JPH0376285A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH0376285A
JPH0376285A JP21282089A JP21282089A JPH0376285A JP H0376285 A JPH0376285 A JP H0376285A JP 21282089 A JP21282089 A JP 21282089A JP 21282089 A JP21282089 A JP 21282089A JP H0376285 A JPH0376285 A JP H0376285A
Authority
JP
Japan
Prior art keywords
film
semiconductor laser
amorphous silicon
laser device
dielectric multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21282089A
Other languages
Japanese (ja)
Inventor
Takashi Noguchi
隆 野口
Kikuo Kaise
喜久夫 貝瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP21282089A priority Critical patent/JPH0376285A/en
Publication of JPH0376285A publication Critical patent/JPH0376285A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To prevent a reflective film from changing in optical property with time by a method wherein a silicon layer of a dielectric multilayered film is converted from an amorphous silicon layer to a polycrystal layer or a layer of thermally stable structure by irradiating it with pulse ultraviolet rays. CONSTITUTION:Films 4-7 are formed through an evaporation method, a CVD method, a sputtering method, or the like, the polysilicon films 5 and 7 were of amorphous silicon at first when they were formed and turned into polysilicon layers by irradiating them with excimer laser rays after a dielectric multilayered film 3 is formed. An amorphous silicon film is turned into a polysilicon film by the irradiation with laser rays of, for instance, an XeCl laser (wavelength: 348nm) at an energy density of 350mJ/cm<2>. Then, only amorphous silicon films 5a and 7a out of the dielectric multilayered film 3 are effectively heated to turn into the polysilicon film 5 and 7.

Description

【発明の詳細な説明】[Detailed description of the invention]

以下の順序に従って本発明を説明する。 A、産業上の利用分野 H0発明の概要 C0従来技術 り0発明が解決しようとする問題点 E0問題点を解決するための手段 11作用 G、実施例 The present invention will be described in the following order. A. Industrial application field Summary of H0 invention C0 conventional technology Problems that the invention attempts to solve Means to solve E0 problems 11 effects G. Example

【第1図、第2図】 H6発明の効果 (A、産業上の利用分野) 本発明は半導体レーザ装置、特に共振器端面に反射膜と
して少なくともシリコンを構成部材とする誘電体多層膜
が設けられた半導体レーザ装置に関する。 (B、発明の概要) 本発明は、上記の半導体レーザ装置において、反射膜の
光学的特性の経時変化を防止するため、 反射膜で・ある誘電体多層膜のシリコン層を、アモルフ
ァスシリコンの状態から誘電体多層膜に対するパルス紫
外光、例えばエキシマレーザ光の照射によりポリシリコ
ンに、あるいは熱的に安定な構造に変換してなるもので
ある。 (C,従来技術) 半導体レーザ装置においては、特開昭 63−40398号公報に記載されているように、モー
ドの安定化のため、あるいは高出力化、低Iop化、低
ノイズ化等のために、共振器端面のパシベーション膜の
他に反射率制御を行なう多層膜を形成することが通例に
なっている。そして、多くの場合、Si0g膜、5ii
N4膜あるいはA 1 x Os膜と、アモルファスシ
リコン膜とによって誘電体多層膜を構成している。この
誘電体多層膜の形成は普通、真空蒸着法、CVD法ある
いはスパッタリング法により行なわれる。 (D、発明が解決しようとする問題点)ところで、アモ
ルファスシリコン膜と、例えば5ins膜等とからなる
多層膜で共振器端面を保護した半導体レーザ装置には、
使用している間に、具体的には通電している間に反射率
が経時変化することが多いという問題があった。 そこで、その原因を追究したところ、半導体レーザ装置
の共振器端面に反射膜として形成された誘電体多層膜の
アモルファスシリコン膜に光学的特性(N=n+i k
)の変化(n、にの変化)が生じるために誘電体多層膜
の反射率が変化してしまうことが判明した。そして、ア
モルファスシリコン膜の光学的特性の変化は半導体レー
ザ装置の通電による共振器端面温度の上昇に起因してい
ることも明らかになった。 従って、そのアモルファスシリコン膜の熱的安定性を高
める必要性があるといえる。そして、アモルファスシリ
コン膜の安定化を図るために通常行なわれるのは数百℃
の温度で加熱することであるが、これは半導体レーザ装
置の多層膜の安定化には採用できない。というのは、半
導体レーザ装置本体を構成する化合物半導体であるGa
As中のAsが数百℃の温度で蒸発し、結晶中に欠陥が
生じるからである。シリコン膜をポリシリコン膜の状態
ではなくアモルファスシリコン膜の状態で成膜するのも
そのためである。即ち、膜質が安定な多結晶シリコン膜
は成膜温度の条件との関係で事実上形成できない。 また、半導体レーザ装置を電極形成後において数百℃の
温度で加熱すると、A u / G e等からなる電極
のアロイ化が進行し、半導体レーザ装置の特性が大きな
悪影響を受ける。従って、かかる加熱処理は電極形成前
に行なわなければならず製造方法が拘束されてしまう。 このこともアモルファスシリコン膜の熱的安定性を高め
るため加熱処理するという方法を採用できない理由とな
っていた。 本発明はこのような問題点を解決すべく為されたもので
あり、共振器端面に反射膜として少なくともシリコンを
構成部材とする誘電体多層膜が設けられた半導体レーザ
装置において、反射膜の光学的特性の経時変化を防止す
ることを目的とする。 (E、問題点を解決するための手段) 本発明半導体レーザ装置は上記問題点を解決するため、
反射膜である誘電体多層膜のシリコン層を、アモルファ
スシリコンの状態から誘電体多層膜に対するパルス紫外
光、例えばエキシマレーザ光の照射によりポリシリコン
に、あるいは熱的に安定な構造に変換してなることを特
徴とする。 (F、作用) 本発明半導体レーザ装置によれば、誘電体多層膜をパル
ス紫外光により照射することにより誘電体多層膜のアモ
ルファスシリコン膜がポリシリコンに、あるいは熱的に
安定な構造に変換されているので、誘電体多層膜を構成
するシリコン膜が安定しており半導体レーザ装置に通電
しても光学的特性が変化する虞れはない。 そして、アモルファスシリコン膜の膜質変換がパルス紫
外光の照射により行なわれているので半導体レーザ装置
本体、電極がそれによって悪影響を受ける虞れもない。 というのは、パルス紫外光は波長、パルス幅(照射時間
)さえ適宜であればシリコンのみに吸収され、下地、即
ち半導体レーザ装置本体、電極を温度上昇させないから
である。 しかして、半導体レーザ装置本体や電極に悪影響を及ぼ
すことなく反射膜の光学的特性の経時変化を防止するこ
とができる。 (G、実施例)[第1図、第2図] 以下、本発明半導体レーザ装置を図示実施例に従って詳
細に説明する。 第1図は本発明半導体レーザ装置の一つの実施例を示す
断面図で・ある。 1は半導体レーザ装置の本体で、GaAs等からなる。 2.2は電極で、A u / G e等の金属からなる
。3.3は半導体レーザ装置本体1の共振器端面に形成
された誘電体多層膜で、SiOオ膜4.6、ポリシリコ
ン膜5.7からなる。これ等の膜4〜7は真空蒸着法、
CVD、スパッタリング法等により形成されたものであ
り、ポリシリコン膜5及び7は当初、即ち成膜時はアモ
ルファスシリコンであったが、誘電体多層膜3形成後の
第2図に示すエキシマレーザ光照射によりポリシリコン
化されたものである。 エキシマレーザ光照射によるアモルファスシリコン膜の
ポリシリコン化は、例えばXeClレーザ(レーザ光の
波長348nm)を用いて例えば350mJ/am”の
エネルギー密度で行なう。 すると、第2図に示すところの誘電体多層膜3のアモル
ファスの状態にあるシリコン膜5a。 7aのみが有効に加熱されて第1図に示すようにポリシ
リコン膜5.7となる。それでいて半導体レーザ装置本
体1の化合物半導体の構成元素たるAsが蒸発したり、
電極2.2のアロイ化が進行する不都合は生じない。と
いうのは、エキシマレーザ光はパルス紫外光であり、シ
リコンによって有効に吸収されるが半導体レーザ装置本
体1には吸収されにくく、しかも照射時間がn5ecオ
ーダであり非常に短いので半導体レーザ装置本体1、電
極2.2の温度上昇を伴うことなくシリコン膜5a、7
aのみ加熱できるからである。 そして、エキシマレーザ光の照射によりアモルファスシ
リコン膜5a、7aがポリシリコン化されると熱的に安
定し、通電時における半導体レーザ装置の共振器端面の
温度範囲では膜質が全く変化せず誘電体多層膜の反射率
に経時変化が生じない状態になる。従って、通電により
共振器端面の反射率が経時変化して半導体レーザ装置の
特性が変動する虞れをなくすことができる。 そして、エキシマレーザ光の照射によれば、エネルギー
を共振器端面に対して均一にすることができ、膜質にバ
ラツキが生じない。 尚、アモルファスシリコン膜5a、7aを完全なポリシ
リコン膜5.7にすることは必要ではない。というのは
アモルファスシリコンの状態から完全なポリシリコンの
状態にいたる過程の途中の段階の状態であってもアモル
ファスシリコンの状態よりはシリコン膜5a、7aが熱
的に安定な構造になるので、完全なポリシリコンの状態
に至る前の状態(マイクロポリシリコンの状態)でエキ
シマレーザ光の照射を停止しても良いのである。 上記実施例においてはアモルファスシリコン膜5a、7
aをエキシマレーザ光により膜質変換させていたが、必
ずしもエキシマレーザ光を用いることは必要ではない。 シリコンにより有効に吸収される波長の紫外光を例えば
メカニカルシャッタにより例えばμsec程度の短時間
の照射をすることにより膜質変換するようにしても良い
。 尚、上記実施例においては電極2.2の形成後にエキシ
マレーザ光照射による誘電体多層膜3.3のアモルファ
スシリコン5a、7aの膜質変換をしていたが、電極2
.2を誘電体多層膜3.3の形成エキシマレーザ光照射
の後に形成するようにしても良い。即ち、エキシマレー
ザ光照射によるアモルファスシリコン5a、7aの膜質
変換は、下地の温度上昇を伴・うことなく行なうことが
できるので、電極2.2の形成後に行なうことができ、
これが一つの利点でもある。I2かし、電極2.2の形
成をパルス紫外光照射の管にする半導体レーザ装置の製
造方法もあり得るσ)である。 (H0発明の効果) 以上に述べたように、本発明半導体レーザ装置は、共振
器端面に反射膜として少なくともシリコンを構成部材と
する誘電体多層膜が設けられた半導体レーザ装置であっ
て、上記誘電体多層膜のシリコン層がアモルファスシリ
コンの状態から誘電体多層膜に対するパルス紫外光照射
によって多結晶または熱的に安定な構造に変換されてな
ることを特徴とするものである。 従って、本発明半導体レーザ装置によれば、誘電体多層
膜をパルス紫外光により照射することにより誘電体多層
膜のアモルファスシリコン膜がポリシリコンに、あるい
は熱的に安定な構造に変換されているので、誘電体多層
膜を構成するシリコン膜が安定しており半導体レーザ装
置に通電しても光学的特性が変化する虞れはない。 そして、アモルファスシリコン膜の膜質変換がパルス紫
外光の照射により行なわれているので半導体レーザ装置
本体、電極がそれによって悪影響を受ける虞れもない、
なぜならば、パルス紫外光は波長、パルス幅(照射時間
)さえ適宜であればシリコンのみに吸収され、下地、即
ち半導体レーザ装置本体、電極を温度上昇させないから
である。 しかして、半導体レーザ装置本体や電極に悪影響を及ぼ
すことなく反射膜の光学的特性の経時変化を防止するこ
とができる。
[Figures 1 and 2] Effects of the H6 invention (A, industrial application field) The present invention provides a semiconductor laser device, particularly a dielectric multilayer film having at least silicon as a constituent member, is provided as a reflective film on the end face of a resonator. The present invention relates to a semiconductor laser device. (B. Summary of the Invention) In the above-mentioned semiconductor laser device, the present invention converts the silicon layer of the dielectric multilayer film, which is the reflective film, into an amorphous silicon state in order to prevent the optical characteristics of the reflective film from changing over time. The dielectric multilayer film is converted into polysilicon or into a thermally stable structure by irradiating the dielectric multilayer film with pulsed ultraviolet light, for example, excimer laser light. (C, Prior Art) In semiconductor laser devices, as described in Japanese Unexamined Patent Publication No. 63-40398, in order to stabilize the mode, increase output, lower Iop, lower noise, etc. In addition to the passivation film on the resonator end face, it has become common practice to form a multilayer film for controlling reflectance. And in many cases, Si0g film, 5ii
A dielectric multilayer film is composed of an N4 film or an A 1 x Os film and an amorphous silicon film. This dielectric multilayer film is usually formed by vacuum evaporation, CVD, or sputtering. (D. Problems to be Solved by the Invention) By the way, in a semiconductor laser device in which the resonator end face is protected with a multilayer film consisting of an amorphous silicon film and, for example, a 5-ins film,
There has been a problem in that the reflectance often changes over time during use, specifically while being energized. When we investigated the cause of this problem, we found that the amorphous silicon film of the dielectric multilayer film formed as a reflective film on the cavity end face of the semiconductor laser device has optical characteristics (N=n+i k
) It has been found that the reflectance of the dielectric multilayer film changes due to a change in n (change in n). It has also been revealed that changes in the optical properties of the amorphous silicon film are caused by an increase in the resonator end face temperature due to energization of the semiconductor laser device. Therefore, it can be said that there is a need to improve the thermal stability of the amorphous silicon film. In order to stabilize the amorphous silicon film, the temperature is usually several hundred degrees Celsius.
However, this method cannot be used to stabilize the multilayer film of a semiconductor laser device. This is because Ga, which is a compound semiconductor that makes up the main body of the semiconductor laser device,
This is because As in As evaporates at a temperature of several hundred degrees Celsius, causing defects in the crystal. This is also why the silicon film is formed as an amorphous silicon film rather than a polysilicon film. That is, it is virtually impossible to form a polycrystalline silicon film with stable film quality due to the film forming temperature conditions. Furthermore, if a semiconductor laser device is heated to a temperature of several hundred degrees Celsius after electrode formation, alloying of the electrodes made of Au/Ge, etc. progresses, and the characteristics of the semiconductor laser device are greatly adversely affected. Therefore, such heat treatment must be performed before electrode formation, which restricts the manufacturing method. This was also a reason why it was not possible to adopt a method of heat treatment to increase the thermal stability of the amorphous silicon film. The present invention has been made to solve these problems, and is aimed at improving the optical performance of the reflective film in a semiconductor laser device in which a dielectric multilayer film made of at least silicon is provided as a reflective film on the end face of the resonator. The purpose is to prevent changes in physical characteristics over time. (E. Means for Solving the Problems) In order to solve the above problems, the semiconductor laser device of the present invention has the following steps:
The silicon layer of the dielectric multilayer film, which is a reflective film, is converted from an amorphous silicon state to polysilicon or to a thermally stable structure by irradiating the dielectric multilayer film with pulsed ultraviolet light, such as excimer laser light. It is characterized by (F. Effect) According to the semiconductor laser device of the present invention, the amorphous silicon film of the dielectric multilayer film is converted into polysilicon or into a thermally stable structure by irradiating the dielectric multilayer film with pulsed ultraviolet light. Therefore, the silicon film constituting the dielectric multilayer film is stable, and there is no possibility that the optical characteristics will change even if the semiconductor laser device is energized. Furthermore, since the film quality of the amorphous silicon film is changed by irradiation with pulsed ultraviolet light, there is no possibility that the main body of the semiconductor laser device and the electrodes will be adversely affected by it. This is because, if the wavelength and pulse width (irradiation time) are appropriate, the pulsed ultraviolet light is absorbed only by silicon, and does not raise the temperature of the base, that is, the semiconductor laser device body and the electrodes. Therefore, it is possible to prevent the optical characteristics of the reflective film from changing over time without adversely affecting the semiconductor laser device main body or the electrodes. (G. Embodiment) [FIGS. 1 and 2] Hereinafter, the semiconductor laser device of the present invention will be described in detail according to the illustrated embodiment. FIG. 1 is a sectional view showing one embodiment of the semiconductor laser device of the present invention. Reference numeral 1 denotes the main body of the semiconductor laser device, which is made of GaAs or the like. 2.2 is an electrode made of metal such as Au/Ge. 3.3 is a dielectric multilayer film formed on the resonator end face of the semiconductor laser device main body 1, and is composed of a SiO2 film 4.6 and a polysilicon film 5.7. These films 4 to 7 are formed by vacuum evaporation method.
They were formed by CVD, sputtering, etc., and the polysilicon films 5 and 7 were initially made of amorphous silicon, but after the dielectric multilayer film 3 was formed, the excimer laser beam shown in FIG. It is made into polysilicon by irradiation. Polysiliconization of the amorphous silicon film by excimer laser light irradiation is performed using, for example, a XeCl laser (laser light wavelength: 348 nm) at an energy density of, for example, 350 mJ/am. As a result, a dielectric multilayer as shown in FIG. 2 is formed. The silicon film 5a in the amorphous state of the film 3. Only the silicon film 7a is effectively heated and becomes a polysilicon film 5.7 as shown in FIG. evaporates or
There is no problem that alloying of the electrode 2.2 progresses. This is because excimer laser light is pulsed ultraviolet light, and although it is effectively absorbed by silicon, it is difficult to be absorbed by the semiconductor laser device body 1, and the irradiation time is on the order of n5ec, which is very short. , the silicon films 5a, 7 without increasing the temperature of the electrodes 2.2.
This is because only a can be heated. When the amorphous silicon films 5a and 7a are converted into polysilicon by irradiation with excimer laser light, they become thermally stable, and their film quality does not change at all within the temperature range of the resonator end face of the semiconductor laser device during energization, resulting in a dielectric multilayer structure. A state is reached in which the reflectance of the film does not change over time. Therefore, it is possible to eliminate the possibility that the reflectance of the resonator end face changes over time due to energization, thereby changing the characteristics of the semiconductor laser device. By irradiating with excimer laser light, the energy can be made uniform to the resonator end face, and there will be no variation in film quality. Note that it is not necessary to make the amorphous silicon films 5a and 7a completely polysilicon films 5.7. This is because the silicon films 5a and 7a have a more thermally stable structure than the amorphous silicon state even if they are in the middle of the process from the amorphous silicon state to the complete polysilicon state. Eximer laser light irradiation may be stopped before reaching the polysilicon state (micro polysilicon state). In the above embodiment, the amorphous silicon films 5a, 7
Although the film quality of a is changed using excimer laser light, it is not necessarily necessary to use excimer laser light. The film quality may be changed by irradiating the film with ultraviolet light having a wavelength that is effectively absorbed by silicon using, for example, a mechanical shutter for a short period of about μsec. In the above embodiment, after the formation of the electrode 2.2, the film quality of the amorphous silicon 5a, 7a of the dielectric multilayer film 3.3 was changed by irradiation with excimer laser light.
.. 2 may be formed after the formation of the dielectric multilayer film 3.3 and irradiation with excimer laser light. That is, the film quality conversion of the amorphous silicon 5a, 7a by excimer laser beam irradiation can be performed without raising the temperature of the underlying layer, so it can be performed after the formation of the electrode 2.2.
This is also one advantage. However, there is also a method of manufacturing a semiconductor laser device in which the electrode 2.2 is formed as a tube for irradiating pulsed ultraviolet light. (Effects of the H0 Invention) As described above, the semiconductor laser device of the present invention is a semiconductor laser device in which a dielectric multilayer film having at least silicon as a constituent member is provided on the cavity end face as a reflective film, and It is characterized in that the silicon layer of the dielectric multilayer film is converted from an amorphous silicon state into a polycrystalline or thermally stable structure by irradiating the dielectric multilayer film with pulsed ultraviolet light. Therefore, according to the semiconductor laser device of the present invention, the amorphous silicon film of the dielectric multilayer film is converted into polysilicon or into a thermally stable structure by irradiating the dielectric multilayer film with pulsed ultraviolet light. Since the silicon film constituting the dielectric multilayer film is stable, there is no possibility that the optical characteristics will change even if the semiconductor laser device is energized. Furthermore, since the film quality of the amorphous silicon film is changed by irradiation with pulsed ultraviolet light, there is no risk that the semiconductor laser device main body or electrodes will be adversely affected by it.
This is because, if the wavelength and pulse width (irradiation time) are appropriate, the pulsed ultraviolet light is absorbed only by silicon, and does not raise the temperature of the base, that is, the semiconductor laser device body and the electrodes. Therefore, it is possible to prevent the optical characteristics of the reflective film from changing over time without adversely affecting the semiconductor laser device main body or the electrodes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明半導体レーザ装置の一つの実施例を示す
断面図、第2図はパルス紫外光照射時の状態を示す断面
図である。 符号の説明 1・・・半導体レーザ装置本体、 3・・・誘電体多層膜、 5・・・シリコン膜、 5a・・・アモルファスシリコン膜、 7・・・シリコン膜、 7a・・・アモルファスシリコン膜。
FIG. 1 is a sectional view showing one embodiment of the semiconductor laser device of the present invention, and FIG. 2 is a sectional view showing the state during pulsed ultraviolet light irradiation. Explanation of symbols 1...Semiconductor laser device main body, 3...Dielectric multilayer film, 5...Silicon film, 5a...Amorphous silicon film, 7...Silicon film, 7a...Amorphous silicon film .

Claims (1)

【特許請求の範囲】[Claims] (1)共振器端面に反射膜として少なくともシリコンを
構成部材とする誘電体多層膜が設けられた半導体レーザ
装置であって、 上記誘電体多層膜のシリコン層がアモルファスシリコン
の状態から誘電体多層膜に対するパルス紫外光照射によ
って多結晶または熱的に安定な構造に変換されてなる ことを特徴とする半導体レーザ装置
(1) A semiconductor laser device in which a dielectric multilayer film having at least silicon as a constituent member is provided as a reflective film on a resonator end face, wherein the silicon layer of the dielectric multilayer film changes from an amorphous silicon state to a dielectric multilayer film. A semiconductor laser device characterized in that the laser is converted into a polycrystalline or thermally stable structure by irradiation with pulsed ultraviolet light.
JP21282089A 1989-08-18 1989-08-18 Semiconductor laser device Pending JPH0376285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21282089A JPH0376285A (en) 1989-08-18 1989-08-18 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21282089A JPH0376285A (en) 1989-08-18 1989-08-18 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPH0376285A true JPH0376285A (en) 1991-04-02

Family

ID=16628899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21282089A Pending JPH0376285A (en) 1989-08-18 1989-08-18 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH0376285A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190797A (en) * 2005-01-06 2006-07-20 Sony Corp Manufacturing method for semiconductor laser
US8932625B2 (en) 2003-12-26 2015-01-13 Hisamitsu Pharmaceutical Co., Inc. External patch preparation comprising ketoprofen and a specific UV screening agent
US9423961B2 (en) * 2014-09-08 2016-08-23 Apple Inc. Method to enhance programming performance in multilevel NVM devices

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8932625B2 (en) 2003-12-26 2015-01-13 Hisamitsu Pharmaceutical Co., Inc. External patch preparation comprising ketoprofen and a specific UV screening agent
JP2006190797A (en) * 2005-01-06 2006-07-20 Sony Corp Manufacturing method for semiconductor laser
US9423961B2 (en) * 2014-09-08 2016-08-23 Apple Inc. Method to enhance programming performance in multilevel NVM devices

Similar Documents

Publication Publication Date Title
KR0153823B1 (en) Method of manufacturing semiconductor device
JP3586558B2 (en) Method for reforming thin film and apparatus used for implementing the method
US5405804A (en) Method of manufacturing a semiconductor device by laser annealing a metal layer through an insulator
JPS62104117A (en) Manufacture of semiconductor thin film
US20050189340A1 (en) Silicon layer for uniformizing temperature during photo-annealing
US4549064A (en) Laser treatment of silicon nitride
JPH0883765A (en) Manufacture of polycrystalline semiconductor film
JP2001274088A (en) Crystallization treatment of semiconductor film region on substrate and device being manufactured thereby
TWI278007B (en) Thin film transistor and its manufacturing method
JPH0376285A (en) Semiconductor laser device
JP3289681B2 (en) Method for forming semiconductor thin film, pulsed laser irradiation device, and semiconductor device
TW569510B (en) High repetition rate UV excimer laser
JPH07120802B2 (en) Method for manufacturing semiconductor device
JP2003168646A (en) Method of manufacturing semiconductor device
JPH06140321A (en) Method of crystallizing of semiconductor film
JP4068813B2 (en) Method for manufacturing thin film semiconductor device
JP3779119B2 (en) High-intensity ultrashort pulse laser processing method
JPH10150202A (en) Thin film transistor and its manufacture
JP3210313B2 (en) Method for improving characteristics of polycrystalline silicon thin film
JPH0851078A (en) Optical processing device and method
JP2831006B2 (en) Method for manufacturing thin film transistor
JP5255739B2 (en) Method for manufacturing semiconductor device
JP2002305146A5 (en)
JP2004342954A (en) Laser annealing method and its apparatus
JP2005123475A (en) Semiconductor thin film, its manufacturing method, and thin film transistor using thin film