JPH0377603A - Method and device for separating two liquids - Google Patents

Method and device for separating two liquids

Info

Publication number
JPH0377603A
JPH0377603A JP21316889A JP21316889A JPH0377603A JP H0377603 A JPH0377603 A JP H0377603A JP 21316889 A JP21316889 A JP 21316889A JP 21316889 A JP21316889 A JP 21316889A JP H0377603 A JPH0377603 A JP H0377603A
Authority
JP
Japan
Prior art keywords
liquid
electrode
separated
space
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21316889A
Other languages
Japanese (ja)
Other versions
JPH0832290B2 (en
Inventor
Noboru Inoue
昇 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1213168A priority Critical patent/JPH0832290B2/en
Publication of JPH0377603A publication Critical patent/JPH0377603A/en
Publication of JPH0832290B2 publication Critical patent/JPH0832290B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve separation efficiency by circulating a mixture of two liqs. through a liq. mixture passage space by impressing an electric field with the strength capable of neutralizing the zeta potential of the liq. impurity particle in the liq. mixture. CONSTITUTION:A mixture of two liqs. is forced into a main vessel A from its inlet 7, and the liqs. are separated. The liq. impurities are recovered through an upper discharge pipe 18, and the liq. freed of impurities is recovered in a liq. tank through a lower discharge pipe 20. When an oil-water mixture is separated, for example, a specified AC voltage is impressed between an outer- cylinder electrode 1 and a charging electrode 3 and between an inner-cylinder electrode 2 and the charging electrode 3. Hence a dielectric 12 interposed between the electrodes is polarized in the direction of the electric field and a state is substantially formed in the liq. mixture passage space 5 as if many electrodes were adjacently arranged. Accordingly, the Coulomb repulsive force due to the zeta potential repelling and floating the oil particles is eliminated. Consequently, the oil particles are flocculated and coarsened by the intermolecular attraction, and the coarse flocs are floated by the sp.gr. difference from the water.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、油と水、フロンと水、フロンと油等混合状態
にある比重の異なる二液を効率よく分離する方法とその
装置に関し、例えば船舶用ビルヂ廃液や工場廃液の油水
分離、更には飲料水等の不純物液体分離等ができる装置
に関し、加えて不純物液体除去後の被分離液の浄化も可
能な二液分離装置を提供することを目的とする。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method and apparatus for efficiently separating two liquids having different specific gravities in a mixed state, such as oil and water, fluorocarbon and water, and fluorocarbon and oil. To provide a two-liquid separation device, which is capable of separating oil and water from, for example, shipbuilding waste liquid and factory waste liquid, and further separating impurity liquids from drinking water, etc., and which is also capable of purifying the liquid to be separated after removing impurity liquids. With the goal.

〔従来の技術] 混合状態の二液を分離する技術としては0、邪魔板式分
離法、傾斜板分離法やコアレッサ一方式等がよく知られ
ている。これらは、混合液が通過する流路に障害物や傾
斜板を設置し、これら障害物や傾斜板を通過する過程で
、二液を物理的比重差により時間をかけて徐々に分離す
ることを基本原理とするものである。
[Prior Art] As techniques for separating two liquids in a mixed state, there are well-known techniques such as 0, baffle plate separation method, inclined plate separation method, coalescer single method, and the like. These methods involve installing obstacles or inclined plates in the flow path through which the mixed liquid passes, and in the process of passing through these obstacles or inclined plates, the two liquids are gradually separated over time due to the physical specific gravity difference. This is the basic principle.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、例えば懸濁状態の油水混合液では油のコ
ロイド粒子表面にはイオンが吸着している為、水液との
界面において電気二重層によるゼータ−電位が発生し、
このゼータ−電位に起因して発生するクーロン力により
油粒子は相反撥して安定して浮遊しており、特に低濃度
の油水混合液では油のコロイド粒子間距離が隔たってい
る為、ゼータ−電位によるクーロン斥力のほうが分子間
引力よりもはるかに大きく、したがって従来のような物
理的手法では二液の分離ができない問題があった。又、
界面活性剤の混入によりエマルジョン化した油水混合液
においては油粒子が小粒化しているうえに水と油粒子の
結合電位も高く、従来の物理的手法のみによるものでは
二液分離は原理的に不可能であった。
However, for example, in a suspended oil-water mixture, ions are adsorbed on the surface of the oil colloid particles, so a zeta potential is generated due to an electric double layer at the interface with the water liquid.
Due to the Coulomb force generated due to this zeta potential, the oil particles repel each other and are stably suspended. Especially in a low-concentration oil-water mixture, the distance between the oil colloid particles is large, so the zeta potential The Coulomb repulsion caused by the electric potential is much larger than the intermolecular attraction, so there was a problem in that the two liquids could not be separated using conventional physical methods. or,
In an oil-water mixture emulsified by mixing a surfactant, the oil particles are small and the bonding potential between water and oil particles is high, making it impossible in principle to separate the two liquids using only conventional physical methods. It was possible.

更に従来の二液分離装置は二液分離機能を有するのみで
あり、不純物液体除去後の被分離液を再利用しようとす
れば、別途設けた浄化装置による浄化処理工程が必要と
なり、処理作業が煩雑となる上に処理時間が長時間化す
る問題があった。
Furthermore, conventional two-liquid separators only have a two-liquid separation function, and if you try to reuse the liquid to be separated after removing impurities, a purification process using a separate purification device is required, which increases the processing work. There is a problem that it becomes complicated and the processing time becomes long.

本発明はかかる現況に鑑みてなされたものであり、通常
濃度の混合液の二液分離は勿論のこと、低濃度の混合液
やエマルジョン化した混合液に対しても適用でき、しか
も分離効率も極めて高い二液分離方法とその装置を提供
すること目的とし、加えて、被分離液の浄化処理も同時
に行える二液分離装置を提供することを目的とするもの
である。
The present invention was made in view of the current situation, and can be applied not only to two-liquid separation of a mixed liquid with a normal concentration, but also to a mixed liquid with a low concentration or an emulsified liquid, and moreover, it has improved separation efficiency. It is an object of the present invention to provide a two-liquid separation method and an apparatus therefor which are extremely efficient, and also to provide a two-liquid separation apparatus which can simultaneously perform a purification process on a liquid to be separated.

〔課題を解決する為の手段〕[Means to solve problems]

ここで混乱を避ける為に、分離液と被分離液を次のよう
に定義しておく。
To avoid confusion here, the separation liquid and the liquid to be separated are defined as follows.

分離液二油水混合液中の油のように混合液中に少量存在
する不純物液体を収集した液 体であり、分離回収の目的となるもの をいう。
Separation liquid A liquid that collects impurity liquids that exist in small amounts in a mixed liquid, such as oil in a two-oil/water mixture, and is used for the purpose of separation and recovery.

被分離液;油水混合液中の水液のように混合液中の大部
分を占める液体であり、不純物 液体除去後の液体をいう。
Liquid to be separated: A liquid that occupies most of the mixed liquid, such as the water liquid in an oil-water mixed liquid, and refers to the liquid after impurity liquid has been removed.

従来技術における上記課題を解決した本発明の二液分離
方法は、本体容器内部に設けた混合液通過空間に処理対
象である二液混合液を流通させ、且つ二液混合液に対し
、該混合液中の分離対象である液体粒子のゼータ−電位
を中和させうる大きさの電界を印加して同種の液体粒子
を粒子間引力により凝集粗粒化させるとともに、粗粒化
して比重差により浮上若しくは沈降した分離液を収集排
出することを特徴とする。
The two-liquid separation method of the present invention, which solves the above-mentioned problems in the prior art, allows the two-liquid mixture to be processed to flow through the mixed liquid passage space provided inside the main container, and Applying an electric field large enough to neutralize the zeta potential of the liquid particles to be separated in the liquid causes the same type of liquid particles to coagulate and become coarse particles due to interparticle attraction, and the particles become coarse and levitate due to the difference in specific gravity. Alternatively, the method is characterized by collecting and discharging the precipitated separated liquid.

又、該方法を具体化した二液分離装置の構成は、本体容
器を兼ねた外筒電極と核外筒電極に対し同心円状に配置
され、且つ外筒電極と同電位に設定された内筒電極の中
間に前記外筒電極及び内筒電極と電気的に絶縁された荷
電極を同心円状に設け、前記各電極間に二液混合液を上
方向に流通させる混合液通過空間を形成するとともに、
該混合液通過空間の上部には本体容器外部への排出口を
具備した分離液収集空間を形成し、且つ円筒電極の内側
には不純物液体を除去した被分離液を下方へ向かって導
出する被分離液流下空間を設けてなり、外筒電極及び円
筒電極と荷電極間に混合液中の不純物液体粒子のゼータ
−電位を中和し得る電圧を印加してなることを特徴とし
ている。
Furthermore, the configuration of a two-liquid separation device that embodies this method includes an outer tube electrode that also serves as a main container, and an inner tube that is arranged concentrically with respect to the nuclear outer tube electrode and set at the same potential as the outer tube electrode. A charged electrode electrically insulated from the outer cylinder electrode and the inner cylinder electrode is provided concentrically between the electrodes, and a mixed liquid passage space is formed between each electrode to allow the two-component mixture to flow upward. ,
A separated liquid collecting space with a discharge port to the outside of the main container is formed in the upper part of the mixed liquid passing space, and a cover is provided inside the cylindrical electrode to lead out the separated liquid from which impurity liquid has been removed downward. The method is characterized in that a separated liquid flowing space is provided, and a voltage capable of neutralizing the zeta potential of impurity liquid particles in the mixed liquid is applied between the outer cylindrical electrode, the cylindrical electrode, and the charged electrode.

分離液収集空間は本体容器外部に設けることも可能で、
例えば、本体容器上部又は下部に設けたり、上部と下部
の両方に設けたりできる。又、荷電極を挟んで外筒電極
の反対側に位置し荷電極との間に電界を形成する為の電
極としては内筒電極以外のものを用いることも可能であ
り、例えば、内部に被分離液流下空間を形成した管状電
極を本体容器中央に設けることも可能である。
The separated liquid collection space can also be provided outside the main container.
For example, it can be provided on the upper or lower part of the main container, or on both the upper and lower parts. Furthermore, it is also possible to use something other than the inner tube electrode as the electrode located on the opposite side of the outer tube electrode across the charged electrode and for forming an electric field between the charged electrode and the inner tube electrode. It is also possible to provide a tubular electrode in the center of the main container with a separated liquid flow space formed therein.

管状電極は、本体容器の略中央を中心として放射状に複
数個配置することもできる。
A plurality of tubular electrodes can also be arranged radially around the approximate center of the main container.

又、荷電源としては油水混合液を処理対象とするときは
1〜IOV/cmの交流電圧を用いることが好ましく、
特にエマルジョン化した油水混合液を処理対象とすると
きは10〜50V/CIの交流電圧を用いることが好ま
しい。
In addition, when treating an oil-water mixture, it is preferable to use an AC voltage of 1 to IOV/cm as the charging power source.
In particular, when an emulsified oil/water mixture is to be treated, it is preferable to use an AC voltage of 10 to 50 V/CI.

又、フロン混合油等のように絶縁性の高い混合液を処理
対象とする場合は、電極が電蝕するおそれがない為、荷
電源としては直流電圧を用いることも可能であり、荷電
圧としては100〜200V10の交流電圧や直流電圧
、更には直流電圧と交流電圧の重畳電圧を用いることも
できる。
In addition, when processing highly insulating mixed liquids such as fluorocarbon mixed oil, there is no risk of electrolytic corrosion of the electrodes, so it is possible to use DC voltage as the charging power source. It is also possible to use an alternating current voltage or a direct current voltage of 100 to 200 V10, or even a superimposed voltage of a direct current voltage and an alternating current voltage.

外筒電極と荷電極間には多電極効果を有する網状体等の
多孔性誘電体を介在させて両電極間に無数の電極を形成
したのと同じ効果を実現することもできる。
A porous dielectric material such as a mesh having a multi-electrode effect may be interposed between the outer cylindrical electrode and the charged electrode to achieve the same effect as when countless electrodes are formed between the two electrodes.

又、外筒電極と荷電極間に形成された混合液通過空間を
流通する混合液は容器高さ方向に流通させる必要がある
が、混合液を分離する観点からは特に上向流とすること
が好ましい。
In addition, the mixed liquid flowing through the mixed liquid passing space formed between the outer cylindrical electrode and the charged electrode needs to flow in the height direction of the container, but from the viewpoint of separating the mixed liquid, the flow should be particularly upward. is preferred.

又、不純物液体除去後の被分離液が通過する空間には微
小懸濁物質(suspended 5olids :以
下、SS粒子と称す)を除去する為のSS除去層又は有
機物吸着層の何れか一方若しくは両方を設けて、本装置
に被分離液の浄化機能を付与することも好ましく、更に
、このSS除去層若しくは有機物吸着層の表面には荷電
極と同電位となした多孔板電極を接触状態で設けて、S
S除去層若しくは有機物吸着層表面の電界強度を高める
ことも好ましい。
In addition, in the space through which the liquid to be separated passes after the impurity liquid has been removed, either or both of an SS removal layer and an organic matter adsorption layer are installed to remove suspended solids (hereinafter referred to as SS particles). It is also preferable to provide this apparatus with a purifying function for the liquid to be separated.Furthermore, a porous plate electrode having the same potential as the charged electrode is provided on the surface of the SS removal layer or the organic matter adsorption layer in contact with the charged electrode. , S
It is also preferable to increase the electric field strength on the surface of the S removal layer or the organic matter adsorption layer.

又、分離液収集空間内の所定高さ位置に分離液の界面位
置を検出する為の界面検知センサーを設けて、分離液の
収集量の監視を行ない、分離液収集量が所定量よりも多
くなった段階で排出管に設けた自動弁を開放して分離液
収集空間内の分離液を本体容器外部へ排出するようにし
てもよい。
In addition, an interface detection sensor for detecting the interface position of the separated liquid is provided at a predetermined height position in the separated liquid collection space to monitor the collected amount of separated liquid, and to detect when the collected amount of separated liquid is larger than the predetermined amount. At this stage, an automatic valve provided in the discharge pipe may be opened to discharge the separated liquid in the separated liquid collecting space to the outside of the main container.

〔作 用〕[For production]

このような構成の本発明の二液分離装置による二液分離
は以下のようにして行われる。
Two-liquid separation by the two-liquid separator of the present invention having such a configuration is performed as follows.

第2請求項記載の装置では、本体容器外部から供給され
た混合液は、先ず外筒電極と荷電極間及び内筒電極と荷
電極間に形成された混合液流通空間内を上向流で流通さ
せられる。混合液流通空間を通過する以前の混合液中に
は分離対象となる不純物液体粒子が浮遊しており、液体
粒子はその性質によって液中の陽イオン若しくは陰イオ
ンを選択的に吸着する結果、表面が帯電し、周囲の他の
液体との間に電気二重層を形成しゼータ−電位を有して
いる。そして各液体粒子の表面電荷は同極であるので、
各液体粒子はゼータ−電位に起因するクーロン力によっ
て反発し安定的に浮遊している。
In the device according to the second aspect, the mixed liquid supplied from the outside of the main container first flows upward in the mixed liquid circulation space formed between the outer cylinder electrode and the charged electrode and between the inner cylinder electrode and the charged electrode. be distributed. Impurity liquid particles to be separated are suspended in the mixed liquid before it passes through the mixed liquid circulation space, and as a result of the liquid particles selectively adsorbing cations or anions in the liquid depending on their properties, the surface is electrically charged, forms an electric double layer with other surrounding liquids, and has a zeta potential. And since the surface charge of each liquid particle is the same polarity,
Each liquid particle is repelled by the Coulomb force caused by the zeta potential and is stably suspended.

外筒電極と荷電極間には、液体粒子のゼータ−電位を打
ち消すことができる大きさの電圧が印加されている為、
混合液流通空間を通過する過程で混合液中の液体粒子の
ゼータ−電位は中和され、その結果、液体粒子は分子間
引力の働きにより凝集粗粒化することになる。モして粗
粒化した不純物液体粒子は周囲液体との比重差により浮
上若しくは沈降し、混合液は不純物液体を主体とする分
離液と不純物液体を除去した被分離液とに分離される。
Since a voltage of a magnitude that can cancel out the zeta potential of the liquid particles is applied between the outer cylinder electrode and the charged electrode,
The zeta potential of the liquid particles in the mixed liquid is neutralized during the process of passing through the mixed liquid circulation space, and as a result, the liquid particles aggregate and become coarse particles due to the action of intermolecular attraction. The coarse impurity liquid particles float or settle due to the difference in specific gravity with the surrounding liquid, and the mixed liquid is separated into a separation liquid mainly containing the impurity liquid and a liquid to be separated from which the impurity liquid has been removed.

分離後の液体は、分離液が低比重のときには本体容器上
部に設けた分離液収集空間に溜められた後、該分離液収
集空間に設けられた排出口より本体容器外部へ排出され
、他方、分離液が高比重であるときは、内筒電極内に形
成された被分離液流下空間を通じて下方へ案内されて本
体容器下部から容器外部へ排出される。
When the separated liquid has a low specific gravity, the separated liquid is collected in a separated liquid collection space provided in the upper part of the main container, and is then discharged to the outside of the main container from a discharge port provided in the separated liquid collection space. When the separated liquid has a high specific gravity, it is guided downward through the separated liquid flowing space formed in the inner cylinder electrode and is discharged from the lower part of the main container to the outside of the container.

又、第3請求項記載の二液分離装置では、混合液は外筒
電極と荷電極間及び荷電極と管状電極間を通過する間に
、不純物液体粒子はそのゼータ−電位を打ち消されて分
子間力によって凝集粗粒化し、その比重に応じて浮上若
しくは沈降する。分離後の不純物液体はその比重が周囲
液体よりも軽い場合は、本体容器上部に連設された分離
液収集容器内に集まり、他方、不純物液体の比重が重い
場合は本体容器下部に連設された分離液収集容器内に分
離液が集まる。そしてこのようにして収集された不純物
液体は定期的に分離液収集容器内から抜き取られ、他方
、不純物を除去された被分離液は、管状電極内の被分離
液流下空間を通じて容器外部へ排出される。
Further, in the two-liquid separation device according to the third aspect, while the mixed liquid passes between the outer cylindrical electrode and the charged electrode and between the charged electrode and the tubular electrode, the impurity liquid particles have their zeta potential canceled and become molecules. The particles coagulate and become coarse particles due to the force between them, and float or settle depending on their specific gravity. If the impurity liquid after separation has a specific gravity that is lighter than the surrounding liquid, it will collect in a separated liquid collection container connected to the upper part of the main container, whereas if the specific gravity of the impurity liquid is higher than that of the surrounding liquid, it will collect in a separated liquid collection container connected to the bottom of the main container. The separated liquid collects in the separated liquid collection container. The impurity liquid collected in this way is periodically extracted from the separated liquid collection container, while the liquid to be separated from which impurities have been removed is discharged to the outside of the container through the space under which the liquid to be separated flows in the tubular electrode. Ru.

又、第4請求項に記載される如く、外筒電極の内側に被
分離液流下空間を内部に形成した複数の管状電極を放射
状に配置し、且つ外筒電極と管状電極の間に荷電極に対
して電位差を与えた荷電極を外筒電極に対して同心円状
に設けた場合は、不純物液体粒子の凝集粗粒化は各管状
電極と荷電極間及び外筒電極と荷電極間で行われ、不純
物液体除去後の被分離液は各管状電極内の被分離液流下
空間を通じて複数経路で容器外部へ排出される。
Further, as described in the fourth claim, a plurality of tubular electrodes each having a flow space for a liquid to be separated formed therein are arranged radially inside the outer cylindrical electrode, and a charged electrode is arranged between the outer cylindrical electrode and the tubular electrode. When charged electrodes with a potential difference applied to them are arranged concentrically with respect to the outer tube electrode, impurity liquid particles are aggregated and coarsened between each tube electrode and the charged electrode, and between the outer tube electrode and the charged electrode. The liquid to be separated after the impurity liquid has been removed is discharged to the outside of the container through a plurality of paths through the downstream space of the liquid to be separated in each tubular electrode.

被分離液の排出は複数の被分離液流下空間を通じて行わ
れる為、−度に大量の混合液を処理することができ、処
理効率を高めることが可能である。
Since the liquid to be separated is discharged through a plurality of downstream spaces for the liquid to be separated, a large amount of mixed liquid can be treated at one time, and processing efficiency can be improved.

又、外筒電極と荷電極間に多電極効果を有する多孔質形
状の誘電体を介在させたときには、誘電体の分極により
両電極間の各部分における電界強度が高まり、二液分離
の効率が高まる。
Furthermore, when a porous dielectric material having a multi-electrode effect is interposed between the outer cylindrical electrode and the charged electrode, the electric field strength at each part between the two electrodes increases due to the polarization of the dielectric material, increasing the efficiency of two-liquid separation. It increases.

被分離液流下空間に向かって移動する被分離液が通過す
る空間にSS除去層と有機物吸着層の一方若しくは両方
を設置したときには不純物除去後の被分離液中の残存不
純物をSS除去層によるフィルター効果若しくは吸着剤
の静電吸着能によって除去することができるので、被分
離液の浄化が可能となり、本装置以外に別途浄化装置を
設置する必要がなくなる。
When one or both of an SS removal layer and an organic substance adsorption layer are installed in the space through which the liquid to be separated moves toward the downstream space of the liquid to be separated, the remaining impurities in the liquid to be separated after impurity removal are filtered by the SS removal layer. Since it can be removed by the electrostatic adsorption ability of the adsorbent, it becomes possible to purify the liquid to be separated, and there is no need to install a separate purification device other than this device.

又、SS除去層若しくは有機物吸着剤層の表面に荷電電
極と同電位の多孔板電極を接触状態で設けたときには、
SS除去層若しくは有機物吸着剤層内各部値の電界強度
を高めてフィルター効果を高めることができるとともに
、凝集粗粒化した不純物液体粒子をSS除去層若しくは
有機物吸着層表面にクーロン力で引きつけて表面にケー
ク層を作ることができ、SS除去層若しくは有機物吸着
層がもつ本来のフィルター効果に加えてケーク層のもつ
フィルター効果を付加することにより高精度な濾過が可
能となる。
Furthermore, when a porous plate electrode having the same potential as the charging electrode is provided in contact with the surface of the SS removal layer or the organic adsorbent layer,
The filter effect can be enhanced by increasing the electric field strength at each part within the SS removal layer or organic matter adsorption layer, and the agglomerated and coarse impurity liquid particles are attracted to the surface of the SS removal layer or organic matter adsorption layer by Coulomb force. By adding the filtering effect of the cake layer to the original filtering effect of the SS removal layer or the organic matter adsorption layer, highly accurate filtration becomes possible.

更に、分離液収容空間内に分離液の界面位置を検知する
液面センサーを設け、液面位置が所定高さ位置となった
ときに自動弁を開放して分離液を排出する構成としたと
きには、分離液の排液を自動化でき、二液分離作業を自
動化できる。
Furthermore, when a liquid level sensor is provided in the separated liquid storage space to detect the interface position of the separated liquid, and when the liquid level reaches a predetermined height, an automatic valve is opened to discharge the separated liquid. , the drainage of the separated liquid can be automated, and the two-liquid separation work can be automated.

〔実施例〕〔Example〕

次に本発明の詳細を図示した実施例にもとづき説明する
。第1図(イ)は本発明にかかる二液分離装置の最も基
本的な一実施例を示す説明用縦断面図であり、第1図(
ロ)は同実施例の横断面図である。
Next, details of the present invention will be explained based on illustrated embodiments. FIG. 1(a) is an explanatory longitudinal sectional view showing the most basic embodiment of the two-liquid separator according to the present invention, and FIG.
B) is a cross-sectional view of the same embodiment.

図中lは本体容器Aを兼ねた外筒電極であり、該外筒電
極1の内側には該外筒電極lと同電位となした内筒電極
2が同心円状に配設されている。
In the figure, l is an outer cylinder electrode which also serves as the main container A, and inside the outer cylinder electrode 1, an inner cylinder electrode 2 having the same potential as the outer cylinder electrode l is arranged concentrically.

又、外筒電極1と内筒電極2間には両電極と電気的に絶
縁された荷電極3が保持絶縁体4.4・・・を介して外
筒電極1及び内筒電極2に対して同心円状に配置されて
おり、各電極間に上下方向に流通可能な混合液通過空間
5を形成し、且つ内筒電極2の内側には不純物液体除去
後の被分離液を下方へ案内する被分離液流下空間6を設
けている。
Moreover, between the outer tube electrode 1 and the inner tube electrode 2, a charged electrode 3 electrically insulated from both electrodes is connected to the outer tube electrode 1 and the inner tube electrode 2 via holding insulators 4, 4, etc. They are arranged concentrically, forming a mixed liquid passage space 5 between each electrode that can flow vertically, and inside the inner cylindrical electrode 2 guide the liquid to be separated after impurity liquid has been removed downward. A downstream space 6 for the liquid to be separated is provided.

本体容器Aの側面下部には油水混合液等の二液混合液を
流入させる為の混合液流入ロアが開設され、容器底面の
略中心には分離水等の不純物液体を除去した後の被分離
液を排出する為の被分離液排出口8が開設されている。
A mixed liquid inflow lower is provided at the lower side of the main body container A for inflowing a two-component mixed liquid such as an oil-water mixed liquid, and approximately in the center of the bottom of the container is a lower part of the bottom of the container where the liquid to be separated is removed after impurity liquid such as separated water is removed. A separated liquid discharge port 8 is provided for discharging the liquid.

又、容器本体への内部空間上部には分離浮上した分離液
を収容する分離液収容空間9が形成されるとともに、容
器天蓋には分離液を排出する為の分離液排出口10が設
けられている。
Further, a separated liquid storage space 9 for storing the separated and floated separated liquid is formed in the upper part of the internal space of the container body, and a separated liquid discharge port 10 for discharging the separated liquid is provided in the container canopy. There is.

円筒電極2は、その下端を本体容器A底面に保持固定す
ることで外筒電極lと同電位にされ、両電極間に同心円
状に配置された荷電極3には両電極に対して電位差を与
えているが、この電位差は、電源装置11の出力端子の
一方を外筒電極■に接続し、他方の端子を荷電極3に接
続することによって与えている。
The cylindrical electrode 2 is held and fixed at its lower end to the bottom surface of the main container A so that it has the same potential as the outer cylindrical electrode 1, and the charged electrode 3 arranged concentrically between the two electrodes has a potential difference with respect to the two electrodes. This potential difference is provided by connecting one of the output terminals of the power supply device 11 to the outer cylinder electrode (2) and connecting the other terminal to the charged electrode (3).

電源装置11はフロンと油の混合液等、処理対象が電気
抵抗の高い混合液の場合は直流電源、交流電源のいずれ
を用いることもできるが、油水混合液のように電気抵抗
が低い場合は電蝕のおそれがあることから、交流電源を
用いることが好ましい。
The power supply 11 can use either a DC power supply or an AC power supply when the object to be treated is a mixed liquid with high electrical resistance, such as a mixed liquid of fluorocarbon and oil, but when the electric resistance is low, such as a mixed liquid of oil and water, Since there is a risk of electrolytic corrosion, it is preferable to use an AC power source.

又、印加する電圧は、混合液中の分離対象となる不純物
液体粒子のゼータ−電位を打ち消すことができる大きさ
を基準にして設定されるが、一般に混合液の電気抵抗が
小さいものほど印加電圧も低く、例えば油水混合液の場
合はI V/c+n−10V/ cmの交流電圧が、又
、フロンと油との混合液のように電気抵抗の高い混合液
に対しては100/cm〜200V/cmの交流電圧が
用いられる。又、印加電圧は混合液の状態によっても左
右され、例えば界面活性剤の混入等によりエマルジョン
化した油水混合液の場合は、油粒子と水粒子との結合電
位が高い為、印加する電圧も10V10I〜500V/
cIIに設定する必要がある。又、印加電圧は混合液の
電気抵抗が小さいものについては直流電圧を用いると電
極が電蝕するおそれがある為、交流電圧を用いる必要が
あるが、電気抵抗が大きい混合液については前述したよ
うに直流電圧や交流電圧と直流電圧の重畳電圧を用いる
こともできる。特に直流電圧と交流電圧の重畳電圧を用
いたときには両電圧の組み合わせを工夫することによっ
て分離効率を高めることもできる。
In addition, the voltage to be applied is set based on the magnitude that can cancel out the zeta potential of impurity liquid particles to be separated in the mixed liquid, but in general, the smaller the electric resistance of the mixed liquid, the higher the applied voltage. For example, in the case of an oil-water mixture, the AC voltage is IV/c+n-10V/cm, and for a mixture with high electrical resistance, such as a mixture of Freon and oil, it is 100/cm to 200V. An alternating current voltage of /cm is used. In addition, the applied voltage also depends on the state of the mixed liquid. For example, in the case of an oil-water mixed liquid that has been emulsified by mixing a surfactant, the bonding potential between oil particles and water particles is high, so the applied voltage is also 10V10I. ~500V/
It is necessary to set it to cII. In addition, for mixed liquids with low electrical resistance, it is necessary to use alternating current voltage because there is a risk of electrolytic corrosion of the electrodes when using DC voltage, but as mentioned above for mixed liquids with high electrical resistance. It is also possible to use a DC voltage or a superimposed voltage of an AC voltage and a DC voltage. In particular, when a superimposed voltage of a DC voltage and an AC voltage is used, the separation efficiency can be improved by devising a combination of both voltages.

図中12は外筒電極lと荷電極3間及び内筒電極2と荷
電極3間に配置された網状等の多孔質性の誘電体であり
、グラスウールやポリプロピレン等の樹脂系のものが用
いられる。各電極間に配置された誘電体12は電極間に
印加された電界により分極して多電極効果を発揮し、こ
のことにより各電極間に形成された混合液通過空間を流
通する混合液中の不純物液体粒子のゼータ−電位を効率
よく中和することができる。
In the figure, 12 is a porous dielectric material such as a mesh arranged between the outer cylinder electrode 1 and the charged electrode 3 and between the inner cylinder electrode 2 and the charged electrode 3, and is made of a resin-based material such as glass wool or polypropylene. It will be done. The dielectric material 12 placed between each electrode is polarized by the electric field applied between the electrodes and exhibits a multi-electrode effect, which causes the liquid mixture flowing through the liquid mixture passage space formed between each electrode to be polarized. The zeta potential of impurity liquid particles can be efficiently neutralized.

又、図中13は分離液収容空間9内における所定高さ位
置に配置された界面検知センサーであり、例えば、二液
の導電率の相違を検出したり比重差を検出することによ
って二液界面が所定高さ位置に達したことを検知するも
のである。尚、図中14は本装置の運転を停止した際に
混合液通過空間5内に残留した油水混合液を排水する為
の残留液排水口であり、本装置稼動中は蓋15によって
閉止されている。
In the figure, reference numeral 13 denotes an interface detection sensor disposed at a predetermined height within the separated liquid storage space 9. For example, it detects the interface between two liquids by detecting a difference in conductivity or a difference in specific gravity between the two liquids. This is to detect that the has reached a predetermined height position. In addition, 14 in the figure is a residual liquid drain port for draining the oil-water mixture remaining in the mixed liquid passage space 5 when the operation of this apparatus is stopped, and it is closed by a lid 15 while this apparatus is in operation. There is.

このようにして構成される二液分離装置を使用するには
、例えば第2図に示す如く、混合液流入ロアに流入管1
6を接続し、且つ容器本体Aの天蓋に設けた分離液排出
口8には界面検知センサー13からの情報に基づいて開
閉する自動弁17を設けた上部排出管18を連結すると
ともに、被分離液排出口8には自動弁19を設けた下部
排出管20を連結する。そして混合液流入ロアから本体
容器A内へ混合液を圧入して本体容器内で二液分離を行
ない、上部排出管18を通じて不純物液体の回収を行う
とともに、下部排出管20を通じて不純物除去後の被分
離液を液槽21に回収し、回収後の被分離液を再度、前
記混合液流入ロアを通じて本体容器内部に還流すること
で二液分離処理を反復して行ない、より純度の高い分離
液を行う。
In order to use the two-liquid separator constructed in this manner, for example, as shown in FIG.
6, and an upper discharge pipe 18 provided with an automatic valve 17 that opens and closes based on information from the interface detection sensor 13 is connected to the separated liquid discharge port 8 provided in the canopy of the container body A. A lower discharge pipe 20 provided with an automatic valve 19 is connected to the liquid discharge port 8 . Then, the mixed liquid is pressurized into the main body container A from the mixed liquid inflow lower, the two liquids are separated in the main body container, the impurity liquid is recovered through the upper discharge pipe 18, and the liquid after impurity removal is passed through the lower discharge pipe 20. The separated liquid is collected into the liquid tank 21, and the recovered liquid is returned to the inside of the main body container through the mixed liquid inflow lower, thereby repeating the two-liquid separation process and producing a separated liquid with higher purity. conduct.

このような二液分離装置内部での二液分離は次のように
して行われる。尚、以下の実施例では油水混合液を処理
対象とした場合について述べるが、処理対象となる二液
混合液は比重差を有するものであれば他の混合液であっ
ても同様に処理できることはいうまでもない。
Separation of two liquids inside such a two-liquid separator is performed as follows. In the following examples, we will discuss the case where an oil-water mixture is treated, but other mixtures can be treated in the same way as long as the two-part mixture has a difference in specific gravity. Needless to say.

第1図(イ)に示す如く、先ず、本体容器側面下部に位
置する混合液流入ロアから油水混合液が圧入される。本
装置圧入前の油水混合液中には水液との間に電気二重層
を形成したコロイド粒子が浮遊しており、各コロイド粒
子は電気二重層に起因したゼータ−電位によるクーロン
力で相反撥して浮遊している。
As shown in FIG. 1(A), first, the oil-water mixture is press-injected from the mixture inflow lower located at the lower side of the main container. Colloidal particles that have formed an electric double layer with the water liquid are suspended in the oil-water mixture before being press-fitted into this device, and each colloidal particle is reciprocally repelled by the Coulomb force due to the zeta potential caused by the electric double layer. and floating.

円筒電極2の下端は本体容器底板に固着されて本体容器
内空間を内筒電極2を挟んで外部空間22と内部空間2
3とに二分しているので、混合液流入ロアから流入した
混合液は第1図中矢印で示す如く、混合液通過空間5を
上向流で通過する。
The lower end of the cylindrical electrode 2 is fixed to the bottom plate of the main container, and the inner space of the main container is connected to the outer space 22 and the inner space 2 with the inner cylindrical electrode 2 in between.
3, the mixed liquid flowing from the mixed liquid inflow lower passes through the mixed liquid passing space 5 in an upward flow as shown by the arrow in FIG.

外筒電極1と荷電極3間及び内筒電極2と荷電極3間に
は交流電圧が印加されているので、各電極間に介在する
誘電体12は電界方向に分極して、混合液通過空間5は
実質上、多数の電極が隣接配置された状態と同じになる
。この多電極化された空間内を上向流で通過する混合液
中の油粒子はその表面が空間内電荷に対応して帯電する
ことによって電気二重層が破壊され、各油粒子を反撥浮
遊させていたゼータ−電位に起因するクーロン斥力が消
失する。この結果、油粒子同士は分子間引力により凝集
粗粒化し、凝集後は水液との比重差により浮上する。浮
上した油分は本体容器上部に形成された分離油収容空間
9内上層に集合して油層を形成し、時間経過とともに該
油層の厚みを増大させて、油水界面位置を押し下げる。
Since an alternating current voltage is applied between the outer cylinder electrode 1 and the charged electrode 3 and between the inner cylinder electrode 2 and the charged electrode 3, the dielectric 12 interposed between each electrode is polarized in the direction of the electric field, and the mixed liquid passes through. The space 5 is substantially the same as a large number of electrodes arranged adjacent to each other. The surface of the oil particles in the mixed liquid that passes through this multi-electrode space in an upward flow is charged in accordance with the charge in the space, causing the electric double layer to be destroyed and each oil particle to be repelled and suspended. The Coulomb repulsion caused by the zeta potential disappears. As a result, the oil particles aggregate and become coarse particles due to intermolecular attraction, and after aggregation, they float due to the difference in specific gravity with the water liquid. The floating oil collects in the upper layer in the separated oil storage space 9 formed at the top of the main body container to form an oil layer, and as time passes, the thickness of the oil layer increases and pushes down the oil-water interface position.

この油水界面の高さ位置の降下は本体容器内面に取りつ
けられた界面検知センサー13によって監視されており
、油水界面が界面検知センサー13の検知部の設定位置
よりも低くなれば、界面センサー13から信号が送出さ
れ、該信号に基づいて上部排出管18の管路に設置した
自動弁17を開放して油分を本体容器外部に排出するも
のである。
This drop in the height of the oil-water interface is monitored by an interface detection sensor 13 attached to the inner surface of the main container, and if the oil-water interface becomes lower than the set position of the detection part of the interface sensor 13, A signal is sent, and based on the signal, an automatic valve 17 installed in the upper discharge pipe 18 is opened to discharge oil to the outside of the main container.

他方、油分が分離された後の水液は内部空間23に形成
された被分離液流下空間内を下向流で通過し、本体容器
底面に開設した被分離液排出口8から容器外部に排出さ
れる。油水混合液は本装置を一回通過させるだけでも相
当量分離できるが、分離された水液中の油分濃度をより
下げる為には、第2図に示す如く被分離液排出口8から
排出された水液を再度混合液流入ロアを通じて本体容器
A内へ還流し、上記油水分離工程を複数回反復させるこ
とが好ましい。
On the other hand, the aqueous liquid after the oil has been separated passes through the separated liquid flow space formed in the internal space 23 in a downward flow, and is discharged to the outside of the container from the separated liquid discharge port 8 provided at the bottom of the main container. be done. Although a considerable amount of the oil-water mixture can be separated by passing through this device once, in order to further reduce the oil concentration in the separated water, it is necessary to discharge the liquid from the liquid to be separated outlet 8 as shown in Fig. 2. It is preferable that the aqueous liquid is returned to the main body container A through the mixed liquid inflow lower, and the above-mentioned oil-water separation step is repeated multiple times.

第3図として示すものは、油水分離して得られた水液か
らSS粒子を除去する為に、被分離液流下空間6に筒状
のSS除去フィルター24を設けた場合である。SS除
去用フィルター24は筒状であって中央に被分離液流下
孔25を有し、且つその保持は被分離液流下孔25内に
外筒電極1及び内筒電極2と同電位となした中央電極2
6を挿通し、前記中央電極26の上端に設けた上部フラ
ンジ27でSS除去フィルター上端を押さえるとともに
中央電極26下部にはリング状の下部フランジ28を挿
通し、押しバネ29で下部フランジ28をSS除去フィ
ルター下端面に押しつけることで固定している。
What is shown in FIG. 3 is a case where a cylindrical SS removal filter 24 is provided in the downstream space 6 of the liquid to be separated in order to remove SS particles from the aqueous liquid obtained by separating oil and water. The SS removal filter 24 has a cylindrical shape and has a liquid to be separated flow hole 25 in the center, and is held at the same potential as the outer cylinder electrode 1 and the inner cylinder electrode 2 in the liquid to be separated flow hole 25. Central electrode 2
6, press the upper end of the SS removal filter with the upper flange 27 provided at the upper end of the center electrode 26, insert the ring-shaped lower flange 28 into the lower part of the center electrode 26, and press the lower flange 28 with the spring 29 to remove the SS. It is fixed by pressing it against the lower end of the removal filter.

中央電極26の下部は第4図(ロ)に示す如く中空に形
成され、中空パイプ30の上部側面には流入孔31が開
設されて、SS除去フィルター24を通過した水液がS
S除去フィルター24と中央電極26間の間隙32を流
下した後、該流入孔31から中空パイプ30の管内に流
入して容器外部へ導かれるようにしている。
The lower part of the central electrode 26 is formed hollow as shown in FIG.
After flowing down through the gap 32 between the S removal filter 24 and the center electrode 26, it flows into the hollow pipe 30 through the inlet hole 31 and is guided to the outside of the container.

SS除去フィルター24としてはポリプロピレン等を素
材とした網状体形状の誘電体繊維を用いることが誘電率
の高さ及び耐薬品性の観点から好ましいが、他の素材を
用いることも任意である。
As the SS removal filter 24, it is preferable to use a net-shaped dielectric fiber made of polypropylene or the like from the viewpoint of high dielectric constant and chemical resistance, but it is also possible to use other materials.

又、SS除去フィルター24の表面は荷電極3と同電位
となした多孔板電極33で囲繞されており、多孔板電極
33の孔部を通じて分離後の水液をSS除去フィルター
24に導入している。SS除去フィルター表面を荷電極
3と同電位となすことにより、SS除去フィルター24
の表面電荷を高め、SS粒子のゼータ−電位を中和して
SS粒子の凝集粗粒化をはかるとともに、クーロン力と
液流の作用によ′り粗粒化したSS粒子をSS除去フィ
ルター24表面にtiI促し、フィルター表面にSS粒
子のケーク層を作るようにしている。そしてこのように
することで、SS除去フィルターに波目の大きなフィル
ターを用いた場合でもフィルターが目詰まりをおこすこ
とを防止でき、フィルター寿命の延長がはかれる。
Further, the surface of the SS removal filter 24 is surrounded by a porous plate electrode 33 having the same potential as the charged electrode 3, and the separated aqueous liquid is introduced into the SS removal filter 24 through the holes of the porous plate electrode 33. There is. By setting the surface of the SS removal filter to the same potential as the charged electrode 3, the SS removal filter 24
In addition to increasing the surface charge of the SS particles and neutralizing the zeta potential of the SS particles to make the SS particles coarser, the SS particles coarsened by the action of Coulomb force and liquid flow are removed by the SS removal filter 24. TiI is applied to the surface to create a cake layer of SS particles on the filter surface. By doing this, even if a filter with large waves is used as the SS removal filter, clogging of the filter can be prevented, and the life of the filter can be extended.

又、特に処理対象が工場廃液等である場合はSS除去フ
ィルター24の内面に第5図に示す如く、分離した水液
のBOD値(生物化学的酸素要求量)及びCOD値(化
学的酸素消費りを改善する為に、水液中の有機物を吸着
除去できる有機物吸着層34を設けてフィルターを二層
構造とすることも好ましい。有機物吸着層34を構成す
る吸着剤としては繊維状活性炭、粒状活性炭、ゼオライ
ト、更にはキレート樹脂等を用いることができ、特にキ
レート樹脂を用いたときには金屑性塵埃に対して優れた
吸着能を発揮できる。
In addition, especially when the target to be treated is factory waste liquid, etc., the inner surface of the SS removal filter 24 has the BOD value (biochemical oxygen demand) and COD value (chemical oxygen consumption) of the separated aqueous liquid, as shown in FIG. In order to improve this, it is also preferable that the filter has a two-layer structure by providing an organic matter adsorption layer 34 capable of adsorbing and removing organic matter in the aqueous liquid.As the adsorbent constituting the organic matter adsorption layer 34, fibrous activated carbon, granular Activated carbon, zeolite, or even a chelate resin can be used, and especially when a chelate resin is used, it can exhibit excellent adsorption ability for gold dust.

第6図として示すものは、上記した二層構造のフィルタ
ーを本体容器A内に装着した状態を示している。本実施
例では、油分除去後の水液中のSS粒子の除去が行える
とともに水液のBOD値及びCOD値の改善も同時に行
うことができ、該装置を工場廃液の処理に用いれば工場
廃液による環境汚染の防止に貢献できる。
What is shown in FIG. 6 shows a state in which the above-described two-layered filter is installed in the main container A. In this example, SS particles can be removed from the aqueous liquid after oil removal, and the BOD and COD values of the aqueous liquid can be improved at the same time. It can contribute to preventing environmental pollution.

以上、第1図〜第6図として開示した装置は混合液中の
比重の軽い液体を分離回収対象としていたが、第7図〜
第11図として示すものは、分離回収対象が混合液中の
うちの比重の軽いものであっても、又、比重の重たいも
のであっても共に分離回収できる装置を示しており、そ
の構成の特徴は排出口35.36を具備し、且つ内部所
定高さ位置に界面検知センサー39.40を配した分離
液収集容器37、38を本体容器A上下部に別途設けた
ことである。以下、第7図〜第11図のそれぞれについ
て説明する。
As mentioned above, the apparatuses disclosed in FIGS. 1 to 6 were intended to separate and recover the liquid with light specific gravity in the mixed liquid, but as shown in FIGS.
What is shown in Fig. 11 shows an apparatus that can separate and recover both the light and heavy specific gravity of the mixed liquid, and its configuration. The feature is that separate liquid collection containers 37 and 38 are separately provided at the upper and lower portions of the main container A, each having a discharge port 35, 36 and having an interface detection sensor 39, 40 arranged at a predetermined height inside. Each of FIGS. 7 to 11 will be explained below.

第7図として示したものは、外筒電極を兼ねた本体容器
Bの軸心位置に外筒電極101と同電位に設定した管状
電極41を配し、該管状電極41の上端を開口42する
とともに下端を本体容器底部を貫通して本体容器外部へ
突設してなり、前記外筒電極101と管状電極41との
中間に外筒電極101及び管状電極41に対して電位差
を与えた多孔状荷電極43を配置した構成としている。
In the case shown in FIG. 7, a tubular electrode 41 set at the same potential as the outer tubular electrode 101 is arranged at the axis of the main container B which also serves as an outer tubular electrode, and the upper end of the tubular electrode 41 is opened 42. At the same time, a porous hole whose lower end penetrates through the bottom of the main container and protrudes to the outside of the main container, and applies a potential difference to the outer cylindrical electrode 101 and the tubular electrode 41 between the outer cylindrical electrode 101 and the tubular electrode 41. A charging electrode 43 is arranged.

そして、外筒電極101と多孔状荷電極43間に形成さ
れた混合液通過空間105内には多電極効果を有する網
状等の誘電体112を配し、且つ多孔状荷電極43内面
には管状電極41表面との間に間隙44を設けた状態で
SS除去フィルター124を配置した構成とするもので
ある。
A dielectric material 112 having a multi-electrode effect, such as a mesh, is disposed in the mixed liquid passing space 105 formed between the outer cylindrical electrode 101 and the porous charged electrode 43, and a tubular dielectric material 112 is arranged on the inner surface of the porous charged electrode 43. The SS removal filter 124 is arranged with a gap 44 provided between it and the surface of the electrode 41.

本実施例では混合液流入口107から流入した混合液は
混合液通過空間105を上向きに通過すると同時に多孔
状荷電極43の孔部を通ってSS除去用フィルター12
4内に流入し、誘電体112の多電極効果により不純物
液体粒子を凝集粗粒化させるとともにSS除去フィルタ
ー124により混合液中のSS粒子の除去を行う。そし
てこの過程で混合液中の比重の軽いものは浮上させて本
体容器上部の分離液収集容器39に集合させ、他方、分
離回収対象が混合液中の比重の重たいものであるときは
混合液中の比重の重い液体を沈降させて容器下部に設け
た分離液収集容器40に集合させるものである。
In this embodiment, the mixed liquid flowing from the mixed liquid inlet 107 passes upward through the mixed liquid passage space 105 and at the same time passes through the holes of the porous charged electrode 43 to the SS removal filter 12.
4, the impurity liquid particles are aggregated and coarsened by the multi-electrode effect of the dielectric 112, and the SS particles in the mixed liquid are removed by the SS removal filter 124. In this process, substances with a light specific gravity in the mixed liquid are floated and collected in the separated liquid collection container 39 on the upper part of the main container.On the other hand, when the object of separation and recovery is a substance with a heavy specific gravity in the mixed liquid, The liquid with a heavy specific gravity is allowed to settle and collect in a separated liquid collection container 40 provided at the bottom of the container.

尚、混合液中の低比重分離液を回収対象とするときは、
分離液収集容器39内に設けた界面センサー37の情報
にしたがって、又、高比重の分離液を回収対象とすると
きは、本体容器下部に設けた分離液収集容器40内の界
面センサー38からの情報にしたがって、それぞれの排
出口に設けた自動弁の開閉を行ない分離液の排出回収を
行うものである。
In addition, when the low specific gravity separated liquid in the mixed liquid is to be recovered,
According to the information from the interface sensor 37 provided in the separated liquid collection container 39, or when a separated liquid with a high specific gravity is to be collected, the information from the interface sensor 38 in the separated liquid collection container 40 provided at the bottom of the main container. According to the information, automatic valves provided at each outlet are opened and closed to discharge and recover the separated liquid.

分離液収集容器は分離対象である液体の比重に対応して
、本体容器Bの上部又は下部のいずれか一方にのみ設け
ることもできるが、回倒の如く本体容器Bの上下部両方
に設けておけば、分離対象である液体が軽比重である場
合も、又、高比重である場合であっても何れに対しても
対応することができるのである。
Depending on the specific gravity of the liquid to be separated, the separated liquid collection container can be provided only at either the upper or lower part of the main container B, but it is also possible to provide it at both the upper and lower parts of the main container B, such as when it is turned over. By doing so, it is possible to handle both cases where the liquid to be separated has a light specific gravity and a case where the liquid has a high specific gravity.

第8図として示したものは、管状電極として上端が閉止
され、側部に被分離液流入用の流入孔45を形成した管
状電極241を用い、外筒電極201と管状電極241
間に両電極に対して電位差を有する荷電極203を設け
、外筒電極201と荷電極203間に誘電体212を配
設した混合液通過空間205を形成するとともに荷電極
203と管状電極241 との間には両電極との間に間
隙を設けた状態で筒状のSS除去フィルター224を配
置し、且つ混合液流入口207を本体容器上部に設けた
場合である。この場合、本体容器内に圧入された混合液
は混合液通過空間205を下向流で通過した後、本体容
器底部でその流れを上向きに転じてSS除去フィルター
224内を通過して管状電極241上部の流入孔45に
達し、この過程で混合液の二液分離と被分離液の浄化を
行ない、浄化後の被分離液は前記流入孔245を通じて
管状電極241内の被分離液流下空間46を通じて本体
容器下部から容器外部へ排出するようにしている。本実
施例では混合液の通過流路が長いので混合液の処理には
時間を要するものの、精度の高い二液分離と被分離液の
浄化が行える。
The one shown in FIG. 8 uses a tubular electrode 241 whose upper end is closed and an inflow hole 45 for inflowing the liquid to be separated is formed at the side.
A charged electrode 203 having a potential difference with respect to both electrodes is provided between the two electrodes, and a mixed liquid passing space 205 is formed between the outer cylinder electrode 201 and the charged electrode 203 with a dielectric 212 disposed between the charged electrode 203 and the tubular electrode 241. In this case, a cylindrical SS removal filter 224 is arranged with a gap between both electrodes, and a mixed liquid inlet 207 is provided at the upper part of the main container. In this case, the mixed liquid pressurized into the main container passes through the mixed liquid passage space 205 in a downward flow, and then turns the flow upward at the bottom of the main container, passes through the SS removal filter 224, and passes through the tubular electrode 241. The liquid mixture reaches the upper inflow hole 45, and in this process, the mixed liquid is separated into two liquids and the liquid to be separated is purified. The water is discharged from the bottom of the main container to the outside of the container. In this embodiment, since the passage through which the mixed liquid passes is long, it takes time to process the mixed liquid, but highly accurate separation of the two liquids and purification of the liquid to be separated can be achieved.

第9図として示すものは、第8図として開示した装置に
おいて、SS除去フィルター224の表面に荷電極20
3と同電位となした多孔仮電極47を接触状態で配置し
た場合であり、多孔板電極47を配置することでSS除
去フィルター224の表面電荷を高めて、粗粒化したS
S粒子をフィルター表面に捕捉し、フィルター表面にケ
ーク層が形成されるように意図した場合である。
What is shown in FIG. 9 is the device disclosed in FIG.
This is a case in which a porous temporary electrode 47 with the same potential as that of 3 is placed in contact with S.
This is a case in which S particles are captured on the filter surface and a cake layer is intended to be formed on the filter surface.

以上述べたものは、管状電極を本体容器の中心に配置し
、SS除去フィルターを外筒電極に対して同心円状に配
置した場合であるが、管状電極及びSS除去フィルター
や有機物吸着剤層は第10図及び第11図に示す如く、
複数本の管状電極を本体容器中央を中心として放射状に
配置することもできる。
What has been described above is a case where the tubular electrode is arranged at the center of the main container and the SS removal filter is arranged concentrically with respect to the outer cylindrical electrode. As shown in Figures 10 and 11,
A plurality of tubular electrodes can also be arranged radially around the center of the main container.

第10図として示すものは、外筒電極301を兼ねた本
体容器Cの内側に一定距離離間した位置に荷電極303
を同心円状に配置し、且つ本体容器の中心に外筒電極3
01と同電位となした中央電極48を配置するとともに
、荷電極403と中央電極48間の空間に前記中央電極
48を中心として複数の管状電極341を放射状に配置
し、且つ各管状電極341に筒状のSS除去フィルター
324を外装した場合である。管状電極341.341
・・・は外筒電極301及び中央電極48と同電位に設
定され、本体容器Cの下部には各管状電極内空間を流下
して管状電極の下端から排出される被分離液を集合させ
る為の集合空間49を設けることで、各管状電極内を通
過した被分離液をまとめて容器底部から排出できるよう
に構成している。本実施例では複数のSS除去フィルタ
ー324.324・・・が放射状に配置されている為に
、SS除去用フィルターの表面積を大きくすることがで
き、−度に大量の混合液の処理を行うことが可能で、極
めて処理効率の良い浄化機能付二液分離装置が提供され
るものである。
What is shown in FIG. 10 is a charging electrode 303 located at a certain distance inside the main container C which also serves as an outer cylindrical electrode 301.
are arranged concentrically, and an outer cylindrical electrode 3 is placed in the center of the main container.
A central electrode 48 having the same potential as 01 is disposed, and a plurality of tubular electrodes 341 are disposed radially around the central electrode 48 in the space between the charged electrode 403 and the central electrode 48. This is a case where a cylindrical SS removal filter 324 is mounted on the outside. Tubular electrode 341.341
... is set to the same potential as the outer cylindrical electrode 301 and the center electrode 48, and in order to collect the liquid to be separated flowing down the inner space of each tubular electrode and discharged from the lower end of the tubular electrode at the lower part of the main container C. By providing a gathering space 49, the liquid to be separated that has passed through each tubular electrode can be discharged from the bottom of the container all at once. In this embodiment, since the plurality of SS removal filters 324, 324... are arranged radially, the surface area of the SS removal filter can be increased, and a large amount of mixed liquid can be processed at one time. A two-liquid separator with a purification function is provided which is capable of performing the following steps and has extremely high processing efficiency.

第11図として示したものは第1O図で示した装置にお
いて、放射状に配置した各SS除去フィルター324 
、324・・・のそれぞれの表面に荷電極303と同電
位となした多孔板電極337を接触状態で配置した場合
である。
What is shown in FIG. 11 is the apparatus shown in FIG.
, 324, . . . are arranged in contact with a porous plate electrode 337 having the same potential as the charged electrode 303.

以上のように第1図〜第11図で示したこ液分離装置は
、油水混合液をはじめフロンと水の混合液、更にはフロ
ンと油との混合液等、比重差を有する二液混合液であれ
ばあらゆる二液を分離することが可能である。
As described above, the liquid separation device shown in Figs. 1 to 11 is capable of handling two liquid mixtures with different specific gravity, such as oil-water mixtures, fluorocarbon and water mixtures, and fluorocarbon and oil mixtures. If so, it is possible to separate any two liquids.

以上のようにしてなる本発明の二液分離装置は、本体容
器に二液混合液を圧入するだけで、混合液を分離液と被
分離液とに分けることができる。しかも、本装置は、従
来の邪魔板方式等では分離不可能であったエマルジョン
化混合液に対しても適用でき、極めて優れた分離能を発
揮できる。
The two-liquid separation device of the present invention constructed as described above can separate the mixed liquid into the separated liquid and the liquid to be separated by simply pressurizing the two-liquid mixed liquid into the main body container. In addition, this device can be applied to emulsified mixed liquids that could not be separated using conventional baffle plate methods, etc., and can exhibit extremely excellent separation performance.

又、被分離液が通過する空間にSS除去フィルター及び
有機物吸着層のいずれか一方若しくは両方を配置したと
きには、不純物液体分離後の被分離液の浄化も同一装置
で行うことができる。
Further, when one or both of an SS removal filter and an organic substance adsorption layer are disposed in the space through which the liquid to be separated passes, the liquid to be separated after separation of impurity liquid can also be purified using the same device.

〔発明の効果〕〔Effect of the invention〕

本発明の二液分離方法は、本体容器内部に設けた混合液
流通空間に処理対象である二液混合液を流通させ、二液
混合液を電界中に位置づけて該混合液中の分離対象であ
る不純物液体粒子のゼータ−電位を中和させ、不純物粒
子を分子間引力により凝集粗粒化させるとともに、粗粒
化して比重差により浮上若しくは沈降した分離液を収集
排出することとしたので、油と水、フロンと水、フロン
と油等異なる比重の液体の混合液を効率よく分離するこ
とができる。しかも本発明は不純物液体粒子のゼータ−
電位を中和させ、分子間引力により不純物粒子を凝集粗
粒化するものであるから、従来の邪魔板方式等の物理的
手法によっては分離不可能であったエマルジョン化した
二液混合液の分離も可能である。
The two-liquid separation method of the present invention involves circulating a two-liquid mixture to be treated through a mixed liquid circulation space provided inside a main container, positioning the two-liquid mixture in an electric field, and separating the two-liquid mixture into a liquid mixture to be separated. We decided to neutralize the zeta potential of certain impurity liquid particles, aggregate the impurity particles into coarse particles due to intermolecular attraction, and collect and discharge the separated liquid that became coarse particles and floated or settled due to the difference in specific gravity. It is possible to efficiently separate mixtures of liquids with different specific gravities, such as chlorofluorocarbons and water, fluorocarbons and water, and fluorocarbons and oil. Moreover, the present invention can reduce the amount of zeta in impurity liquid particles.
Since the electric potential is neutralized and impurity particles are aggregated and coarsened by intermolecular attraction, it is possible to separate emulsified two-component mixtures that cannot be separated by conventional physical methods such as baffle plate methods. is also possible.

本方法を実施した第2請求項記載の二液分離装置は、同
電位となした外筒電極と内筒電極間に両電極と電気的に
絶縁した荷電極を設け、外筒電極と荷電極間に混合液通
過空間を設けるとともに、該混合液通過空間の上部には
、本体容器外部への排出口を具備した分離液収容空間を
形成し、且っ内筒電極の内側には不純物液体除去後の被
分離液体を下方へ向かって案内する被分離液流下空間を
設けてなり、外筒電極及び内筒電極と荷電極間に不純物
液体粒子のゼータ−電位を中和させうる電圧を印加した
構成としたので、混合液を本体容器に圧入するだけで、
混合液を分離液と被分離液とに分けることができ、しか
も分離液は分離油収容空間に収集されるとともに、被分
離液は本体容器の下部から容器外部に排出されるので、
分離液及び被分離液の回収が容易である。
A two-liquid separator according to the second claim in which this method is implemented is provided with a charged electrode electrically insulated from both electrodes between an outer cylinder electrode and an inner cylinder electrode that are at the same potential, and a charged electrode that is electrically insulated from both electrodes. A mixed liquid passage space is provided in between, and a separated liquid storage space with a discharge port to the outside of the main container is formed in the upper part of the mixed liquid passage space, and an impurity liquid removal space is provided inside the inner cylindrical electrode. A liquid to be separated flow space is provided to guide the subsequent liquid to be separated downward, and a voltage capable of neutralizing the zeta potential of impurity liquid particles is applied between the outer cylinder electrode, the inner cylinder electrode, and the charged electrode. With this structure, you can simply press the mixed liquid into the main container.
The mixed liquid can be separated into a separated liquid and a liquid to be separated, and the separated liquid is collected in the separated oil storage space, and the liquid to be separated is discharged from the lower part of the main container to the outside of the container.
It is easy to recover the separated liquid and the liquid to be separated.

第3請求項に記載される如く、本体容器の上部及び下部
の一方若しくは両方に分離液収集容器を別途設けたとき
には分離液の回収がより容易となり、特に本体容器の上
下に分離液収集容器を設けたときには、分離回収対象と
なる液体が二液混合液のうち低比重のものである場合も
、又、高比重である場合、何れに対しても適用できる二
液分離装置が提供される。
As described in the third claim, when a separated liquid collection container is separately provided at one or both of the upper and lower parts of the main body container, the collection of the separated liquid becomes easier. When provided, a two-liquid separation device is provided that can be applied to both cases where the liquid to be separated and recovered has a low specific gravity among the two-liquid mixed liquids, and when it has a high specific gravity.

又、第4請求項に記載されるように、内筒電極の代わり
に内部に被分離液流下空間を形成した管状電極を用い、
且つ該管状電極を本体容器を中心として放射状に複数本
配設したときには、−度に大量の混合液を処理すること
が可能となり、処理効率が大幅に向上する。
Further, as described in the fourth claim, a tubular electrode having a flow space for the liquid to be separated inside is used instead of the inner cylinder electrode,
In addition, when a plurality of the tubular electrodes are arranged radially around the main container, it becomes possible to process a large amount of the mixed liquid at one time, and the processing efficiency is greatly improved.

更に、外筒電極と荷電極間に多電極効果を有する綱状等
の多孔性誘電体を配置したときには外筒電極と荷電極間
における各部分の電界強度を高めることができ、不純物
液体粒子の凝集粗粒化を促進することができる。
Furthermore, when a porous dielectric material such as a rope having a multi-electrode effect is arranged between the outer cylinder electrode and the charged electrode, the electric field strength at each part between the outer cylinder electrode and the charged electrode can be increased, and the impurity liquid particles can be Coagulation and coarsening can be promoted.

又、被分離液流下空間に向かって移動する被分離液が通
過する位置にSS除去層及び有機物吸着層を設けたとき
には、不純物液体粒子を分離した後の被分離液の浄化を
同装置内で行うことが可能となり、本装置から排出され
た分離液をそのまま再利用することがでる。
In addition, when the SS removal layer and the organic matter adsorption layer are provided at the position where the liquid to be separated passes as it moves toward the downstream space of the liquid to be separated, the liquid to be separated can be purified within the same device after the impurity liquid particles have been separated. This makes it possible to reuse the separated liquid discharged from the device as it is.

更に、SS除去層若しくは有機物吸着層表面に荷電極と
同電位となした多孔板電極を接触状態で配置したときに
は、被分離液中の凝集粗粒化したSS粒子をSS除去層
若しくは有機物吸着層表面にクーロン力で引き寄せて捕
捉し、これら表面にSS粒子によるケーク層を形成する
ことで、該ケーク層をフィルターとして機能させること
ができる。したがって、濾過精度が飛躍的に向上すると
ともに比較的粗いSS粒子は前記ケーク層で除去される
為、フィルター減目の目詰まりも防止でき、装置の長寿
命化がはかれる。
Furthermore, when a porous plate electrode with the same potential as the charged electrode is placed in contact with the surface of the SS removal layer or organic matter adsorption layer, the agglomerated coarse SS particles in the liquid to be separated are removed from the SS removal layer or organic matter adsorption layer. By attracting and trapping SS particles to the surface and forming a cake layer of SS particles on these surfaces, the cake layer can function as a filter. Therefore, the filtration accuracy is dramatically improved, and since relatively coarse SS particles are removed by the cake layer, clogging of the filter opening can be prevented, and the life of the device can be extended.

又、分離液を収集する空間内に、分離液と混合液と−の
界面を検知するセンサーを取付け、分離液4゜ の収集量を常に監視し、収集量が一定量を越えたときに
分離液排出口に設けた自動弁を開放して分離液を自動的
に排出することとすれば、手動操作が不要な全自動の二
液分離装置が提供される。
In addition, a sensor that detects the interface between the separated liquid and the mixed liquid is installed in the space where the separated liquid is collected, and the collected amount of separated liquid 4° is constantly monitored, and when the collected amount exceeds a certain amount, the separation is performed. If the separated liquid is automatically discharged by opening an automatic valve provided at the liquid discharge port, a fully automatic two-liquid separation device that does not require manual operation can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(イ)は本発明にかかる二液分離装置の最も基本
的な実施例を示す縦断面図、第1図(ロ)は同実施例に
おける横断面図、第2図は同実施例の使用態様の一例を
示す説明図、第3図(イ)(ロ)は他の実施例を示す説
明図、第4図(イ)(ハ)は同実施例における要部拡大
斜視図、第4図(ロ)は同実施例における要部拡大縦断
面図、第5図は他の実施例の要部拡大縦断面図、第6図
(イ)(ロ)、第7図(イ)(ロ)、第8図(イ)(ロ
)、第9図(イ)(ロ)、第10図(イ)(ロ)。 第11図(イ)(ロ)は他の実施例である。 A:本体容器、 1:外筒電極、   2:内筒電極、 3:荷電極、    4:保持絶縁体、5:混合液通過
空間、6:被分離液流下空間、7:混合液流入口、 9:分離液収容空間、 11:電源装置、 13:界面検知センサー 14:残留液排出口、 16:流入管、 18:上部排出管、 20:下部排出管、 22:外部空間、 24 : SS除去フィルター 25:被分離液流下孔、 27:上部フランジ、 29:押しバネ、 31:流入孔、 33:多孔板電極、 35:排出口、 37:界面検知センサー 38:界面検知センサー 39:分離液収集容器、 41:管状電極、 8:被分離液排出口、 10:分離液排出口、 12:誘電体、 15:蓋、 17:自動弁、 19:自動弁、 21:液槽、 23:内部空間、 26: 28= 30: 32: 34: 36: 中央電極、 下部フランジ、 中空パイプ、 間隙、 有機物吸着層、 排出口、 40:分離液収集容器、 42:開口、 43: 45: 47: 49二 多孔状荷電極、 流入孔、 多孔板電極、 集合空間。 44:間隙、 46:被分離液流下空間、 48:中央電極、 第 図 20 第 1 図 第 4 図 (ロ) (イ) (ロ) (ロ) 図 0 図 4− (イ) (イ) (ロ) 第 1 図 (イ)
FIG. 1(a) is a vertical cross-sectional view showing the most basic embodiment of the two-liquid separation device according to the present invention, FIG. 1(b) is a cross-sectional view of the same embodiment, and FIG. 2 is the same embodiment. 3(A) and 3(B) are explanatory drawings showing another embodiment. FIGS. 4(A) and 4(C) are enlarged perspective views of main parts in the same embodiment. Figure 4 (B) is an enlarged vertical cross-sectional view of the main part of the same embodiment, Figure 5 is an enlarged longitudinal cross-sectional view of the main part of another embodiment, Figures 6 (A) (B), and Figure 7 (A) ( (b), Figure 8 (a) (b), Figure 9 (a) (b), Figure 10 (a) (b). FIGS. 11(a) and 11(b) show other embodiments. A: Main container, 1: Outer tube electrode, 2: Inner tube electrode, 3: Charge electrode, 4: Holding insulator, 5: Mixed liquid passage space, 6: Separated liquid downstream space, 7: Mixed liquid inlet, 9: Separated liquid storage space, 11: Power supply, 13: Interface detection sensor 14: Residual liquid outlet, 16: Inflow pipe, 18: Upper discharge pipe, 20: Lower discharge pipe, 22: External space, 24: SS removal Filter 25: Liquid flow hole to be separated, 27: Upper flange, 29: Push spring, 31: Inflow hole, 33: Porous plate electrode, 35: Outlet, 37: Interface detection sensor 38: Interface detection sensor 39: Separated liquid collection Container, 41: Tubular electrode, 8: Separated liquid outlet, 10: Separated liquid outlet, 12: Dielectric, 15: Lid, 17: Automatic valve, 19: Automatic valve, 21: Liquid tank, 23: Internal space , 26: 28= 30: 32: 34: 36: central electrode, lower flange, hollow pipe, gap, organic matter adsorption layer, outlet, 40: separated liquid collection container, 42: opening, 43: 45: 47: 492 Porous charged electrode, inlet hole, porous plate electrode, gathering space. 44: Gap, 46: Downstream space of liquid to be separated, 48: Central electrode, Fig. 20 Fig. 1 Fig. 4 (B) (A) (B) (B) Fig. 0 Fig. 4- (A) (A) ( b) Figure 1 (a)

Claims (1)

【特許請求の範囲】 1)本体容器内部に設けた混合液通過空間に処理対象で
ある二液混合液を流通させ、二液混合液に対し該混合液
中の不純物液体粒子のゼーター電位を中和させうる大き
さの電界を印加して不純物液体粒子を分子間引力により
凝集粗粒化させるとともに、粗粒化して比重差により浮
上若しくは沈降した分離液を収集排出してなる二液分離
方法。 2)本体容器を兼ねた外筒電極と該外筒電極に対し同心
円状に配置され、且つ外筒電極と同電位に設定された内
筒電極の中間に前記外筒電極及び内筒電極と電気的に絶
縁された荷電極を同心円状に設け、前記各電極間に二液
混合液を上方向に流通させる混合液通過空間を形成する
とともに、該混合液通過空間の上部には本体容器外部へ
の排出口を具備した分離液収集空間を形成し、且つ内筒
電極の内側には不純物液体除去後の被分離液を下方へ向
かって導出する被分離液流下空間を設けてなり、外筒電
極及び内筒電極と荷電極間に混合液中の不純物液体粒子
のゼーター電位を中和させ得る電圧を印加してなる二液
分離装置。3)本体容器を兼ねた外筒電極の内側に該外
筒電極と同電位とされ、且つ内部に不純物液体除去後の
被分離液を流下案内する為の被分離液流下通路を形成し
た管状電極を同心円状に配置するとともに、前記外筒電
極と管状電極との間に両電極と電気的に絶縁された荷電
極を同心円状に設け、前記各電極間に二液混合液を高さ
方向に流通させる混合液通過空間を形成するとともに本
体容器の上部と下部の一方若しくは両方に排出口を具備
した分離液収集容器を連設してなり、外筒電極及び管状
電極と荷電極間に混合液中の不純物液体粒子のゼーター
電位を中和させうる電圧を印加してなる二液分離装置。 4)本体容器を兼ねた外筒電極の内側に該外筒電極と同
電位にされ、且つ内部に不純物液体除去後の被分離液を
流下案内する為の被分離液流下空間を形成した複数の管
状電極を放射状に配置するとともに、前記外筒電極と管
状電極との中間に両電極と電気的に絶縁された荷電極を
外筒電極に対して同心円状に設け、前記各電極間に二液
混合液を高さ方向に流通させる混合液通過空間を形成す
るとともに、本体容器の上部と下部の一方若しくは両方
に排出口を具備した分離液収集容器を連設してなり、外
筒電極及び管状電極と荷電極間に混合液中の不純物液体
粒子のゼーター電位を中和させうる電圧を印加してなる
二液分離装置。 5)荷電電圧として1〜10V/cmの交流電圧を用い
、油水混合液を処理対象としてなる前記特許請求の範囲
第2項、第3項又は第4項記載の二液分離装置。 6)荷電電圧として10〜50V/cmの交流電圧を用
い、エマルジョン化した油水混合液を処理対象としてな
る前記特許請求の範囲第2項、第3項又は第4項記載の
二液分離装置。 7)荷電電圧として100〜200V/cmの交流若し
くは直流電圧を用い、導電率の低い混合液を処理対象と
してなる前記特許請求の範囲第2項、第3項又は第4項
記載の二液分離装置。 8)外筒電極と荷電極間に多電極効果を有する多孔性の
誘電体を介在させてなる前記特許請求の範囲第2項、第
3項又は第4項記載の二液分離装置。 9)不純物液体除去後の被分離液が通過する空間にSS
除去層及び/又は有機物吸着層を設けてなる前記特許請
求の範囲第2項、第3項又は第8項記載の二液分離装置
。 10)SS除去層若しくは有機物吸着層の表面に荷電極
と同電位の多孔板電極を接触状態で設けてなる前記特許
請求の範囲第2項、第3項、第8項又は第9項記載の二
液分離装置。 11)分離液を収集する空間に二液界面の検知を行う界
面検知センサーを設けて分離液の収集量を監視するとと
もに、該液面センサーによって得られる情報に基づいて
分離液排出管に設けた自動弁を制御して分離液の排出を
自動的におこなってなる前記特許請求の範囲第2項、第
3項、第8項、第9項又は第10項記載の二液分離装置
[Claims] 1) A two-component mixture to be treated is passed through a mixed-liquid passage space provided inside the main container, and the zeta potential of impurity liquid particles in the two-component mixture is moderated. A two-liquid separation method in which impurity liquid particles are agglomerated and coarsened by intermolecular attraction by applying an electric field of a size that can cause the liquid to be mixed, and the separated liquid that has become coarse and floats or settles due to the difference in specific gravity is collected and discharged. 2) Between the outer cylinder electrode that also serves as the main container and the inner cylinder electrode that is arranged concentrically with respect to the outer cylinder electrode and set to the same potential as the outer cylinder electrode, there is an electrical connection between the outer cylinder electrode and the inner cylinder electrode. Concentrically insulated charge electrodes are provided in a concentric manner, and a mixed liquid passage space is formed between each of the electrodes for allowing the two-component mixture to flow upwardly, and at the top of the mixed liquid passage space, there is a space provided to the outside of the main container. A separated liquid collection space is formed with a discharge port, and a separated liquid flow space is provided inside the inner cylinder electrode to lead out the liquid to be separated after removing impurity liquid downward, and the outer cylinder electrode and a two-liquid separation device in which a voltage capable of neutralizing the zeta potential of impurity liquid particles in the mixed liquid is applied between the inner cylinder electrode and the charged electrode. 3) A tubular electrode that has the same potential as the outer cylindrical electrode inside the outer cylindrical electrode that also serves as the main container, and has a liquid to be separated flow passage formed therein for guiding the liquid to be separated after removing impurity liquid to flow down. are arranged concentrically, and a charged electrode electrically insulated from both electrodes is provided concentrically between the outer cylindrical electrode and the tubular electrode, and a two-component mixture is spread between each electrode in the height direction. A separated liquid collection container is provided which forms a space for the mixed liquid to flow and has a discharge port at one or both of the upper and lower parts of the main container, and the mixed liquid is distributed between the outer cylindrical electrode, the tubular electrode, and the charged electrode. A two-liquid separation device that applies a voltage capable of neutralizing the zeta potential of impurity liquid particles inside. 4) Inside the outer cylindrical electrode that also serves as the main container, there are a plurality of electrodes that are set at the same potential as the outer cylindrical electrode and that have a separation liquid flow space therein for guiding the separation liquid after removing impurity liquid. The tubular electrodes are arranged radially, and a charged electrode electrically insulated from both electrodes is provided concentrically with the outer tubular electrode between the outer tubular electrode and the tubular electrode, and two liquids are placed between each electrode. A mixed liquid passage space is formed to allow the mixed liquid to flow in the height direction, and a separated liquid collection container is connected to the main container, which is equipped with a discharge port at one or both of the upper and lower parts of the main container. A two-liquid separation device in which a voltage capable of neutralizing the zeta potential of impurity liquid particles in a mixed liquid is applied between an electrode and a charged electrode. 5) The two-liquid separation device according to claim 2, 3, or 4, which uses an alternating current voltage of 1 to 10 V/cm as a charging voltage and treats an oil-water mixture. 6) The two-liquid separation device according to claim 2, 3, or 4, wherein an alternating current voltage of 10 to 50 V/cm is used as the charging voltage, and an emulsified oil-water mixture is treated. 7) Two-liquid separation according to claim 2, 3, or 4, in which a mixed liquid with low conductivity is treated using an AC or DC voltage of 100 to 200 V/cm as a charging voltage. Device. 8) The two-liquid separation device according to claim 2, 3, or 4, wherein a porous dielectric material having a multi-electrode effect is interposed between the outer cylindrical electrode and the charged electrode. 9) SS in the space through which the liquid to be separated passes after removing impurity liquid.
A two-liquid separation device according to claim 2, 3, or 8, which is provided with a removal layer and/or an organic matter adsorption layer. 10) The method according to claim 2, 3, 8 or 9, wherein a porous plate electrode having the same potential as the charged electrode is provided in contact with the surface of the SS removal layer or the organic matter adsorption layer. Two-liquid separation device. 11) An interface detection sensor for detecting the two-liquid interface was installed in the space for collecting the separated liquid to monitor the collected amount of the separated liquid, and an interface detection sensor was installed in the separated liquid discharge pipe based on the information obtained by the liquid level sensor. The two-liquid separation device according to claim 2, 3, 8, 9, or 10, wherein the separated liquid is automatically discharged by controlling an automatic valve.
JP1213168A 1989-08-18 1989-08-18 Two-liquid separator Expired - Lifetime JPH0832290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1213168A JPH0832290B2 (en) 1989-08-18 1989-08-18 Two-liquid separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1213168A JPH0832290B2 (en) 1989-08-18 1989-08-18 Two-liquid separator

Publications (2)

Publication Number Publication Date
JPH0377603A true JPH0377603A (en) 1991-04-03
JPH0832290B2 JPH0832290B2 (en) 1996-03-29

Family

ID=16634687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1213168A Expired - Lifetime JPH0832290B2 (en) 1989-08-18 1989-08-18 Two-liquid separator

Country Status (1)

Country Link
JP (1) JPH0832290B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5494586A (en) * 1990-06-20 1996-02-27 Toyota Jidosha Kabushiki Kaisha Oil-water separation apparatus
JP2014128777A (en) * 2012-12-28 2014-07-10 Yamada Katsuhiko Apparatus and method for flocculating, separating and recovering particle
CN108693187A (en) * 2018-06-21 2018-10-23 上海工程技术大学 A kind of dynamic circulation device can be used for staple in bulk continuous sampling and its application method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291214A (en) * 1985-06-17 1987-04-25 Fujimasa Kiko Kk Fluid filter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291214A (en) * 1985-06-17 1987-04-25 Fujimasa Kiko Kk Fluid filter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5494586A (en) * 1990-06-20 1996-02-27 Toyota Jidosha Kabushiki Kaisha Oil-water separation apparatus
JP2014128777A (en) * 2012-12-28 2014-07-10 Yamada Katsuhiko Apparatus and method for flocculating, separating and recovering particle
CN108693187A (en) * 2018-06-21 2018-10-23 上海工程技术大学 A kind of dynamic circulation device can be used for staple in bulk continuous sampling and its application method
CN108693187B (en) * 2018-06-21 2023-12-19 上海工程技术大学 Dynamic circulation device for continuous sampling of loose fibers and application method thereof

Also Published As

Publication number Publication date
JPH0832290B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
JPH07100302A (en) Charge coalescer type oil-water separator
US5244550A (en) Two liquid separating methods and apparatuses for implementing them
EP0206688B1 (en) Electrostatic adsorptive fluid filtering apparatus
JP3405278B2 (en) Charged aggregation filter coalescer type oil-water separator and system
US6902678B2 (en) Bilge water reclamation system and process
US7258800B1 (en) Electrocoagulation waste water batch tank treatment system
JP2591495B2 (en) Ultrafine filtration system and ultrafine filtration method using the system
US4778584A (en) Liquid filter device
CN109867402B (en) Oil-water separation device and oil-water separation method
US4372837A (en) Radial flow electrofilter
GB2177625A (en) Fluid filtering apparatus
JPH0377603A (en) Method and device for separating two liquids
CN112499858A (en) Demulsification device and method for coalescence of coupling medium of non-uniform electric field
US4302310A (en) Radial flow electrofilter
TWI286998B (en) Equipment for treating wastewater
CN111825265A (en) Oilfield produced water treatment method
CN212293036U (en) Electro-desalting wastewater oil removal treatment system
JPH05345147A (en) Charge flocculation and filtration method of fine particles in fluid, filter element used therein and fluid filter device
JP2006088144A (en) Fluid filtration device
RU2206513C1 (en) Method of cleaning water from liquid petroleum derivatives and installation
CN105776424B (en) A kind of efficiently waste water degreasing unit
US4053386A (en) Electrolytic filter for electrolytically filtering and recovering metals from colloidal suspensions
JP2005074316A (en) Compressor drain treatment device
JP2005199260A (en) Oil separation apparatus
RU2602566C2 (en) Method of purifying water from oil products by means of magnetic fluid and device for its implementation

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 14