JPH0377212B2 - - Google Patents

Info

Publication number
JPH0377212B2
JPH0377212B2 JP16279984A JP16279984A JPH0377212B2 JP H0377212 B2 JPH0377212 B2 JP H0377212B2 JP 16279984 A JP16279984 A JP 16279984A JP 16279984 A JP16279984 A JP 16279984A JP H0377212 B2 JPH0377212 B2 JP H0377212B2
Authority
JP
Japan
Prior art keywords
aromatic
component unit
dicarboxylic acid
bis
aromatic polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16279984A
Other languages
Japanese (ja)
Other versions
JPS6142532A (en
Inventor
Tadao Tanitsu
Takayuki Nakano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP16279984A priority Critical patent/JPS6142532A/en
Publication of JPS6142532A publication Critical patent/JPS6142532A/en
Publication of JPH0377212B2 publication Critical patent/JPH0377212B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐熱性および耐加水分解性に優れた
新規な芳香族ポリエステルに関する。 〔従来の技術〕 従来、耐熱性の芳香族ポリエステルとして、芳
香族ジカルボン酸成分単位とイソフタル酸成分単
位などの芳香族系ジカルボン酸成分単位および
種々のビスフエノール類成分単位からなる芳香族
ポリエステルが提案されている〔たとえば、J.
Polymer Science,40,399(1959),Visokomol.
Soyed,,834(1959)、特公昭38−15247号公
報、英国特許897640号公報、特公昭37−5599号公
報などを参照〕。しかし、これらの芳香族ポリエ
ステルは高温における耐加水分解性が劣ると云う
欠点があつた。例えば、すでに商業的に製造され
ているポリイソプロピリデン−4,4′−ジフエニ
レンイソフタレート・テレフタレートは沸騰水中
などの高温で水が存在する雰囲気下では加水分解
を容易に受けてその性能が大巾に低下する。この
ように従来の芳香族ポリエステルは、高温におけ
る耐加水分解性に劣り、成形時または高温条件下
の使用の際に加水分解を受け易いという欠点があ
つた。 〔発明が解決しようとする問題点〕 本発明者らは、従来から知られている耐熱性の
芳香族ポリエステルに前述の問題点のあることを
認識し、さらに耐熱性および耐加水分解性に優れ
た芳香族ポリエステルを探索した結果、炭素原子
数が8ないし16の芳香族ジカルボン酸成分単位と
特定の構造を有する芳香族三核ビスフエノール類
成分単位を主成分とする芳香族ポリエステルが前
記目的を達成することを見出し、本発明に到達し
た。 〔発明の概要〕 本発明を概説すれば、本発明は、 〔A〕 炭素原子数が8ないし16の芳香族ジカルボ
ン酸成分単位、および 〔B〕 一般式〔〕 〔式中、R1、R2、R3、R4、R5、R6、R7およ
びR8はいずれも水素原子または低級アルキル
基を示す〕で表わされる芳香族三核ビスフエノ
ール類成分単位を主成分とする芳香族ジオール
成分単位、 から構成され、かつペンタフロロフエノール中で
60℃で測定した極限粘度〔η〕が0.4dl/g以上
であることによつて特徴づけられる芳香族ポリエ
ステル、を発明の要旨とする。 〔問題点を解決するための手段および作用〕 本発明の芳香族ポリエステルを構成する芳香族
ジカルボン酸成分単位〔A〕は炭素原子数が8な
いし16の芳香族ジカルボン酸成分単位であり、さ
らに具体的にはテレフタル酸、イソフタル酸、フ
タル酸、2,6−ナフタリンジカルボン酸、4,
4−ビフエニルジカルボン酸またはこれらの少な
くとも2種以上の混合成分からなる芳香族ジカル
ボン酸成分単位である。これらの芳香族ジカルボ
ン酸成分単位のうちでは、テレフタル酸成分単
位、イソフタル酸成分単位およびこれらの混合成
分であることが好ましく、とくにテレフタル酸成
分単位とイソフタル酸成分単位からなる混合成分
であることが好ましい。該芳香族ジカルボン酸成
分単位が前記混合成分である場合に、その組成は
テレフタル酸成分単位が通常は5ないし95モル
%、好ましくは10ないし90モル%およびイソフタ
ル酸成分単位が通常は5ないし95モル%、好まし
くは10ないし90モル%の範囲にある。 本発明の芳香族ポリエステルを構成する芳香族
ジオール成分単位の主構成成分単位である芳香族
三核ビスフエノール成分単位〔B〕は、一般式
〔〕 で表わビスフエノール類成分単位であり、式中
R1、R2、R3、R4、R5、R6、R7およびR8はいず
れも水素原またはメチル基、エチル基、イソプロ
ピル基などの低級アルキル基を示す。該芳香族三
核ビスフエノール類成分単位として具体的には、
次の化合物を例示することができる。 1,3−ビス(4−ヒドロキシクミル)ベンゼ
ン、 1,4−ビス(4−ヒドロキシクミル)ベンゼ
ン、 1,3−(3,5−ジメチル−4−ヒドロキシ
クミル)ベンゼン、 1,4−ビス(3,5−ジメチル−4−ヒドロ
キシクミル)ベンゼン、 1,3−ビス(3,5−ジメチル−4−ヒドロ
キシクミル)ベンゼン、 1,4−ビス(3,5−ジメチル−4−ヒドロ
キシクミル)ベンゼン、 該芳香族三核ビスフエノール類成分単位ととも
に少量存在することができるその他の芳香族ジオ
ール成分単位としては、ヒドロキノン、レゾルシ
ンのような2価フエノール類、4,4′−ジヒドロ
キシジフエニル、ビス(4−ヒドロキシフエニ
ル)メタン、2,2−ビス(4−ヒドロキシフエ
ニル)プロパン、2,2−ビス(4−ヒドロキシ
フエニル)ブタン、4,4′−シクロヘキシリデン
ジフエノール、1−フエニル−1,1−ビス(4
−ヒドロキシフエニル)エタン、4,4′−ジヒド
ロキシベンゾフエノン、4,4′−ジヒドロキシジ
フエニルエーテル、4,4′−チオジフエノール、
ビス(4−ヒドロキシフエニル)スルホンなどの
ビスフエノール類などを例示することができる。 該芳香族三核ビスフエノール成分単位の該全芳
香族ジオール成分単位に対する組成は80ないし
100モル%の範囲にあることが好適である。 本発明の芳香族ポリエステルは前記芳香族ジカ
ルボン酸成分単位および前記芳香族三核ビスフエ
ノール類成分を主成分とする芳香族ジオール成分
が交互に配列した状態で縮合しエステル結合の形
成によつて実質上線状に高分子量化しており、そ
の分子末端はカルボキシル基である場合もある
し、水酸基である場合もあるし、さらに末端カル
ボキシル基が低級アルコールによつてエステル化
されている場合もあるし、あるいは末端ヒドロキ
シル基が低級カルボン酸によつてエステル化され
ている場合もある。 本発明の芳香族ポリエステルの極限粘度〔η〕
(ペンタフロロフエノール中で60℃で測定した値)
は0.4dl/g以上、好ましくは0.5dl/g以上の範
囲にある。また、該芳香族ポリエステルのガラス
転移温度は通常は130ないし300℃、好ましくは
150ないし280℃の範囲である。 本発明の芳香族ポリエステルは従来から知られ
ている芳香族ポリエステルと同様の方法によつて
製造することができる。たとえば、次の方法を例
示することができる。 溶融重合法 該芳香族ジカルボン酸またはそのエステル形成
性誘導体および該芳香族三核ビスフエノールを主
成分とする芳香族ジオールまたはそのエステル形
成性誘導体を高温で溶融下に反応せしめ、反応に
よつて生成する低沸点化合物を減圧下で操作する
ことなどの方法によつて反応系外へ留去せしめる
ことによつて芳香族ポリエステルを生成せしめる
方法。 溶液重合法 高沸点溶媒、たとえばジフエニルエーテル、ベ
ンゾフエノン、メタターフエニル、塩素化ビフエ
ニル、臭化ナフタリンなどの溶媒を用いて、該芳
香族ジカルボン酸またはそのエステル形成性誘導
体またはその酸ハロゲン化物および該芳香族三核
ビスフエノールを主成分とする芳香族ジオールま
たはそのエステル形成性誘導体を溶解せしめて溶
液となし、高温下に反応せしめて、あるいは必要
に応じて反応を促進せしめるために第三級アミ
ン、N−メチルピロリドンなどの塩基性化合物の
存在下に反応せしめて芳香族ポリエステルを生成
せしめる方法。 〔発明の効果〕 本発明の芳香族ポリエステルは、従来の芳香族
ポリエステルにくらべて耐熱性および耐加水分解
性に優れるので、溶融成形時および高温における
使用時の劣化が防止される。 〔実施例〕 次に、本発明の芳香族ポリエステルを実施例に
よつて具体的に説明する。 なお、実施例および比較例において原料および
溶媒、触媒などの使用量は重量部で示した。また
該芳香族ポリエステルのガラス転移温度は示差走
査型熱量計で測定することによつて求めた。さら
に該芳香族ポリエステルの耐加水分解性は成形品
を沸騰水中に10日間浸漬したのちの極限粘度
〔η〕の初期値に対する保持率(%)で示した。 実施例 1 テレフタル酸83部、イソフタル酸83部、1,3
−ビス(4−アセトキシクミル)ベンゼン430部、
トリフエニルホスフエート0.33部およびテトラブ
トキシチタネート0.1部を反応器に仕込み窒素雰
囲気下撹拌しながら250℃ないし270℃で生成する
酢酸を留去しながら常圧で約2時間反応を行つた
のち、さらに約2時間で反応系を徐々に減圧にす
るとともに昇温して、最終的に圧力を0.7mmHgに
するとともに、温度を350℃まで上昇させた。こ
のようにして得られた芳香族ポリエステルの極限
粘度〔η〕は0.74dl/gであり、またそのガラス
移転温度は225℃であつた。さらに、そのプレス
成形品を沸騰水中に10日間浸漬後の極限粘度
〔η〕の保持率は96%であり、耐加水分解性が優
れていた。 比較例 1 実施例1において、1,3−ビス(4−アセト
キシクミル)ベンゼンのかわりに、2,2−ビス
(4−アセトキシフエニル)プロパン312部を用い
る以外は実施例1と同様にして芳香族ポリエステ
ルを製造した。 得られた芳香族ポリエステルの極限粘度〔η〕
は0.68dl/g、またはそのガラス転移温度は186
℃であつた。さらに、この芳香族ポリエステルの
耐加水分解性は48%であつた。 実施例 2〜6 芳香族ジカルボン酸および芳香族三核ビスフエ
ノール類のジアセテートをそれぞれ表1記載のと
おり使用する以外は実施例1と同様にして芳香族
ポリエステルを製造した。 得られた芳香族ポリエステルの極限粘度〔η〕、
ガラス転移温度および耐加水分解性はそれぞれ第
1表記載のとおりであつた。 【表】
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel aromatic polyester having excellent heat resistance and hydrolysis resistance. [Prior Art] Conventionally, aromatic polyesters consisting of aromatic dicarboxylic acid component units, aromatic dicarboxylic acid component units such as isophthalic acid component units, and various bisphenol component units have been proposed as heat-resistant aromatic polyesters. [For example, J.
Polymer Science, 40 , 399 (1959), Visokomol.
Soyed, 1 , 834 (1959), Japanese Patent Publication No. 38-15247, British Patent Publication No. 897640, Japanese Patent Publication No. 37-5599, etc.). However, these aromatic polyesters have the disadvantage of poor hydrolysis resistance at high temperatures. For example, polyisopropylidene-4,4'-diphenylene isophthalate terephthalate, which is already commercially produced, easily undergoes hydrolysis in an atmosphere where water is present at high temperatures, such as in boiling water, and its performance deteriorates. It drops drastically. As described above, conventional aromatic polyesters have the disadvantage that they have poor hydrolysis resistance at high temperatures and are susceptible to hydrolysis during molding or use under high temperature conditions. [Problems to be Solved by the Invention] The present inventors have recognized that the conventionally known heat-resistant aromatic polyesters have the above-mentioned problems, and have developed a polyester that has excellent heat resistance and hydrolysis resistance. As a result of searching for aromatic polyesters with a specific structure, an aromatic polyester whose main components are an aromatic dicarboxylic acid component unit having 8 to 16 carbon atoms and an aromatic trinuclear bisphenol component unit having a specific structure has been found to meet the above objectives. The present invention was achieved based on the discovery of the following. [Summary of the Invention] To summarize the present invention, the present invention comprises [A] an aromatic dicarboxylic acid component unit having 8 to 16 carbon atoms, and [B] a general formula [] An aromatic trinuclear bisphenol component represented by [wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 all represent a hydrogen atom or a lower alkyl group] an aromatic diol component unit whose main component is a unit, and in pentafluorophenol.
The gist of the invention is an aromatic polyester characterized by an intrinsic viscosity [η] of 0.4 dl/g or more measured at 60°C. [Means and effects for solving the problems] The aromatic dicarboxylic acid component unit [A] constituting the aromatic polyester of the present invention is an aromatic dicarboxylic acid component unit having 8 to 16 carbon atoms, and more specifically Specifically, terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalene dicarboxylic acid, 4,
It is an aromatic dicarboxylic acid component unit consisting of 4-biphenyldicarboxylic acid or a mixed component of at least two or more of these. Among these aromatic dicarboxylic acid component units, terephthalic acid component units, isophthalic acid component units, and mixed components thereof are preferable, and in particular, a mixed component consisting of terephthalic acid component units and isophthalic acid component units is preferable. preferable. When the aromatic dicarboxylic acid component unit is the above-mentioned mixed component, its composition is usually 5 to 95 mol%, preferably 10 to 90 mol%, of terephthalic acid component units, and usually 5 to 95 mol% of isophthalic acid component units. mol %, preferably in the range 10 to 90 mol %. The aromatic trinuclear bisphenol component unit [B], which is the main component unit of the aromatic diol component unit constituting the aromatic polyester of the present invention, has the general formula [] It is a bisphenol component unit represented by
R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 all represent a hydrogen atom or a lower alkyl group such as a methyl group, an ethyl group, or an isopropyl group. Specifically, the aromatic trinuclear bisphenol component unit is:
The following compounds can be exemplified. 1,3-bis(4-hydroxycumyl)benzene, 1,4-bis(4-hydroxycumyl)benzene, 1,3-(3,5-dimethyl-4-hydroxycumyl)benzene, 1,4 -bis(3,5-dimethyl-4-hydroxycumyl)benzene, 1,3-bis(3,5-dimethyl-4-hydroxycumyl)benzene, 1,4-bis(3,5-dimethyl-4 Other aromatic diol component units that may be present in small amounts with the aromatic trinuclear bisphenol component units include hydroquinone, divalent phenols such as resorcinol, 4,4'- Dihydroxydiphenyl, bis(4-hydroxyphenyl)methane, 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis(4-hydroxyphenyl)butane, 4,4'-cyclohexylidene diphenyl Phenol, 1-phenyl-1,1-bis(4
-hydroxyphenyl)ethane, 4,4'-dihydroxybenzophenone, 4,4'-dihydroxydiphenyl ether, 4,4'-thiodiphenol,
Examples include bisphenols such as bis(4-hydroxyphenyl)sulfone. The composition of the aromatic trinuclear bisphenol component unit with respect to the wholly aromatic diol component unit is 80 to
The content is preferably in the range of 100 mol%. The aromatic polyester of the present invention is obtained by condensing the aromatic dicarboxylic acid component unit and the aromatic diol component whose main component is the aromatic trinuclear bisphenol component in an alternating arrangement, thereby forming an ester bond. The molecular weight increases in a linear manner, and the terminal end of the molecule is sometimes a carboxyl group, sometimes a hydroxyl group, and sometimes the terminal carboxyl group is esterified with a lower alcohol. Alternatively, the terminal hydroxyl group may be esterified with a lower carboxylic acid. Intrinsic viscosity [η] of the aromatic polyester of the present invention
(Value measured at 60℃ in pentafluorophenol)
is in the range of 0.4 dl/g or more, preferably 0.5 dl/g or more. Further, the glass transition temperature of the aromatic polyester is usually 130 to 300°C, preferably
The temperature ranges from 150 to 280°C. The aromatic polyester of the present invention can be produced by the same method as conventionally known aromatic polyesters. For example, the following method can be exemplified. Melt polymerization method The aromatic dicarboxylic acid or its ester-forming derivative and the aromatic diol whose main component is the aromatic trinuclear bisphenol or its ester-forming derivative are reacted at high temperature in the melt. A method of producing an aromatic polyester by distilling a low-boiling point compound out of the reaction system using a method such as operating under reduced pressure. Solution polymerization method Using a high-boiling point solvent such as diphenyl ether, benzophenone, metaterphenyl, chlorinated biphenyl, or naphthalene bromide, the aromatic dicarboxylic acid or its ester-forming derivative or its acid halide and the An aromatic diol containing aromatic trinuclear bisphenol as a main component or its ester-forming derivative is dissolved to form a solution and reacted at high temperature, or if necessary, a tertiary amine is used to accelerate the reaction. , a method of producing an aromatic polyester by reacting in the presence of a basic compound such as N-methylpyrrolidone. [Effects of the Invention] Since the aromatic polyester of the present invention has superior heat resistance and hydrolysis resistance compared to conventional aromatic polyesters, deterioration during melt molding and use at high temperatures is prevented. [Example] Next, the aromatic polyester of the present invention will be specifically explained with reference to Examples. In the Examples and Comparative Examples, the amounts of raw materials, solvents, catalysts, etc. used are expressed in parts by weight. Further, the glass transition temperature of the aromatic polyester was determined by measuring with a differential scanning calorimeter. Furthermore, the hydrolysis resistance of the aromatic polyester was expressed as the retention rate (%) of the initial value of the intrinsic viscosity [η] after the molded product was immersed in boiling water for 10 days. Example 1 83 parts of terephthalic acid, 83 parts of isophthalic acid, 1,3
-430 parts of bis(4-acetoxycumyl)benzene,
0.33 part of triphenyl phosphate and 0.1 part of tetrabutoxy titanate were charged into a reactor, and the reaction was carried out at normal pressure for about 2 hours while stirring under a nitrogen atmosphere and distilling off the acetic acid produced at 250°C to 270°C. Over about 2 hours, the pressure of the reaction system was gradually reduced and the temperature was increased, and finally the pressure was brought to 0.7 mmHg and the temperature was raised to 350°C. The aromatic polyester thus obtained had an intrinsic viscosity [η] of 0.74 dl/g and a glass transition temperature of 225°C. Furthermore, the retention rate of the intrinsic viscosity [η] after immersing the press-formed product in boiling water for 10 days was 96%, indicating excellent hydrolysis resistance. Comparative Example 1 Same as Example 1 except that 312 parts of 2,2-bis(4-acetoxyphenyl)propane was used instead of 1,3-bis(4-acetoxycumyl)benzene. An aromatic polyester was produced. Intrinsic viscosity of the obtained aromatic polyester [η]
is 0.68 dl/g, or its glass transition temperature is 186
It was warm at ℃. Furthermore, the hydrolysis resistance of this aromatic polyester was 48%. Examples 2 to 6 Aromatic polyesters were produced in the same manner as in Example 1, except that aromatic dicarboxylic acids and diacetates of aromatic trinuclear bisphenols were used as shown in Table 1, respectively. Intrinsic viscosity [η] of the obtained aromatic polyester,
The glass transition temperature and hydrolysis resistance were as shown in Table 1. 【table】

Claims (1)

【特許請求の範囲】 1 〔A〕 炭素原子数が8ないし16の芳香族ジカ
ルボン酸成分単位、および 〔B〕 一般式〔〕 〔式中、R1、R2、R3、R4、R5、R6、R7およ
びR8はいずれも水素原子または低級アルキル
基を示す〕で表わされる芳香族系三核ビスフエ
ノール類成分単位を主成分とする芳香族系ジオ
ール成分単位、 から構成され、かつペンタフロロフエノール中で
60℃で測定した極限粘度〔η〕が0.4dl/g以上
であることによつて特徴づけられる芳香族ポリエ
ステル。
[Scope of Claims] 1 [A] Aromatic dicarboxylic acid component unit having 8 to 16 carbon atoms, and [B] General formula [] Aromatic trinuclear bisphenols represented by [In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 all represent a hydrogen atom or a lower alkyl group] An aromatic diol component unit whose main component is an aromatic diol component unit, and in pentafluorophenol.
An aromatic polyester characterized by an intrinsic viscosity [η] of 0.4 dl/g or more measured at 60°C.
JP16279984A 1984-08-03 1984-08-03 Aromatic polyester Granted JPS6142532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16279984A JPS6142532A (en) 1984-08-03 1984-08-03 Aromatic polyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16279984A JPS6142532A (en) 1984-08-03 1984-08-03 Aromatic polyester

Publications (2)

Publication Number Publication Date
JPS6142532A JPS6142532A (en) 1986-03-01
JPH0377212B2 true JPH0377212B2 (en) 1991-12-09

Family

ID=15761430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16279984A Granted JPS6142532A (en) 1984-08-03 1984-08-03 Aromatic polyester

Country Status (1)

Country Link
JP (1) JPS6142532A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62214183A (en) * 1986-03-14 1987-09-19 Agency Of Ind Science & Technol Method for removing formic acid in electroless copper plating liquid by multi-stage potential method
JPH01221418A (en) * 1988-02-29 1989-09-04 Daicel Chem Ind Ltd Wholly aromatic copolyester
JPH01221419A (en) * 1988-02-29 1989-09-04 Daicel Chem Ind Ltd Wholly aromatic copolyester
JPH01229034A (en) * 1988-03-10 1989-09-12 Daicel Chem Ind Ltd Wholly aromatic copolyester

Also Published As

Publication number Publication date
JPS6142532A (en) 1986-03-01

Similar Documents

Publication Publication Date Title
Colomines et al. Study of the glycolysis of PET by oligoesters
JPS6345732B2 (en)
US4578453A (en) High molecular weight polyesters
US4731433A (en) Aromatic copolyester derived from aromatic dicarboxylic acid component and aromatic diol component
JPH0377212B2 (en)
JPS58164636A (en) Thermoplastic copolyester elastomer modified with phenol compound salts
US5618907A (en) Thallium catalyzed multidimensional ester oligomers
JPH0231733B2 (en)
JPH0542964B2 (en)
JPH0377213B2 (en)
JPH0377215B2 (en)
JPH038375B2 (en)
JPH07292084A (en) Lactone polymer produced by ring-opening polymerization and containing phenolic hydroxyl group and production thereof
JP2000212264A (en) Production of aromatic polyester
JPS6142539A (en) Aromatic polyester
JP3413978B2 (en) Method for producing aromatic polyester
JPH0377214B2 (en)
JPH01129015A (en) Polyester-imide resin for extruded wire
US4582925A (en) Tetramethylbiphenylcarboxylic acids and derivatives thereof
JPH1077336A (en) Production of copolyester
JPH02629A (en) Preparation of spirobiindan polyarylate and spirobiindan polyarylate polyethylene terephthalate copolymer by melt polymerization
JPS63264628A (en) Production of thermotropic liquid crystal copolyester
JPH0794539B2 (en) Method for producing wholly aromatic polyester
JP2023149984A (en) Polyalkylene glycol copolymerized polyester
JPH0713131B2 (en) Aromatic polyester