JPH0378422A - Detecting device for operation of circuit breaker and switch - Google Patents

Detecting device for operation of circuit breaker and switch

Info

Publication number
JPH0378422A
JPH0378422A JP1211666A JP21166689A JPH0378422A JP H0378422 A JPH0378422 A JP H0378422A JP 1211666 A JP1211666 A JP 1211666A JP 21166689 A JP21166689 A JP 21166689A JP H0378422 A JPH0378422 A JP H0378422A
Authority
JP
Japan
Prior art keywords
zero
waveform
sequence
current
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1211666A
Other languages
Japanese (ja)
Other versions
JP2635176B2 (en
Inventor
Hisao Yamamoto
久雄 山本
Akira Kaneda
明 金田
Toshinobu Ebizaka
敏信 海老坂
Keiji Isahaya
諌早 啓司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Mitsubishi Electric Corp
Original Assignee
Kyushu Electric Power Co Inc
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc, Mitsubishi Electric Corp filed Critical Kyushu Electric Power Co Inc
Priority to JP1211666A priority Critical patent/JP2635176B2/en
Publication of JPH0378422A publication Critical patent/JPH0378422A/en
Application granted granted Critical
Publication of JP2635176B2 publication Critical patent/JP2635176B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To surely detect that a circuit breaker or switch operates by outputting an operation detecting signal when the waveform feature of a zero- phase voltage and zero-phase current produced when at least one of the breaker and switch operates meets a prescribed condition. CONSTITUTION:Input waveform analyzed data of zero-phase currents I01-I0n and a zero-phase voltage V0 respectively detected by means of zero-phase current detectors ZCT01-ZCT0n and a zero-phase voltage detector GPT provided to distribution lines L1-Ln are collated with previously registered waveform analyzed data of the zero-phase currents I01-I0n and zero-phase voltage V0 obtained when circuit breakers CB1-CBn and switches SS11-SSn1, SS12-SSn2,... operate and, when a prescribed condition is met, an operation detecting signal is outputted. Therefore, unique waveforms of currents and voltages produced when the breakers CB1-CBn and switches SS11-SSn1, SS12-SSn2,... operate from such a cause as manual opening/closing operation, etc., other than faults can be detected surely in a state where the waveforms can be distinguished from the unique waveform produced by faults.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は配電線上のしゃ断器や開閉器が動作した時に
発生する零相電流、零相電圧の波形を検出することによ
りしゃ断器、開閉器の動作を検出するしゃ断器、開閉器
の動作を検出装置に関するものである。
This invention detects the operation of a breaker or switch by detecting the waveforms of zero-sequence current and zero-sequence voltage that occur when a breaker or switch on a distribution line operates. It is related to the device.

【従来の技術】[Conventional technology]

第7図はこの発明を適用し得る従来の故障検出を行うよ
うにした配電系統を示すブロック図であり、図において
、1は配電用変電所に設けられた主変圧器、2は主変圧
器1から出力される電力が供給される母線、L1〜L1
は母線2を介して上記電力の供給を受ける配電線、GP
Tは母線2に接続された接地用変圧器、0■Gは接地用
変圧器GPTから得られる零相電圧v0により動作され
る地絡過電圧リレーである。 CB、−CB、lは配電線り、−L、に設けられたしゃ
断器、CT、、−CT、、は配電線り、−L。 に設けられた変流器、S、〜S1は変流器CT −r〜
CT、、を流れる電流により動作される過電流すレー 
ZCT、〜ZCT、は配電線り、−L、に設けられた零
相変流器、G、−G、は上記零相変流器ZCT、〜ZC
T、を流れる零相電流と上記零相電圧■。とにより動作
される地絡方向リレーSS++〜S S 、、t、  
S S +□〜SS、、、は配電線り、〜L7の所定区
間毎に設けられた区分開閉器である。 第8図は上記しゃ断器CB r〜C括7を動作させる駆
動回路を示すブロック図であり、図において、AND、
〜AND、は、一方の入力端子に上記地絡過電圧リレー
0■Gの動作時に得られるOVG動作信号が加えられる
と共に、他方の入力端子に上記地絡方向リレーG、−G
、の動作時に得られるGl動作信号〜G7動作信号がそ
れぞれ加えられるアンドゲート、T、−T、はアンドゲ
ートAND、−AND、1の出力で駆動されて、しゃ断
器CB、−CB、八一定時間後へCBl トリップ信号
〜CB、、トリップ信号を出力するタイマー回路である
。 次に動作について説明する。各配電線L I””’ L
 −には、母線2を介して配電用変電所の主変圧器1よ
り電力が供給され、この電力はしゃ断器CB。 〜CB、を通じて各配電線L1〜Lnの区分開閉器S 
Sz””S 5fiI、  S S+□〜SS、1□で
区分される各区間に接続された負荷に供給される。この
状態において、例えば、配電線L 、において地絡事故
が生じたとする。これにより、接地用変圧器GPTに接
続された限流抵抗器より零相電圧■。が得られ、このた
め地絡過電圧リレーOvGが動作して、0■G動作信号
が出力される。これと共に、例えば零相変流器ZCTI
からの零相電流により地絡方向ワレ−G、が動作し、G
、動作信号が出力される。上記OVG動作信号及びG、
動作信号は、第8図のアンドゲートAND、に加えられ
、そのアンド出力によりタイマー回路T1が動作されて
、CBl トリップ信号が出力される。このCB、)リ
ップ信号はしゃ断器CB、に送られ、これによってしゃ
断器CB、が動作して、配電線り、が母線2から切り離
される。 なお、このような配電系統においてはしゃ断器CB、〜
CB、の動作は、配電用変電所に設けられた遠方監視制
御装置により監視されていた。また、区分開閉器S S
 z”S Sfi+、  S S +z−3S、、2の
動作は、開閉器制御システムが導入されている箇所では
、このシステムにより遠隔監視することが出来る。開閉
器制御システムは、各区分開閉器毎に設けられた開閉器
制御用子局と営業所に設けられた親局とを、通信線路、
配電線搬送器等の伝送路で接続し、これ等の開閉器を親
局から遠隔監視制御するようにした構成となっている。
FIG. 7 is a block diagram showing a conventional power distribution system that performs fault detection to which the present invention can be applied. In the figure, 1 is a main transformer installed in a distribution substation; 2 is a main transformer Bus line L1 to L1 to which power output from 1 is supplied
is a distribution line that receives the above power via bus 2, GP
T is a grounding transformer connected to the bus 2, and 0.times.G is a ground fault overvoltage relay operated by the zero-phase voltage v0 obtained from the grounding transformer GPT. CB, -CB, l are power distribution lines, -L are circuit breakers, CT, , -CT,, are power distribution lines, -L. The current transformers S and ~S1 provided in the current transformers CT-r~
Overcurrent speed operated by current flowing through CT,
ZCT, ~ZCT, are the zero-phase current transformers installed on the distribution line -L, and G, -G are the zero-phase current transformers ZCT, ~ZC.
The zero-sequence current flowing through T and the zero-sequence voltage above. Ground fault direction relays SS++~S S ,, t, operated by
S S +□~SS,,, are section switches provided for each predetermined section of the power distribution line ~L7. FIG. 8 is a block diagram showing a drive circuit for operating the circuit breaker CB r to C block 7, and in the figure, AND,
~AND, the OVG operation signal obtained when the above-mentioned ground fault overvoltage relay 0■G is operated is applied to one input terminal, and the above-mentioned ground fault direction relays G, -G are applied to the other input terminal.
, to which the Gl operation signal to G7 operation signal obtained during the operation of , are applied, respectively, are driven by the output of the AND gates AND, -AND, 1, and the circuit breakers CB, -CB, 81 are driven by the output of the AND gates AND, -AND, 1. This is a timer circuit that outputs a trip signal CBl trip signal ~CB after a fixed time. Next, the operation will be explained. Each distribution line L I""' L
- is supplied with power from the main transformer 1 of the distribution substation via the bus 2, and this power is supplied to the circuit breaker CB. ~CB, through the section switch S of each distribution line L1~Ln
Sz""S 5fiI, SS S+□ to SS, 1□ are supplied to the loads connected to each section. In this state, it is assumed that, for example, a ground fault occurs in the distribution line L. As a result, the zero-sequence voltage ■ from the current limiting resistor connected to the grounding transformer GPT. is obtained, and therefore the ground fault overvoltage relay OvG operates and a 0■G operation signal is output. Along with this, for example, a zero-phase current transformer ZCTI
The ground fault direction crackle G operates due to the zero-sequence current from G.
, an operation signal is output. The above OVG operation signal and G,
The operation signal is applied to the AND gate AND in FIG. 8, and the AND output operates the timer circuit T1 to output the CBl trip signal. This rip signal CB,) is sent to the breaker CB, which operates to disconnect the distribution line from the bus 2. In addition, in such a distribution system, circuit breakers CB, ~
The operation of the CB was monitored by a remote monitoring and control device installed at the distribution substation. In addition, section switch S S
The operation of z"S Sfi+, S S +z-3S,, 2 can be remotely monitored by this system at locations where a switch control system is installed. A communication line,
The configuration is such that the switches are connected via a transmission line such as a distribution line carrier, and these switches are remotely monitored and controlled from a master station.

【発明が解決しようとする課題1 従来の配電系統は以上のように構成されているので、こ
の配電系統に、例えば、地絡、短絡等の故障子知システ
ムを導入する場合は、次のような問題点があった。即ち
、この故障子知システムでは、地絡、短絡等の故障時に
発生する電流、電圧の特異波形データを予め登録して置
き、この登録データと常時検出される電流、電圧の波形
データとを照合し、両者が一致したとき、故障子知信号
を出力するように成されるが、その際、しゃ断器CB、
 〜CB、あるいは区分開閉器S S ++””S S
n+。 SSI!〜SS7□等が動作した時、例えば工事等のた
めに現場で手動により区分開閉器を操作した時等の様に
配電線故障時以外に、発生する電流、電圧の波形が、登
録データの特異波形と誤って判断されてしまうと、故障
子知信号が誤って出力されることになるという問題点が
あった。 この発明は上記のような問題点を解消するために成され
たもので、しゃ断器及び開閉器の少なくとも一方が動作
した時に発生する零相電流、零相電圧の波形の特徴を検
出するしゃ断器、開閉器の動作検出装置を得ることを目
的とする。 【課題を解決するための手段】 この発明に係るしゃ断器、開閉器の動作検出装置は、配
電線に設けられた零相電流検出器及び零相電圧検出器に
よりそれぞれ検出された零相電流。 零相電圧の入力波形解析データと、しゃ断器、開閉器が
動作した時の予め登録された零相電流、零相電圧の波形
解析データとを照合し、所定の条件を満足したとき、動
作検出信号を出力するようにしたものである。
[Problem to be Solved by the Invention 1] Since the conventional power distribution system is configured as described above, when introducing a fault detection system for ground faults, short circuits, etc. to this power distribution system, the following steps should be taken. There was a problem. In other words, in this fault detection system, unique current and voltage waveform data that occurs during failures such as ground faults and short circuits is registered in advance, and this registered data is compared with constantly detected current and voltage waveform data. When the two match, a fault detection signal is output. At this time, the circuit breaker CB,
~CB, or section switch S S ++””S S
n+. SSI! ~When SS7□ etc. is operated, for example, when a sectional switch is operated manually on site for construction work, etc., the current and voltage waveforms generated are not unique to the registered data. If the waveform is incorrectly determined, there is a problem in that a fault detection signal will be incorrectly output. This invention was made to solve the above-mentioned problems, and provides a breaker that detects waveform characteristics of zero-sequence current and zero-sequence voltage that occur when at least one of the breaker and the switch operates. , the object is to obtain a switch operation detection device. Means for Solving the Problems A device for detecting operation of a breaker and a switch according to the present invention detects zero-sequence current detected by a zero-sequence current detector and a zero-sequence voltage detector, respectively, provided in a power distribution line. The input waveform analysis data of the zero-sequence voltage is compared with the waveform analysis data of the zero-sequence current and zero-sequence voltage registered in advance when the breaker or switch operates, and when the predetermined conditions are satisfied, the operation is detected. It is designed to output a signal.

【作用】[Effect]

この発明におけるしゃ断器、開閉器の動作検出装置は、
しゃ断器又は開閉器が動作したことを確実に検出するこ
とができる。
The circuit breaker and switch operation detection device in this invention includes:
It is possible to reliably detect that the circuit breaker or switch has operated.

【実施例】【Example】

以下、この発明の一実施例を図について説明する。第1
図においては第8図と対応する部分には同一符号を付し
て説明を省略する。ZCTo+〜ZCT、、は各配電線
り、−L、1に設けられた動作検出用の零相電流検出器
(以下零相変流器と記す)で、それぞれ電流■。1〜 
IOnを出力する。CTI〜CTnは動作検出用の変流
器で、それぞれ電流11〜1.を出力する。3は動作検
出演算部で、上記各電流!01〜1..,1.〜■7が
加えられると共に、零相電圧検出器(以下接地用変圧器
と記す)GPTから得られる零相電圧■。及び2次側の
線間電圧■、が加えられる。14は動作検出演算部3の
演算結果を表示するCRT等から成る表示装置である。 第2図は動作検出演算部3の構成を示すブロック図であ
り、第2図において、4は上記各電流I OI〜I O
ll+  I l ”” I n及び各電圧V0.V、
を所定周期でサンプリングして保持するサンプルホール
ド回路、5はサンプルホールド回路4のサンプル値を順
次に取り出すマルチプレクサ、6はマルチプレクサ5か
ら順次に得られる各サンプル値をディジタルデータに変
換するA/D変換器、7はRAMから成るメモリで、A
/D変換器6から出力される各電流I01〜I On、
■1〜I7及び電圧■。、■8の入力波形データと、こ
の入力波形データを波形解析した入力波形解析データと
から成る入力データが書き込まれる。 8はROMから成るメモリで、しゃ断器CB。 〜CBn及び開閉器(以下区分開閉器と記す)S S 
z””SS +−,S S +z〜SS1が動作した時
における各零相電流、零相電圧の特異波形データ及びそ
の波形解析データとから成るCB、SS動作時データが
格納されている。 9はメモリ7のデータとメモリ8のデータとを照合して
、所定の演算を行うCPU、10はCPU9の演算処理
プログラムが格納されたプログラムメモリ、11はCP
U9と各部とを接続するパスライン、12はCPU9の
演算結果に基いて表示装置14を制御するコントローラ
、13はCPU9の演算結果によるCB、SS動作検出
信号を出力するためのプロセス入出力回路である。 次に動作について説明する。各配電線り、〜Ll、にお
ける零相変流器ZCTo+〜ZCT、l及び変流器CT
、〜CT、、から得られる零相電流■。1〜■。7.線
電流■、〜■、と、接地用変圧器GPTから得られる零
相電圧■。、線間電圧V、は動作検出演算部3に送られ
、サンプルホールド回路4でサンプリングされる。第3
図は零相電流I0.。 ■。2を例として、サンプリングの様子を示すもので、
それぞれ所定周期でサンプリングされることにより、I
 O+についてはサンプル値DIl〜Dlr+が得られ
、1 ozについてはサンプル値I)it〜Dtnが得
られる。これらのサンプル値はマルチプレクサ5により
順次に取り出され、次にA/D変換器6でディジタルデ
ータに変換された後、メモリ7に書゛き込まれる。 一方、メモリ8には、例えば第4図及び第5図に示すよ
うな、しゃ断器CBI−CB、及び区分開閉器S S+
+=S S、lI、  S S+z〜SS、lIが、動
作したときに発生する各零相電流I。l”” I On
+零相電圧V0.線間電圧■3の特異波形から得られる
波形データとその波形解析データとから成るCB。 SS動作時データがあらかじめ格納されている。 しゃ断器CB、−CB、が投入された時は、3相間の不
揃い投入に起因して、第4図(A)のような振動波形が
現われる。同図(B)は上記振動波形を解析した波形解
析データである。また、区分開閉器SS++”Sfi+
、SS+z〜SS、□が投入された時は、第5図(A)
又は(B)のような振動波形が現われる。同図(A)は
voに振動波形が生じた場合を示し、同図(B)は■。 に振動波形が殆んど生じない場合を示す。Voの大きさ
は、接地用変圧器GPTによって接続された限流抵抗器
に並列に入る配電線の大地間浮遊静電容量を通じて電流
が流れるため、上記限流抵抗器の両端電圧として現われ
るvoには、上記のように振動の有無が生じる。 なお、上記波形解析データは波形データの特徴を解析し
たもので、例えば、■。1〜■。1.■、〜1、、Vo
、V、の各波形の基本波実効値、継続時間、波高値(p
−pi直)、直流分の大きさ、高調波f1〜f、成分の
大きさ、■。と■。1〜IO,。 との各位相角等の項目について解析したものである。 CPU9はメモリ7の入力データとメモリ8のCB、S
S動作時データとを照合し、第6図に示す動作検出ロジ
ッ名を用いて動作検出のための演算を行う。第6図にお
いて、先ず、入力データの161”’IOnについて、
図示の(0) 〜(4)の各条件を満たしているか否か
を調べる。即ち、(0)L+〜Ionの波形のp−p値
が一定値以上となっているか、(1)■。1〜IORの
波形が一定時間以上継続しているか、(2)1.、〜I
Oaの基本波の実効値が一定値以上となっているか、(
3)■。1〜I O,、の直流レベルが一定値以下とな
っているか、(4)■。1〜16nのf1〜f、の各高
調波の実効値がそれぞれ設定範囲内にあるか、を調べる
。そして上記(0)〜(4)の各条件が101〜■。1
の各々について全部溝たされていれば、101〜I O
n毎にYESの信号をORゲートを通じてANDゲート
に出力する。 次に、■。が上記(0)〜(4)の各条件を満たしてい
るか調べ、全て満たしていれば、YESの信号をAND
ゲートに出力する。さらに、VoとIoI=Ioaとに
ついて、それぞれ両者の立上り時刻が一定時間内にある
か否かを調べ、一定時間内にあればYESの信号を、I
 OI””I0n毎にANDゲートに出力する。以上に
より、ANDゲートは、それぞれの条件が満たされたと
きに、CB、33動作検出信号を出力する。 またCB、33動作検出信号を出力するときは、その内
容を表示装置14で表示する。表示の内容としては、例
えば電流、電圧の波形、CB、SS動作が検出された配
電線名、検出時刻、波形解析データ等が必要に応じて表
示される。 尚、上記実施例ではしゃ断器、開閉器の動作検出装置を
配電用変電所に設けた例を述べたが、配電線上例えば区
分開閉器の設置箇所に設けても、あるいは検出部のみを
当該設置箇所に設けても同様の効果を奏する。 又、零相電圧、零相電流の検出器として専用の接地用変
圧器2零相変流器を用いたが既設設備を流用しても、又
、光センサ等の他の検出方式の検出器を用いても同様の
効果を奏する。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, parts corresponding to those in FIG. 8 are designated by the same reference numerals, and their explanation will be omitted. ZCTo+~ZCT, , are zero-phase current detectors (hereinafter referred to as zero-phase current transformers) for operation detection provided on each distribution line, -L, 1, and each has a current ■. 1~
Output IOn. CTI to CTn are current transformers for operation detection, and have currents of 11 to 1. Output. 3 is the operation detection calculation section, which calculates each of the above currents! 01-1. .. ,1. 〜■7 is added, and the zero-sequence voltage ■ obtained from the zero-sequence voltage detector (hereinafter referred to as a grounding transformer) GPT. and the line voltage (■) on the secondary side are applied. Reference numeral 14 denotes a display device such as a CRT for displaying the calculation results of the motion detection calculation unit 3. FIG. 2 is a block diagram showing the configuration of the motion detection calculation unit 3. In FIG.
ll+I l ”” I n and each voltage V0. V,
5 is a multiplexer that sequentially takes out the sample values of the sample hold circuit 4, and 6 is an A/D conversion that converts each sample value sequentially obtained from the multiplexer 5 into digital data. 7 is a memory consisting of RAM, A
/Each current I01 to IOn output from the D converter 6,
■1 to I7 and voltage ■. , ■8 input waveform data and input waveform analysis data obtained by waveform analysis of this input waveform data are written. 8 is a memory consisting of ROM, and is a circuit breaker CB. ~CBn and switch (hereinafter referred to as sectional switch) S S
CB and SS operation data consisting of singular waveform data of each zero-sequence current and zero-sequence voltage and their waveform analysis data when z""SS +-, S S +z to SS1 are operated are stored. 9 is a CPU that compares the data in the memory 7 with the data in the memory 8 and performs a predetermined calculation; 10 is a program memory in which the calculation processing program of the CPU 9 is stored; 11 is a CPU
12 is a controller that controls the display device 14 based on the calculation results of the CPU 9; 13 is a process input/output circuit for outputting CB and SS operation detection signals based on the calculation results of the CPU 9; be. Next, the operation will be explained. Zero-phase current transformer ZCTo+~ZCT,l and current transformer CT in each distribution line ~Ll
, ~CT, , the zero-sequence current ■. 1~■. 7. The line current ■, ~■, and the zero-sequence voltage ■ obtained from the grounding transformer GPT. , line voltage V, are sent to the motion detection calculation section 3 and sampled by the sample hold circuit 4. Third
The figure shows zero-sequence current I0. . ■. 2 is used as an example to show the sampling situation.
By sampling each at a predetermined period, I
For O+, sample values DIl to Dlr+ are obtained, and for 1 oz, sample values I)it to Dtn are obtained. These sample values are sequentially taken out by the multiplexer 5, then converted into digital data by the A/D converter 6, and then written into the memory 7. On the other hand, the memory 8 stores circuit breakers CBI-CB and section switches S S+ as shown in FIGS. 4 and 5, for example.
+=S S, lI, S S+z ~ Each zero-sequence current I generated when SS, lI operate. l”” I On
+Zero-sequence voltage V0. CB consisting of waveform data obtained from the singular waveform of line voltage ■3 and its waveform analysis data. Data during SS operation is stored in advance. When the circuit breakers CB and -CB are turned on, a vibration waveform as shown in FIG. 4(A) appears due to the uneven turning on of the three phases. Figure (B) shows waveform analysis data obtained by analyzing the vibration waveform. In addition, the section switch SS++”Sfi+
, SS+z~SS, When □ is input, Figure 5 (A)
Or a vibration waveform like that shown in (B) appears. The same figure (A) shows the case where a vibration waveform occurs in vo, and the same figure (B) shows ■. This shows the case where almost no vibration waveform occurs. The magnitude of Vo is determined by vo appearing as the voltage across the current limiting resistor because current flows through the ground-to-ground stray capacitance of the distribution line that is connected in parallel to the current limiting resistor connected by the grounding transformer GPT. The presence or absence of vibration occurs as described above. Note that the above waveform analysis data is obtained by analyzing the characteristics of waveform data, for example, ■. 1~■. 1. ■、〜1、、Vo
, V, fundamental wave effective value, duration, peak value (p
-pi direct), magnitude of DC component, harmonics f1 to f, component magnitude, ■. and ■. 1~IO,. This is an analysis of items such as each phase angle. The CPU 9 receives input data from the memory 7 and CB and S from the memory 8.
S is compared with the data during operation, and calculations for motion detection are performed using the motion detection logic name shown in FIG. In FIG. 6, first, regarding the input data 161''IOn,
It is checked whether each of the conditions (0) to (4) shown in the figure are satisfied. That is, (0) Is the pp value of the waveform from L+ to Ion greater than a certain value? (1) ■. Whether the waveform of 1 to IOR continues for a certain period of time or more, (2) 1. ,~I
Is the effective value of the fundamental wave of Oa greater than a certain value? (
3) ■. Is the DC level of 1 to I O, below a certain value?(4)■. It is checked whether the effective values of each harmonic of f1 to f of 1 to 16n are within the set range. Each of the conditions (0) to (4) above is 101 to ■. 1
If all grooves are filled for each of 101 to IO
A YES signal is output to the AND gate through the OR gate every n. Next, ■. Check whether the above conditions (0) to (4) are satisfied, and if all are satisfied, AND the YES signal.
Output to the gate. Furthermore, it is checked whether the rising times of Vo and IoI=Ioa are within a certain period of time, and if they are within a certain period of time, a YES signal is sent to Io.
Output to the AND gate every OI""I0n. As described above, the AND gate outputs the CB and 33 operation detection signals when each condition is satisfied. Further, when outputting the CB, 33 operation detection signal, its contents are displayed on the display device 14. As the display contents, for example, current and voltage waveforms, names of distribution lines where CB and SS operations were detected, detection times, waveform analysis data, etc. are displayed as necessary. In addition, in the above embodiment, an example was described in which the operation detection device for circuit breakers and switches was installed in a distribution substation, but it can also be installed at the location where a sectional switch is installed on the distribution line, or only the detection unit can be installed. The same effect can be obtained even if it is provided at a certain location. In addition, although a dedicated grounding transformer and two zero-phase current transformers were used as zero-sequence voltage and zero-sequence current detectors, existing equipment could be used, or detectors using other detection methods such as optical sensors could be used. The same effect can be achieved by using .

【発明の効果】【Effect of the invention】

以上のように、この発明によれば、しゃ断器。 開閉器が故障以外の原因、例えば、手動による開閉操作
等で動作したときに発生する電流、電圧の特異波形を、
故障により発生した特異波形と区別して確実に検出する
ことができる効果がある。
As described above, according to the present invention, there is provided a breaker. The peculiar waveforms of current and voltage that occur when a switch is operated due to a cause other than a failure, such as manual opening/closing operation, are
This has the effect of being able to be reliably detected, distinguishing it from a peculiar waveform caused by a failure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例によるしゃ断器。 区分開閉器の動作検出装置を示すブロック図、第2図は
同装置の動作検出演算部のブロック図、第3図は同装置
の電流のサンプリングの状態を示す波形図、第4図(A
)は同装置のしゃ断器の投入時における電流、電圧の波
形図、第4図(B)は波形解析データ図、第5図は同装
置の区分開閉器の投入時における電流、電圧の波形図、
第6図は同装置の動作検出ロジックを示すブロック図、
第7図は従来の配電系統を示すブロック図、第8図は同
配電系統のしゃ断器の駆動回路を示すブロック図である
。 2は母線+  L I −L nは配電線、GPTは零
相電圧検出器、ZCT、、〜ZCTo、、は零相電流検
出器、3は動作検出演算部、7.8はメモリ、9はCP
U。 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 shows a breaker according to an embodiment of the present invention. FIG. 2 is a block diagram showing the operation detection device for a sectional switch; FIG. 2 is a block diagram of the operation detection calculation section of the device; FIG.
) is a current and voltage waveform diagram when the breaker of the same equipment is closed, Figure 4 (B) is a waveform analysis data diagram, and Figure 5 is a current and voltage waveform diagram when the sectional switch of the same equipment is closed. ,
FIG. 6 is a block diagram showing the operation detection logic of the device;
FIG. 7 is a block diagram showing a conventional power distribution system, and FIG. 8 is a block diagram showing a drive circuit for a circuit breaker in the power distribution system. 2 is the bus bar + L I -L n is the distribution line, GPT is the zero-phase voltage detector, ZCT, , ~ZCTo, , is the zero-phase current detector, 3 is the operation detection calculation unit, 7.8 is the memory, and 9 is the C.P.
U. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims]  電気所の母線から複数回線の配電線にしゃ断器及び開
閉器を介して給電する配電系統において、系統の零相電
圧を検出する零相電圧検出器と、系統の零相電流を検出
する零相電流検出器と、上記零相電圧検出器及び零相電
流検出器の各出力に基いて上記零相電圧及び上記零相電
流の各波形を解析した入力波形解析データが格納される
メモリと、上記しゃ断器及び開閉器の少なくとも一方が
動作した時における上記零相電圧及び零相電流の各波形
の特徴が予め解析した動作時波形解析データとして予め
登録されるメモリと、上記各メモリから読み出された上
記入力波形解析データと上記動作時波形解析データとを
照合し、所定条件を満足したとき動作検出信号を出力す
る動作検出演算部とを備えたしゃ断器、開閉器の動作検
出装置。
In a power distribution system that supplies power from the busbar of an electric station to multiple distribution lines via circuit breakers and switches, a zero-sequence voltage detector detects the zero-sequence voltage of the system, and a zero-sequence voltage detector detects the zero-sequence current of the system. a current detector, and a memory storing input waveform analysis data obtained by analyzing each waveform of the zero-sequence voltage and the zero-sequence current based on each output of the zero-sequence voltage detector and the zero-sequence current detector; A memory in which characteristics of each waveform of the zero-sequence voltage and zero-sequence current when at least one of the breaker and the switch operates are registered in advance as operating waveform analysis data analyzed in advance, and read out from each of the memories. An operation detection device for a circuit breaker or a switch, comprising: an operation detection calculation unit that compares the input waveform analysis data with the operation waveform analysis data and outputs an operation detection signal when a predetermined condition is satisfied.
JP1211666A 1989-08-17 1989-08-17 Circuit breaker / switch operation detector Expired - Fee Related JP2635176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1211666A JP2635176B2 (en) 1989-08-17 1989-08-17 Circuit breaker / switch operation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1211666A JP2635176B2 (en) 1989-08-17 1989-08-17 Circuit breaker / switch operation detector

Publications (2)

Publication Number Publication Date
JPH0378422A true JPH0378422A (en) 1991-04-03
JP2635176B2 JP2635176B2 (en) 1997-07-30

Family

ID=16609585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1211666A Expired - Fee Related JP2635176B2 (en) 1989-08-17 1989-08-17 Circuit breaker / switch operation detector

Country Status (1)

Country Link
JP (1) JP2635176B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013207990A (en) * 2012-03-29 2013-10-07 Chugoku Electric Power Co Inc:The Power distribution automation system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS526950A (en) * 1975-07-04 1977-01-19 Hitachi Ltd Accident phenomenon far off analysis indication device
JPS5480533A (en) * 1977-12-09 1979-06-27 Hitachi Ltd Protector for transformer
JPS6170473A (en) * 1984-09-13 1986-04-11 Shigeru Ebihara Waveform analyzer
JPS62112055A (en) * 1985-11-09 1987-05-23 Ito Kensetsu Kk Method and device for discriminating kind of buried tube
JPS63178722A (en) * 1987-01-14 1988-07-22 株式会社東芝 Protective relay
JPS63164334U (en) * 1987-04-15 1988-10-26

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS526950A (en) * 1975-07-04 1977-01-19 Hitachi Ltd Accident phenomenon far off analysis indication device
JPS5480533A (en) * 1977-12-09 1979-06-27 Hitachi Ltd Protector for transformer
JPS6170473A (en) * 1984-09-13 1986-04-11 Shigeru Ebihara Waveform analyzer
JPS62112055A (en) * 1985-11-09 1987-05-23 Ito Kensetsu Kk Method and device for discriminating kind of buried tube
JPS63178722A (en) * 1987-01-14 1988-07-22 株式会社東芝 Protective relay
JPS63164334U (en) * 1987-04-15 1988-10-26

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013207990A (en) * 2012-03-29 2013-10-07 Chugoku Electric Power Co Inc:The Power distribution automation system

Also Published As

Publication number Publication date
JP2635176B2 (en) 1997-07-30

Similar Documents

Publication Publication Date Title
US4398232A (en) Protective relaying methods and apparatus
EP3506445B1 (en) System for identification of a feeder with high-ohmic earth fault in a distribution network
JP5340215B2 (en) DC ground fault location search method, ground fault current supply device, and DC ground fault monitoring system
EP3299828A1 (en) Electrical fault detection
US20190271730A1 (en) Method and control system for fault direction detection
CN108287295B (en) Power line ground fault position finding method and system
US4577279A (en) Method and apparatus for providing offset compensation
US20190293704A1 (en) Method and control system for fault direction detection
JPH0378422A (en) Detecting device for operation of circuit breaker and switch
JPH11344525A (en) Fault point plotting device
JP2561734B2 (en) Transformer internal failure prediction device
JPH03251790A (en) Apparatus for foretelling approaching thunder
RU171206U1 (en) DEVICE FOR PROTECTING ELECTRIC TRANSMISSION LINES FROM SINGLE-PHASE EARTH CLOSES IN A THREE-PHASE NETWORK WITH INSULATED NEUTRAL
JP2635177B2 (en) Failure prediction device for distribution system
JP2007306717A (en) Protection relay
KR19990083046A (en) Bus protection system for spot network type electric power receiving in stallation
JPH05164807A (en) Power main circuit checker
JPH08265957A (en) Matrix operation type system protector
Kojovic et al. Improved relay coordination and relay response time by integrating the relay functions
JP5247164B2 (en) Protective relay device
RU57018U1 (en) DEVICE FOR DETERMINING THE LOCATION OF DAMAGE TO THE ELECTRICAL VOLTAGE NETWORK OF 6 (10) -35 KV WITH ISOLATED OR COMPENSATED NEUTRAL
JPH07245869A (en) Insulation deterioration detection device for electric equipment
RU55153U1 (en) DEVICE FOR DETERMINING THE LOCATION OF DAMAGE TO THE ELECTRIC VOLTAGE NETWORK OF 6 (10) -35 KV WITH ISOLATED OR COMPENSATED NEUTRAL
JPH04275018A (en) Substation fault section detecting apparatus
JP4738288B2 (en) Distribution system ground fault protective relay device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees