機械のスピンドルユニ
ツトの予圧としては剛性の大きな定位置予圧を採
用せざるを得ない。しかしながら、この場合には
また別の問題が発生する。
Although spindle units with the above dm・n value exceeding 800,000 have never existed (for example, in high-frequency spindles and jet engines), they are generally used with constant pressure preload. It was hot. However, constant pressure preload is not suitable for spindle units of cutting machine tools. In other words, the spindle unit of a cutting machine tool is required not only to rotate at high speed with a light preload, but also to rotate with a heavy preload, that is, with high rigidity, at low speeds, so a constant pressure preload suitable for high speed rotation is required. cannot be used because of its low rigidity. Therefore, as the preload for the spindle unit of a cutting machine tool, a fixed position preload with high rigidity must be adopted. However, another problem occurs in this case.

上記問題とは、軸受の回転時に遠心力により軸
受の内部に発生する内部スラスト荷重(予圧荷
重)に関することである。詳述すると、第1図に
おいて中空軸10には段部12に二つのアンギユ
ラ玉軸受14のうち左方の内輪15が当接され、
内輪間座16及び外輪間座18、別の二つのアン
ギユラ玉軸受20が嵌合され、右方の軸受の内輪
21に当接するスペーサ22及びナツト24によ
つて取り付けられている。右方の軸受20の外輪
26はハウジング30の段部32に当接され、左
方の軸受14の外輪34はカバー37によつて押
圧されている。軸受14と20とは背面かつ並列
組合せとなつている。そして外輪間座18の幅は
内輪間座16の幅よりも大きくされており、これ
によつて軸受14,20に所定の予圧が加えられ
ている。
The above problem relates to an internal thrust load (preload load) generated inside the bearing due to centrifugal force when the bearing rotates. To be more specific, in FIG. 1, the left inner ring 15 of the two angular ball bearings 14 is in contact with the stepped portion 12 of the hollow shaft 10.
The inner ring spacer 16, the outer ring spacer 18, and two other angular contact ball bearings 20 are fitted together and attached by a spacer 22 and a nut 24 that abut the inner ring 21 of the right bearing. The outer ring 26 of the right bearing 20 is in contact with the stepped portion 32 of the housing 30, and the outer ring 34 of the left bearing 14 is pressed by a cover 37. Bearings 14 and 20 are in a back-to-back and parallel combination. The width of the outer ring spacer 18 is made larger than the width of the inner ring spacer 16, thereby applying a predetermined preload to the bearings 14, 20.

この場合には、中空軸10及び内輪15,21
の回転につれてボール36,38は自転しつつ公
転し、公転により発生する遠心力によつて半径方
向外方に運動しようとする。その際アンギユラ玉
軸受14,20の外輪26,34の傾斜面に転動
体が押圧され、その分圧によつてボール36,3
8とともに内輪15,21が軸方向(内輪15は
左方に、内輪21は右方に)に移動しようとす
る。然るに内輪は段部12、スペーサ22で軸方
向に移動不能とされているので、実質的に予圧を
加えたのと同じ状態となるのである。内部スラス
ト荷重の大きさはボールの公転速度、半径の増大
につれて大きくなり、例えば、7024Bのアンギユ
ラ玉軸受(内径120mm、外径180mm、玉径19.05mm、
接触角40゜)に200Kgfの予圧をかけて回転数5000
回/分で使用すると、予圧の大きさは約520Kgf
に上昇する(増加分320Kgf)。従つて、定位置予
圧では高速回転時に前記要求に反して重予圧とな
り、温度上昇に基づく軸受の焼付きが発生する危
険があつた。
In this case, the hollow shaft 10 and the inner rings 15, 21
As the ball rotates, the balls 36 and 38 revolve while rotating on their own axis, and tend to move outward in the radial direction due to the centrifugal force generated by the revolution. At this time, the rolling elements are pressed against the inclined surfaces of the outer rings 26, 34 of the angular ball bearings 14, 20, and the partial pressure causes the balls 36, 3
8, the inner rings 15 and 21 try to move in the axial direction (inner ring 15 to the left and inner ring 21 to the right). However, since the inner ring is made immovable in the axial direction by the stepped portion 12 and the spacer 22, the state is substantially the same as if a preload was applied. The magnitude of the internal thrust load increases as the orbital speed and radius of the balls increase.For example, the magnitude of the internal thrust load increases as the orbital speed and radius of the balls increase.
Contact angle: 40°) with preload of 200Kgf and rotation speed: 5000
When used once per minute, the preload size is approximately 520Kgf
(increase of 320Kgf). Therefore, with a fixed position preload, a heavy preload is generated during high-speed rotation contrary to the above requirements, and there is a risk that the bearing may seize due to a rise in temperature.

本発明は、上述した事情を背景にして、従来技
術における欠点を解消すること、即ち、定位置予
圧でありながら、回転軸の回転速度が小さい時は
重予圧(高剛性)で、回転速度が大きくなつても
重予圧とならない切削工作機械用スピンドルユニ
ツトを提供することを目的としてなされたもので
ある。
The present invention aims to solve the drawbacks of the prior art in view of the above-mentioned circumstances, that is, although it is a fixed position preload, when the rotation speed of the rotating shaft is low, a heavy preload (high rigidity) is used, and the rotation speed is low. The purpose of this invention is to provide a spindle unit for a cutting machine tool that does not become heavily preloaded even when it is large in size.

上記目的を達成するために、本考案において
は、回転軸の回転速度に応答して隔設されたアン
ギユラ軸受の一方の外輪を軸方向に押圧する駆動
手段を設け、回転軸の回転速度が所定値よりも大
きくなつた時のみ、駆動手段で外輪を押圧して外
スペーサ(通常外輪間座)を変形させ、内外スペ
ーサの寸法差を減少させて、前記内部スラスト荷
重を相殺するようにしたのである。
In order to achieve the above object, the present invention provides a driving means that presses one outer ring of a spaced apart angular bearing in the axial direction in response to the rotational speed of the rotating shaft, so that the rotational speed of the rotating shaft is maintained at a predetermined level. Only when the load becomes larger than the value, the drive means pushes the outer ring to deform the outer spacer (usually the outer ring spacer), reducing the dimensional difference between the inner and outer spacers and canceling out the internal thrust load. be.

以下、本発明の実施例を第2図をもとに説明す
るが、簡略化のため前記従来例(第1図)と共通
する部分は同一の符号で示し、異なる部分を中心
に説明を進めることとする。
Hereinafter, an embodiment of the present invention will be explained based on FIG. 2. For the sake of simplicity, parts common to the conventional example (FIG. 1) are indicated by the same reference numerals, and the explanation will focus on the different parts. That's it.

外輪間座50の内周面に凹溝52が形成されて
おり、これによつて軸方向の圧縮力に対する変形
が向上している。中空軸10の回転数は回転数セ
ンサ54によつて検出され、それに基いた信号が
油圧ポンプ56に出力されるようになつている。
ハウジング30には軸受20の側方に油室58が
形成され、ここに油圧ピストン60が滑合されて
いる。油圧ピストン60は中空軸10の軸方向と
平行に移動可能とされ、先端部62が右方の軸受
20の外輪26の端面に当接可能とされている。
なお、軸受14,20の内外輪の幅寸法及び間座
16,50の幅寸法は第1図に示したものと同様
とされており、従つてナツト24と締めつけるこ
とにより軸受14,20には所定の予圧が与えら
れている。
A groove 52 is formed on the inner peripheral surface of the outer ring spacer 50, thereby improving deformation against compressive force in the axial direction. The rotation speed of the hollow shaft 10 is detected by a rotation speed sensor 54, and a signal based on the rotation speed sensor 54 is outputted to a hydraulic pump 56.
An oil chamber 58 is formed in the housing 30 on the side of the bearing 20, and a hydraulic piston 60 is slidably fitted therein. The hydraulic piston 60 is movable in parallel to the axial direction of the hollow shaft 10, and its tip 62 can come into contact with the end surface of the outer ring 26 of the right bearing 20.
Note that the width dimensions of the inner and outer rings of the bearings 14, 20 and the width dimensions of the spacers 16, 50 are the same as those shown in FIG. A predetermined preload is applied.

次に本実施例の作動について説明する。中空軸
10の回転速度をセンサ54で検出し、これが所
定値に達しない間はセンサ54から油圧ポンプ5
6に信号が出力されない。従つて油圧ピストン6
0は右方の軸受20の外輪26に当接している
が、実質的に外輪間座50を変形させていない。
そのため、軸受14,20には当初セツトされた
大きさの重予圧(例えば200Kgf)がそのまま加
えられており、剛性が大きいために重切削加工す
るのに適している。
Next, the operation of this embodiment will be explained. The rotation speed of the hollow shaft 10 is detected by the sensor 54, and while the rotation speed does not reach a predetermined value, the sensor 54 detects the rotation speed of the hydraulic pump 5.
No signal is output to 6. Therefore the hydraulic piston 6
0 is in contact with the outer ring 26 of the right bearing 20, but the outer ring spacer 50 is not substantially deformed.
Therefore, the initially set heavy preload (for example, 200 Kgf) is applied to the bearings 14 and 20 as is, and because of their high rigidity, they are suitable for heavy cutting.

これに対して、中空軸10回転速度が所定値を
こえると、センサ54から油圧ポンプ56にその
旨の信号が出力されるので、油圧ピストン60が
前進して軸受20の外輪26を押圧する。この押
圧力により外輪間座50に軸方向たわみが発生
し、これによつて間座16,50の幅寸法差がな
くなるのでそれまで軸受14,20に加わつてい
た予圧がぬける。それ故、中空軸10の高速回転
時にボール36,38に作用する遠心力によつて
内部スラスト荷重が発生しても、この内部スラス
ト荷重と上記予圧の減少分とが相殺され、軸受1
4,20に作用する予圧は低速回転時に比べて上
昇しないことになる。高速回転時の予圧が低速回
転時の予圧に比べてどのようになるかは、油圧ポ
ンプ56の出力、外輪間座50の変形能によつて
異なるが、重要なことは前者が後者よりも著しく
大きくならないことであつて、前者が後者と略等
しいことが望ましい。前者の方が後者よりも小さ
くなれば更に望ましい。何れにしても、本実施例
によれば、高速回転時の軸受14,20の予圧を
従来例(第1図)に比較して下げることができ、
最適の状態で低速及び高速回転による切削作業を
行なうことができる。
On the other hand, when the rotation speed of the hollow shaft 10 exceeds a predetermined value, a signal to that effect is output from the sensor 54 to the hydraulic pump 56, so the hydraulic piston 60 moves forward and presses the outer ring 26 of the bearing 20. This pressing force causes the outer ring spacer 50 to deflect in the axial direction, thereby eliminating the difference in width between the spacers 16 and 50, thereby removing the preload that was previously applied to the bearings 14 and 20. Therefore, even if an internal thrust load is generated due to the centrifugal force acting on the balls 36 and 38 during high-speed rotation of the hollow shaft 10, this internal thrust load and the decrease in preload are offset, and the bearing 1
The preload acting on 4 and 20 does not increase as compared to when rotating at low speed. How the preload during high-speed rotation compares with the preload during low-speed rotation differs depending on the output of the hydraulic pump 56 and the deformability of the outer ring spacer 50, but the important thing is that the former is significantly greater than the latter. It is desirable that the former is approximately equal to the latter without becoming large. It is even more desirable if the former is smaller than the latter. In any case, according to this embodiment, the preload on the bearings 14 and 20 during high-speed rotation can be lowered compared to the conventional example (FIG. 1).
Cutting work can be performed at low and high speed rotations under optimal conditions.

なお、上述したのはあくまで本発明の一実施例
に過ぎず、本発明は決してこれに限定して解釈さ
れるべきでないことは言うまでもない。例えば、
カバー37側の軸受14の外輪34を油圧ピスト
ン60で押圧することもできるし、油圧ピストン
60、油室58の形状は上記実施例のものに限定
されない。また、軸受14,20の予圧を緩和さ
せるための手段は、油圧駆動式ではなく、機械駆
動式のものであつても良い。また、回転軸10の
回転速度を検出するセンサ54を設けず、回転軸
10を駆動する駆動モータ(図示せず)の回転速
度に応じた押圧量を予め記憶させておいても良
い。更に外輪間座50の変形能を向上させるため
には、前記実施例のように凹溝52を形成する代
わりに、間座の厚さを減じたり、材質を工夫すれ
ば良い。内輪間座は軸に環状突起を形成しても良
い。軸受のタイプもアンギユラ玉軸受の他にも円
錐コロ軸受であつても良いし、軸受の組み方も単
列背面組合せにする等適宜変更可能である。
It should be noted that what has been described above is merely one embodiment of the present invention, and it goes without saying that the present invention should not be interpreted as being limited thereto. for example,
The outer ring 34 of the bearing 14 on the cover 37 side can be pressed by the hydraulic piston 60, and the shapes of the hydraulic piston 60 and the oil chamber 58 are not limited to those of the above embodiment. Further, the means for relieving the preload on the bearings 14, 20 may be mechanically driven instead of hydraulically driven. Alternatively, the sensor 54 for detecting the rotational speed of the rotational shaft 10 may not be provided, and the amount of pressure corresponding to the rotational speed of a drive motor (not shown) that drives the rotational shaft 10 may be stored in advance. In order to further improve the deformability of the outer ring spacer 50, instead of forming the groove 52 as in the previous embodiment, the thickness of the spacer may be reduced or the material may be modified. The inner ring spacer may have an annular projection formed on the shaft. The type of bearing may be a conical roller bearing in addition to an angular ball bearing, and the way the bearings are assembled can be changed as appropriate, such as a single-row back-to-back combination.

以上述べてきたように、本発明によれば、定位
置予圧方式のスピンドルユニツトでありながら、
回転軸の回転速度が小さい時は重予圧即ち高剛性
で、回転速度が大きくなつても重予圧とならない
切削工作機械用スピンドルユニツトを得ることが
できる効果が奏される。
As described above, according to the present invention, although it is a spindle unit of fixed position preload type,
It is possible to obtain a spindle unit for a cutting machine tool that is heavily preloaded, that is, has high rigidity when the rotational speed of the rotating shaft is low, and does not become heavy preloaded even when the rotational speed increases.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来から使用されているスピンドルユ
ニツトの一例を示す正面半断面図、第2図は本発
明の一実施例を示す同様の断面図である。 〔主要部分の符号の説明〕、10……回転軸、
14,20……アンギユラ玉軸受、16……内輪
間座、50……外輪間座、54……センサ、56
……油圧ポンプ、58……油室、60……油圧ピ
ストン。
FIG. 1 is a front half sectional view showing an example of a conventionally used spindle unit, and FIG. 2 is a similar sectional view showing an embodiment of the present invention. [Explanation of symbols of main parts], 10...rotation axis,
14, 20... Angular ball bearing, 16... Inner ring spacer, 50... Outer ring spacer, 54... Sensor, 56
... Hydraulic pump, 58 ... Oil chamber, 60 ... Hydraulic piston.

Claims (1)

【特許請求の範囲】 1 回転軸上に内スペーサ及び外スペーサを間に
して第1及び第2のアンギユラ軸受を隔設し、内
外スペーサの幅寸法を調整することにより第1及
び第2のアンギユラ軸受に所定の予圧が加えられ
てなるスピンドルユニツトにおいて、 前記回転軸の回転速度に応じて前記第1又は第
2のアンギユラ軸受の外輪を軸方向に押圧して外
スペーサを変形させる駆動手段を設けたことを特
徴とするスピンドルユニツト。 2 前記駆動手段とは、油圧ポンプ及び油室内に
滑合されアンギユラ軸受の外輪に当接可能とされ
た油圧ピストンを含む特許請求の範囲第1項に記
載のスピンドルユニツト。 3 前記内スペーサとは内輪間座であり、外スペ
ーサとは外輪間座である特許請求の範囲第2項に
記載のスピンドルユニツト。 4 前記外輪間座の内周面には凹溝が形成されて
いる特許請求の範囲第3項に記載のスピンドルユ
ニツト。
[Claims] 1. First and second angular bearings are spaced apart on the rotating shaft with an inner spacer and an outer spacer in between, and the first and second angular bearings are adjusted by adjusting the width dimensions of the inner and outer spacers. In a spindle unit in which a predetermined preload is applied to a bearing, a drive means is provided for pressing an outer ring of the first or second angular bearing in the axial direction to deform the outer spacer according to the rotational speed of the rotating shaft. A spindle unit characterized by: 2. The spindle unit according to claim 1, wherein the driving means includes a hydraulic pump and a hydraulic piston that is slidably fitted within an oil chamber and is capable of abutting against an outer ring of an angular bearing. 3. The spindle unit according to claim 2, wherein the inner spacer is an inner ring spacer and the outer spacer is an outer ring spacer. 4. The spindle unit according to claim 3, wherein a groove is formed on the inner peripheral surface of the outer ring spacer.
JP24460983A 1983-12-27 1983-12-27 Spindle unit Granted JPS60139911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24460983A JPS60139911A (en) 1983-12-27 1983-12-27 Spindle unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24460983A JPS60139911A (en) 1983-12-27 1983-12-27 Spindle unit

Publications (2)

Publication Number Publication Date
JPS60139911A JPS60139911A (en) 1985-07-24
JPH0378488B2 true JPH0378488B2 (en) 1991-12-13

Family

ID=17121275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24460983A Granted JPS60139911A (en) 1983-12-27 1983-12-27 Spindle unit

Country Status (1)

Country Link
JP (1) JPS60139911A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346258Y2 (en) * 1986-01-31 1991-09-30
JPH01216743A (en) * 1988-02-23 1989-08-30 Nagase Iron Works Co Ltd Structure for rotatably supporting vibration preventing mechanism of machining device
US5051005A (en) * 1990-08-17 1991-09-24 The Torrington Company Variable preload bearing apparatus
JP5560599B2 (en) 2009-07-03 2014-07-30 株式会社ジェイテクト Machine tool spindle equipment
JP5560603B2 (en) 2009-07-21 2014-07-30 株式会社ジェイテクト Spindle device
FR2953264B1 (en) * 2009-11-30 2012-04-06 Astrium Sas ADJUSTED LENGTH SPACERS FOR BEARINGS
JP2016070349A (en) * 2014-09-30 2016-05-09 アイシン・エーアイ株式会社 Bearing structure of revolving shaft
JP7206135B2 (en) * 2019-03-11 2023-01-17 Ntn株式会社 rolling bearing device

Also Published As

Publication number Publication date
JPS60139911A (en) 1985-07-24

Similar Documents

Publication Publication Date Title
JP2705958B2 (en) Bearing equipment for high-speed rotating spindles of machine tools, especially grinding machines
KR101032929B1 (en) Cylindrical roller bearing
JPH0378488B2 (en)
US6494620B1 (en) Fluid bearing and rotary drive apparatus using the same
US5820272A (en) Bearing structure for a rotating shaft
JPH0524366B2 (en)
JP5453764B2 (en) Bearing device and assembly method thereof
JPH06341431A (en) Variable pre-load device of rolling bearing
KR960006620B1 (en) Method and apparatus for precision mold forging
JP3325082B2 (en) Pneumatic spindle device
JPH08294802A (en) Main spindle device
JPH0653323B2 (en) Preload adjustable spindle unit
JP2001124073A (en) Rolling bearing
JP2000126938A (en) Spindle device of discharge machine
JPH0724604A (en) Variable pre-load type spindle unit and its control method
JPH1043909A (en) Rotary body driving device
JP2002054631A (en) Main spindle device and pre-load adjustment method for the same
JPS60172720A (en) Pressurized bearing device
JPH0671002U (en) Supporting device for rotating shaft
US20020126930A1 (en) Method of finishing the land of the outer ring of a bearing and a bearing
JP3080253B2 (en) Spindle device of machine tool
KR20230094879A (en) Positive pressure pre-pressure main shaft device for machine tool
JPH071289A (en) Axial displacement control spindle
JPS5833934B2 (en) Rolling bearing device
JPH0512491Y2 (en)