JPH0377795A - Combined wire for high-speed gas shielded arc fillet welding - Google Patents

Combined wire for high-speed gas shielded arc fillet welding

Info

Publication number
JPH0377795A
JPH0377795A JP21269189A JP21269189A JPH0377795A JP H0377795 A JPH0377795 A JP H0377795A JP 21269189 A JP21269189 A JP 21269189A JP 21269189 A JP21269189 A JP 21269189A JP H0377795 A JPH0377795 A JP H0377795A
Authority
JP
Japan
Prior art keywords
wire
flux
welding
shielded arc
fillet welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21269189A
Other languages
Japanese (ja)
Inventor
Norimi Yamashita
山下 礦三
Kiyoshi Kato
清 加藤
Isamu Kimoto
勇 木本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP21269189A priority Critical patent/JPH0377795A/en
Publication of JPH0377795A publication Critical patent/JPH0377795A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To obtain weld beads which are preferable in appearance by specifying the content of C over the entire part of the wire including a flux and sheath. CONSTITUTION:The combined wire is constituted by filling the flux contg. >=90% metal powder into the sheath made of an extremely soft steel contg. <=0.08% C. The content of the C over the entire part of the wire including the flux and the sheath is, thereupon, specified to 0.50 to 1.50%. This wire is used for a high-speed gas shielded arc fillet welding. The fracture at the section of a weld metal part is obviated in this way and the deterioration in the strength of a structure is prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は比較的薄板使用で防錆鋼構造物の溶接に用いる
ガスシールドアーク溶接用複合ワイヤに係るものであり
、更に詳しくはZnめっき鋼板のすみ肉溶接でビットや
ブローホールなどの溶接欠陥の少ない高品質な溶接金属
を得る高速ガスシールドアークすみ肉溶接用複合ワイヤ
に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a composite wire for gas-shielded arc welding that uses a relatively thin plate and is used for welding rust-proof steel structures. This invention relates to a composite wire for high-speed gas-shielded arc fillet welding that produces high-quality weld metal with fewer weld defects such as bits and blowholes during fillet welding.

(従来の技術) 近年ガスシールドアーク溶接用複合ワイヤ(以下、複合
ワイヤと記す)は、軟鋼・50キロ級高張力鋼をはじめ
とする各種#1種を用いる鋼構造物の溶接に広く用いら
れている。この理由として複合ワイヤは、その内部に充
填されるフラックスの作用効果によって、溶接作業性が
良く良好なビード外観・形状が得られると共に、ワイヤ
溶着速度が早く溶接能率が向上することなどが挙げられ
る。
(Prior art) In recent years, composite wires for gas-shielded arc welding (hereinafter referred to as composite wires) have been widely used for welding steel structures using various types #1, including mild steel and 50 kg class high tensile strength steel. ing. The reason for this is that composite wires have good welding workability and a good bead appearance and shape due to the effects of the flux filled inside them, as well as fast wire welding speeds and improved welding efficiency. .

しかし、最近の溶接の自動化・ロボット化の動向下にお
いて、更に高性能・高能率な複合ワイヤの開発が待望さ
れている現状にある。
However, with the recent trend toward automation and robotization of welding, there is a long-awaited development of composite wires with even higher performance and efficiency.

この複合ワイヤは、外皮部が鋼であって内部に10〜3
0%のフラックスを充填して構成されているが、その構
造は第2図に示す如く種々断面形状のものがある。内部
に充填するフラックスを大別すると (1)  チタニャ系などのスラグ剤と、84.Knな
どの脱散剤・合金剤からなるもの、 (2)鉄粉+  S L 1Mnなどの金属粉で構成さ
れるもの、 とがあるが本発明は後者の金属粉系複合ワイヤに関する
This composite wire has an outer skin made of steel and an inner part of 10 to 3
Although it is constructed by filling 0% flux, its structure has various cross-sectional shapes as shown in FIG. The flux to be filled inside can be roughly divided into (1) slag agents such as titania type, and 84. (2) wires made of a dispersing agent/alloying agent such as Kn; and (2) wires made of iron powder + metal powder such as S L 1Mn. The present invention relates to the latter metal powder composite wire.

従来の金属粉系複合ワイヤは、 (1)  ソリッドワイヤと同等以上の溶着量を得るこ
とができて高能率である。
Conventional metal powder-based composite wires are: (1) capable of obtaining a welding amount equal to or greater than that of solid wires, and are highly efficient;

(2)スラグの生成が少ない。(2) Less slag generation.

(3)金属、合金類および少量の酸化物などを充填フラ
ックスに添加できるので溶接金属組成調整の自由度が広
い。
(3) Since metals, alloys, and small amounts of oxides can be added to the filling flux, there is a wide degree of freedom in adjusting the weld metal composition.

などのように金属粉系複合ワイヤは優れた特徴を有して
いるものの、特に炭酸ガスをシールドガスとするアーク
溶接時において、前記チタニャ系複合ワイヤに比較する
とスパッタ発生が目立ち、Znめっき鋼板などのすみ肉
溶接では、ビードにピットやブローホールが多発し、実
用化ができていないのが現状である。
Although metal powder-based composite wires have excellent characteristics, especially during arc welding using carbon dioxide as a shielding gas, spatter generation is more noticeable compared to titania-based composite wires, and Fillet welding often produces pits and blowholes in the bead, making it difficult to put it into practical use at present.

このような問題点を解決する手段として、例えば特開昭
82−248593号公報、特開昭84−31596号
公報記載の技術などが知られている。前者はフラックス
入りワイヤ全重量に対する化学成分の規定により、後者
は同じく炭素量および酸素量の規定により上述の問題点
を解決しようとする技術であるが、高速溶接においては
必ずしも満足できるものではない。
As means for solving such problems, techniques described in, for example, Japanese Patent Application Laid-open No. 82-248593 and Japanese Patent Application Laid-open No. 84-31596 are known. The former is a technique that attempts to solve the above-mentioned problems by specifying the chemical composition relative to the total weight of the flux-cored wire, and the latter is a technique that attempts to solve the above-mentioned problems by specifying the amount of carbon and oxygen, but these techniques are not necessarily satisfactory in high-speed welding.

(発明が解決しようとする課題) 本発明は上記従来ワイヤの問題点を解決するためになさ
れたものであって、Znめっき鋼板のすみ肉溶接におい
てもピット、ブローホール発生が少なく、かつ高速度の
溶接が可能な金属粉系複合ワイヤを提供するものである
(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned problems with conventional wires, and it is possible to reduce the occurrence of pits and blowholes even in fillet welding of Zn-plated steel sheets, and to achieve high speed welding. The present invention provides a metal powder-based composite wire that can be welded.

(課題を解決するための手段) 本発明は、Znめっき鋼板の高速ガスシールドアークす
み肉溶接用複合ワイヤであって、C含有量が0.08%
以下の極軟鋼外皮に、金属粉を90%以上含有するフラ
ックスを充填してなる複合ワイヤにおいて、フラックス
および外皮を含めたワイヤ全体としてのCff1が0.
50−1.50%であることを特徴とするものである。
(Means for Solving the Problems) The present invention is a composite wire for high-speed gas-shielded arc fillet welding of Zn-plated steel sheets, the C content being 0.08%.
In the following composite wire formed by filling an extremely mild steel sheath with a flux containing 90% or more of metal powder, the Cff1 of the wire as a whole including the flux and the sheath is 0.
50-1.50%.

(作  用) まず、本発明において、フラックス中の金属粉を90%
以上と限定したのは、余分なスラグを溶接中に生成させ
ず、溶着効率を高めるためである。
(Function) First, in the present invention, 90% of the metal powder in the flux is
The reason for the above limitation is to prevent excess slag from being generated during welding and to improve welding efficiency.

フラックス中の金属粉の比率が90%未満では、溶着効
率においてソリッドワイヤより小さくなることと、生成
スラグが多くなって、スラグ除去を必要とすることにな
り溶接効率が低下する。従って、フラックスの90%以
上は金属粉でなければならない。なお、ここでいう金属
粉とは、鉄粉のほかC1Si、  Mn、  Ti、 
 Zr、  Al1 、  B、  Nb、  Mg。
If the ratio of metal powder in the flux is less than 90%, the welding efficiency will be lower than that of a solid wire, and a large amount of slag will be generated, making it necessary to remove the slag, resulting in a decrease in welding efficiency. Therefore, 90% or more of the flux must be metal powder. Note that the metal powders mentioned here include iron powder as well as C1Si, Mn, Ti,
Zr, Al1, B, Nb, Mg.

Ca等の脱酸剤元素とNi、Cr、MO,Cu等の合金
元素を意味している。これら元素の添加方法としては、
各々単体で添加しても、またこれらの元素の合金として
添加してもよい。
It means a deoxidizing element such as Ca and an alloying element such as Ni, Cr, MO, Cu, etc. The methods of adding these elements are as follows:
Each of these elements may be added alone or as an alloy of these elements.

金属粉の添加量を上記範囲にすることにより、金属粉系
複合ワイヤの特徴である溶接能率の向上は達成できるが
、しかし、従来の最大の問題点であったピット、ブロー
ホールの低減は図ることができない。そこで本発明者ら
はピット、ブローホール低減を目的に実験を重ねた結果
、フラックスおよび外皮を含めたワイヤ全体としてのC
JIがピット、ブローホール発生に大きく寄与している
ことを見い出した。
By adjusting the amount of metal powder added within the above range, it is possible to improve welding efficiency, which is a characteristic of metal powder-based composite wires, but it is necessary to reduce pits and blowholes, which were the biggest problems in the past. I can't. Therefore, as a result of repeated experiments aimed at reducing pits and blowholes, the inventors found that the C
It has been found that JI greatly contributes to the occurrence of pits and blowholes.

(実 施 例) 以下実施例によって本発明を説明する。(Example) The present invention will be explained below with reference to Examples.

すなわち、第1表に示すC量と鉄粉量のみを調整した各
フラックスを、極軟鋼外皮(C−0,045%、5i−
0,01%、Mn−0,31%)にフラックス充填率1
5%で充填し、第2表に示すように、ワイヤ全体として
のCを0.10〜1.70%の範囲で変化させた金属粉
系ワイヤを作製し、溶接に供した。ワイヤは直径1.2
市で断面形状は第2図(C)である。
That is, each flux in which only the amount of C and the amount of iron powder shown in Table 1 were adjusted was mixed with a very mild steel shell (C-0,045%, 5i-
0,01%, Mn-0,31%) with a flux filling rate of 1
Metal powder wires filled with C of 5% and having the C content of the wire as a whole varied in the range of 0.10 to 1.70% as shown in Table 2 were prepared and subjected to welding. The wire has a diameter of 1.2
The cross-sectional shape of the city is shown in Figure 2 (C).

ワイヤ製造条件は一定であり、ワイヤの化学成分はC以
外は一定にしている。
The wire manufacturing conditions are constant, and the chemical components of the wire are constant except for C.

第 2 表 重量% 第1図は、これらワイヤを用いて、Znめつき鋼板を水
平重ねすみ肉溶接した時の、ビード部のピット発生個数
とブローホール発生率を示す実験例である。
Table 2 Weight % FIG. 1 is an experimental example showing the number of pits generated at the bead portion and the blowhole generation rate when Zn-plated steel plates were horizontally stacked and fillet welded using these wires.

この水平重ねすみ肉の溶接条件は、CO2ガス流ff1
25N /mln、溶接電流220A、アーク電圧22
v1溶接速度100an/sin、チップ母材間距Al
15mm、母材に対するトーチの角度60″であり、板
厚2.0關の両面Znめっき鋼板(JIS G 330
2、片面のZn目付j1 : 45 tr / rr?
)を第3図の如く2枚重ね、その重ね部を水平重ねすみ
肉溶接したものである。なお、第1図におけるブローホ
ール発生率は、各々のビードについて放射線透過試験を
行い、そのフィルムからビード長さ方向のブローホール
幅を測定し、ビード長さに対するブローホール幅の総和
を百分率で表したものである。
The welding conditions for this horizontally overlapped fillet are CO2 gas flow ff1
25N/mln, welding current 220A, arc voltage 22
v1 welding speed 100an/sin, tip base metal distance Al
15mm, the angle of the torch to the base material is 60'', and the thickness is about 2.0mm.
2. Zn basis weight on one side j1: 45 tr/rr?
) are stacked as shown in Figure 3, and the stacked parts are horizontally stacked and fillet welded. The blowhole occurrence rate in Figure 1 is determined by performing a radiographic test on each bead, measuring the blowhole width in the bead length direction from the film, and expressing the total blowhole width relative to the bead length as a percentage. This is what I did.

この図から、ワイヤ中のC量が0.50%以上の領域で
、ピット、ブローホール発生量が極めて少ないことが分
かる。この領域でピット、ブローホールの少ない理由は
明らかでないが、次のように推察される。すなわち、金
属粉系ワイヤではCが高いと、溶接中溶滴において激し
いC0反応が生ずると考えられ、この反応がピット、ブ
ローホールの発生を抑制しているものと考えられる。
From this figure, it can be seen that the amount of pits and blowholes generated is extremely small in the region where the amount of C in the wire is 0.50% or more. The reason why there are fewer pits and blowholes in this area is not clear, but it is speculated as follows. That is, when the C content is high in a metal powder wire, it is thought that an intense CO reaction occurs in the droplets during welding, and this reaction is thought to suppress the generation of pits and blowholes.

ワイヤ先端から離脱した溶滴は、Cが高いためにアーク
雰囲気中の酸素によって溶滴表面のC0又はCO2分圧
が高まり、この分圧が、鋼板にめっきされたZnがアー
ク熱で気化する時のZnの蒸気分圧より大きくなり、溶
滴内へZnが侵入しにくくなってピット、ブローホール
の発生が抑制されるものと考えられる。本実験では、ワ
イヤ中のCilが1.50%超でもピット、ブローホー
ルを抑制するという点では有効であるが、CMl、50
%超ではすみ内部が過度に硬化し耐割れ性が危惧される
ことから、本発明ワイヤのC量は0.50〜1.50%
とした。
Since the droplet detached from the tip of the wire has a high C content, the partial pressure of CO or CO2 on the droplet surface increases due to the oxygen in the arc atmosphere, and this partial pressure causes the Zn plated on the steel plate to vaporize due to the arc heat. It is thought that the Zn vapor partial pressure becomes higher than that of Zn, making it difficult for Zn to penetrate into the droplets, thereby suppressing the generation of pits and blowholes. In this experiment, even if the Cil in the wire exceeds 1.50%, it is effective in suppressing pits and blowholes;
If the carbon content exceeds 0.5%, the inside of the corner will become excessively hardened and the cracking resistance will be compromised.
And so.

以上が本発明の主要構成であるが、アーク安定化や、少
量のスラグの物性調整によるビード形成良好化を図るた
めN20.に、O,L t20゜S I O2r M 
n O+ A 11203 、F e O+  F C
203゜MgOなどの酸化物、NaF、KF、MgF2
゜CaF2.に2 SiF6などのぶつ化物などの非金
属物質を、単体もしくは化合物の形態で、その総量が1
0%を超えない範囲で添加することができる。
The above is the main structure of the present invention, but in order to stabilize the arc and improve bead formation by adjusting the physical properties of a small amount of slag, N20. , O, L t20゜S I O2r M
n O+ A 11203, F e O+ F C
203° Oxides such as MgO, NaF, KF, MgF2
゜CaF2. 2. Non-metallic substances such as carbides such as SiF6, either alone or in the form of compounds, whose total amount is 1
It can be added within a range not exceeding 0%.

さらに、通常のワイヤにおいては、S[やMlが脱酸性
元素として添加されるが、本発明の如く高速すみ肉溶接
で用いる高Cのワイヤでは、Cが第1次の脱酸性元素と
して作用するので、SlやMnの添加量は通常より少な
くてよく、ワイヤ中でSiは0.70%以下、Mnは0
.20〜1.50%が好ましい。
Furthermore, in ordinary wires, S[ and Ml are added as deoxidizing elements, but in high-C wires used in high-speed fillet welding as in the present invention, C acts as the primary deoxidizing element. Therefore, the amount of added Sl and Mn may be smaller than usual, and the amount of Si in the wire should be 0.70% or less, and the amount of Mn should be 0.
.. 20-1.50% is preferred.

また、本発明ワイヤは、フラックス充填率が10〜30
%の範囲で、ワイヤ径は1.0〜1.2mmφであるこ
とが望ましく、ワイヤの断面構造は、第2図の如き断面
で、開口部のあるワイヤ、および開口部のないいわゆる
シームレスワイヤのいずれにおいても適用可能であるが
、自動化・ロボット化を考慮すれば、第2図(D)のシ
ームレスワイヤが望ましい。さらに本発明ワイヤを用い
て溶接する場合に、使用するシールドガス組成としては
、炭酸ガスのほかに酸素ガスあるいはアルゴンガスを混
合する場合も適用可能である。アルゴンガスとの混合ガ
スの場合、アーク安定作用が重畳されるのでスパッタの
少ない溶接が可能になる。
Further, the wire of the present invention has a flux filling rate of 10 to 30.
%, the wire diameter is preferably 1.0 to 1.2 mmφ, and the cross-sectional structure of the wire is as shown in Figure 2, including wires with openings and so-called seamless wires without openings. Any method is applicable, but in consideration of automation and robotization, the seamless wire shown in FIG. 2(D) is preferable. Further, in the case of welding using the wire of the present invention, the composition of the shielding gas used may be a mixture of oxygen gas or argon gas in addition to carbon dioxide gas. In the case of a gas mixture with argon gas, the arc stabilizing effect is superimposed, making it possible to weld with less spatter.

(発明の効果) 以上のように、本発明のワイヤによれば、Znめっき鋼
板など防錆処理を施した鋼材を溶接しても、ピット、ブ
ローホールともに非常に少ない健全な溶接金属が得られ
る為、溶接金属部の断面欠損にならず構造物の強度を劣
化させない。また、ピットの発生が非常に少ないため、
外観的にも好ましい溶接ビードが得られる。
(Effects of the Invention) As described above, according to the wire of the present invention, a healthy weld metal with very few pits and blowholes can be obtained even when welding steel materials subjected to rust prevention treatment such as Zn-plated steel sheets. Therefore, the weld metal part does not become damaged in cross section and the strength of the structure does not deteriorate. In addition, since there are very few pits,
A weld bead that is also pleasing in appearance can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はワイヤ中のC量とピット、ブローホールの発生
関係を示す説明図、第2図は複合ワイヤの断面形状を示
す図、第3図は試験板形状を示す斜視図である。
FIG. 1 is an explanatory diagram showing the relationship between the amount of C in the wire and the occurrence of pits and blowholes, FIG. 2 is a diagram showing the cross-sectional shape of the composite wire, and FIG. 3 is a perspective view showing the shape of the test plate.

Claims (1)

【特許請求の範囲】[Claims] C含有量0.08%以下の極軟鋼外皮に金属粉を90%
以上含有するフラックスを充填してなる複合ワイヤにお
いて、フラックスおよび外皮を含めたワイヤ全体として
のC量が0.50〜1.50%であることを特徴とする
高速ガスシールドアークすみ肉溶接用複合ワイヤ。
90% metal powder in extremely mild steel shell with C content of 0.08% or less
A composite wire for high-speed gas-shielded arc fillet welding, characterized in that the C content of the wire as a whole including the flux and the outer sheath is 0.50 to 1.50% in a composite wire filled with a flux containing the above. wire.
JP21269189A 1989-08-18 1989-08-18 Combined wire for high-speed gas shielded arc fillet welding Pending JPH0377795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21269189A JPH0377795A (en) 1989-08-18 1989-08-18 Combined wire for high-speed gas shielded arc fillet welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21269189A JPH0377795A (en) 1989-08-18 1989-08-18 Combined wire for high-speed gas shielded arc fillet welding

Publications (1)

Publication Number Publication Date
JPH0377795A true JPH0377795A (en) 1991-04-03

Family

ID=16626831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21269189A Pending JPH0377795A (en) 1989-08-18 1989-08-18 Combined wire for high-speed gas shielded arc fillet welding

Country Status (1)

Country Link
JP (1) JPH0377795A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015518427A (en) * 2012-04-17 2015-07-02 ホバート ブラザーズ カンパニー System and method for welding electrodes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015518427A (en) * 2012-04-17 2015-07-02 ホバート ブラザーズ カンパニー System and method for welding electrodes

Similar Documents

Publication Publication Date Title
JP3017059B2 (en) High nitrogen flux cored wire for welding Cr-Ni stainless steel
JPS5944159B2 (en) Flux-cored wire for gas shield arc welding
JPH0530557B2 (en)
US4449031A (en) Tubular composite arc welding electrode for vertical up welding of stainless steel and nickel-base alloys
US4314136A (en) Tubular composite arc welding electrode for vertical up welding of stainless steel
US6833530B2 (en) Flux cored wire for gas shielded arc welding
JPH05329684A (en) Basic flux cored wire for gas shielded arc welding
JP3026899B2 (en) Low hydrogen coated arc welding rod
EP3988240A1 (en) Flux-cored wire and welding method
JP3017055B2 (en) Flux-cored wire for gas shielded arc welding
JPH0377795A (en) Combined wire for high-speed gas shielded arc fillet welding
JP3718323B2 (en) Flux-cored wire for multi-electrode vertical electrogas arc welding for extra heavy steel
JPH03294092A (en) Flux cored wire electrode for gas shielded arc welding
JP2674854B2 (en) Flux-cored wire for gas shielded arc welding
KR20090110247A (en) PURE Ar GAS SHIELDED WELDING MIG FLUX-CORED WIRE AND MIG ARC WELDING METHOD
JPH02274395A (en) Combined wire for gas shielded arc welding
JPH0822474B2 (en) Composite wire for gas shield arc welding
JPH03291192A (en) Flux cored wire for gas shielded arc welding
JPH0460755B2 (en)
JP3017054B2 (en) Flux-cored wire for gas shielded arc welding
JPH0547318B2 (en)
JPH03169485A (en) High current density welding method and flux-cored wire
JPS62110897A (en) Iron power flux cored wire
JPH0632873B2 (en) Composite wire for gas shield arc welding
JPS63183795A (en) Flux cored wire for gas shielded arc welding