JPH0376227A - Heat treatment device - Google Patents

Heat treatment device

Info

Publication number
JPH0376227A
JPH0376227A JP21247589A JP21247589A JPH0376227A JP H0376227 A JPH0376227 A JP H0376227A JP 21247589 A JP21247589 A JP 21247589A JP 21247589 A JP21247589 A JP 21247589A JP H0376227 A JPH0376227 A JP H0376227A
Authority
JP
Japan
Prior art keywords
gas
heat
temperature
heating
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21247589A
Other languages
Japanese (ja)
Inventor
Yasuo Ono
泰夫 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP21247589A priority Critical patent/JPH0376227A/en
Publication of JPH0376227A publication Critical patent/JPH0376227A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable specimens to be heat-treated at even temperature by a method wherein a heating element generating heat by radiation heat and heating gas by the contact with the gas is arranged on the upstream side from the heat-treated specimens. CONSTITUTION:A heating element 8 generating heat by radiation heat from a heater 5 and heating gas by the contact with the gas is arranged in a gas inlet 4 side on the upstream side from a specimen wafer 2 in a furnace core tube 1. For example, multiple gas heated wafers 7 are juxtaposed on a quartz-made gas heating wafer base 8 as the heating element. A black body apt to absorb heat radiation is suitable for higher heat generating efficiency by the radiation heat while larger surface space is necessary for higher heating efficiency of gas by the contact therewith. Furthermore, the cleanliness is required for this heating element due to the direct contact with the heat-treated specimens while multiple semiconductor wafers such as silicon must be juxtaposed. When the heating element 8 is heated by radiation heat at the same temperature as that of the objective heat treatment, the gas temperature of cold air flow 6 can be heated at the same temperature as that of the heating element regardless of the gas flow rate so long as the sufficient length of heating region is assured thereby enabling the uneven temperature to be avoided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は熱処理装置、特に半導体ウェハを均一に加熱す
る熱処理装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat treatment apparatus, and particularly to a heat treatment apparatus that uniformly heats a semiconductor wafer.

〔従来の技術〕[Conventional technology]

半導体ウェハを熱処理する工程では、第2図に示すよう
に、通常石英からなる炉芯管lの周囲がらヒータ5を用
いて輻射光を炉芯管l内に置かれた半導体ウェハ(以下
ウェハと称する)2に照射し、この輻射光をウェハ2が
吸収して温度が上昇することによりウェハ2を高温に保
ち所望の熱処理を行う。3はウェハ台である。ウェハ2
の温度は、熱の出入りが輻射だけであれば、ウェハ2が
放射する輻射エネルギーと吸収する輻射のエネルギーが
釣り合う温度に保たれるはずである。この場合、ウェハ
の全周囲を一定の温度の輻射体っまりヒータ5で囲えば
、キルヒホフの法則により、ウェハの形状、表面状態に
よらずウェハ温度はヒータ5と同一の温度になる。故に
ヒータ5の温度を一定に保つことにより均一な加熱が行
われることが期待される。
In the process of heat-treating a semiconductor wafer, as shown in FIG. The wafer 2 absorbs this radiant light and its temperature rises, thereby keeping the wafer 2 at a high temperature and performing the desired heat treatment. 3 is a wafer stand. wafer 2
If the only heat input and output is radiation, the temperature should be maintained at a temperature at which the radiant energy emitted by the wafer 2 and the radiant energy absorbed by the wafer 2 are balanced. In this case, if the entire periphery of the wafer is surrounded by a radiator or heater 5 having a constant temperature, the wafer temperature will be the same as that of the heater 5, regardless of the shape and surface condition of the wafer, according to Kirchhoff's law. Therefore, it is expected that uniform heating will be achieved by keeping the temperature of the heater 5 constant.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、通常の熱処理は窒素、酸素、水素などの気体雰
囲気で行うことが多い。このような場合には、炉芯管1
の気体流入口4からの気体6との接触により気体との間
で熱の出入りがあり、輻射熱のみではウェハ温度は決ま
らない。通常、半導体デバイスの製造工程での熱処理に
おいては、雰囲気ガスは特に加熱されることなく炉芯管
1に導入されている。そのため、高温になったウェハに
低温の気体6が接触することになり、ウェハ2における
気体6と接触する部分のウェハ温度が低下する。高温の
物体の輻射エネルギーの強さはウィーンの法則から、該
物体の絶対温度の4乗に比例するため、熱処理温度が高
い場合には、ウェハが気体で冷却されても強い輻射エネ
ルギーで温度の低下は防ぐことができ影響は比較的少な
い。しかし、熱処理温度を低くすると、ウェハ温度は気
体との接触により大きく影響を受け、さらに対流などの
気体の複雑な流れのため、ウェハ内での温度の不均一を
生じ、ひいてはデバイス特性の不均一をもたらすという
不都合を生じる。そこで、気体の温度をウェハに当たる
前に予め熱処理温度と同じにしておけば、気体との接触
による温度の不均一の発生を防ぐことができることは明
白であるが、現状の半導体熱処理装置において簡単、確
実、かつ清浄度を落さないで気体を加熱する方法は存在
していない。
However, normal heat treatment is often performed in a gas atmosphere such as nitrogen, oxygen, or hydrogen. In such a case, the furnace core tube 1
Due to the contact with the gas 6 from the gas inlet 4, heat is transferred into and out of the gas, and the wafer temperature cannot be determined only by radiant heat. Normally, in heat treatment in the manufacturing process of semiconductor devices, atmospheric gas is introduced into the furnace core tube 1 without being particularly heated. Therefore, the low-temperature gas 6 comes into contact with the high-temperature wafer, and the wafer temperature of the portion of the wafer 2 that comes into contact with the gas 6 decreases. According to Wien's law, the strength of the radiant energy of a high-temperature object is proportional to the fourth power of the absolute temperature of the object, so if the heat treatment temperature is high, even if the wafer is cooled with gas, the strong radiant energy will reduce the temperature. The decline can be prevented and the impact is relatively small. However, when the heat treatment temperature is lowered, the wafer temperature is greatly affected by contact with gas, and complex gas flows such as convection cause temperature non-uniformity within the wafer, resulting in non-uniform device characteristics. This causes the inconvenience of causing Therefore, it is obvious that if the temperature of the gas is made the same as the heat treatment temperature before it hits the wafer, it is possible to prevent the occurrence of temperature non-uniformity due to contact with the gas. There is no way to reliably heat gas without sacrificing cleanliness.

本発明の目的は管内を流れる気体流中にて輻射熱により
加熱する熱処理装置において、簡単、確実に清浄度を落
さないで、被熱処理試料より該気体流の上流側に気体を
予め一定温度にまで高め、加熱された気体を確実に被熱
処理試料に吹き付ける装置を提供することにある。。
The object of the present invention is to provide a heat treatment apparatus that uses radiant heat to heat a gas flow flowing inside a pipe, by simply and reliably bringing the gas upstream of the gas flow to a constant temperature from the sample to be heat treated without compromising the cleanliness. It is an object of the present invention to provide an apparatus for surely spraying heated gas onto a sample to be heat-treated. .

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達成するため、本発明に係る熱処理装置は、
管内を流れる気体流中にて輻射熱により被熱処理試料を
加熱する熱処理装置において、被熱処理試料より該気体
流の上流側に、輻射熱を受けて発熱し、かつ気体との接
触により該気体を加熱する発熱体を有するものである。
In order to achieve the above object, the heat treatment apparatus according to the present invention includes:
In a heat treatment device that heats a sample to be heat-treated using radiant heat in a gas flow flowing in a pipe, a region upstream of the gas flow from the sample to be heat-treated receives radiant heat to generate heat, and also heats the gas by contact with the gas. It has a heating element.

また、本発明に係る熱処理装置は、管内を流れる気体流
中にて輻射熱により被熱処理試料を加熱する熱処理装置
において、被熱処理試料より該気体流の上流側に、管の
上部内壁との間に高温気体のみを流通させる流路を形成
する低温気体流入阻止用障壁を有するものである。また
、本発明に係る熱処理装置は、管内を流れる気体流中に
て輻射熱により被熱処理試料を加熱する熱処理装置にお
いて、被熱処理試料より該気体流の上流側に、管の下部
内壁との間に高温気流を低温気流に向けて吹き出す吹出
口を形成する気体混合用障壁を有するものである。
Further, in the heat treatment apparatus according to the present invention, in a heat treatment apparatus that heats a sample to be heat treated using radiant heat in a gas flow flowing inside a tube, there is provided a heat treatment apparatus that has a space between the sample to be heat treated and the upper inner wall of the tube on the upstream side of the gas flow from the sample to be heat treated. It has a barrier for preventing inflow of low-temperature gas, which forms a flow path through which only high-temperature gas flows. Further, in the heat treatment apparatus according to the present invention, in a heat treatment apparatus that heats a sample to be heat treated by radiant heat in a gas flow flowing inside a tube, there is provided a space between the sample to be heat treated and the lower inner wall of the tube on the upstream side of the gas flow. It has a gas mixing barrier that forms a blow-off port that blows out high-temperature airflow toward low-temperature airflow.

〔実施例〕〔Example〕

以下、本発明について詳細に説明する。 The present invention will be explained in detail below.

第1図は本発明による熱処理炉の模式図である。FIG. 1 is a schematic diagram of a heat treatment furnace according to the present invention.

第1図において、1は試料ウェハ台3上にセットされた
試料ウェハ2を収納する炉芯管である。5は炉芯管1内
を外部から加熱するヒータ、4は炉芯管lに開口した気
体流入口である。
In FIG. 1, reference numeral 1 denotes a furnace core tube that houses a sample wafer 2 set on a sample wafer table 3. 5 is a heater that heats the inside of the furnace core tube 1 from the outside, and 4 is a gas inflow port opened into the furnace core tube l.

本発明の第1の発明は炉芯管l内の試料ウェハ2より上
流側の気体流入口4側に、ヒータ5による輻射熱を受け
て発熱し、かつ気体との接触により該気体を加熱する発
熱体を設置したものである。
The first aspect of the present invention is to generate heat on the gas inlet 4 side upstream of the sample wafer 2 in the furnace core tube l by receiving radiant heat from the heater 5, and to heat the gas by contact with the gas. The body was installed.

実施例では該発熱体として石英製気体加熱用ウェハ台8
にならべた多数の気体加熱用ウェハ7を例として示しで
ある。輻射熱を受けて効率良く発熱するためには輻射光
を吸収し易い黒い物体がよく、気体との接触により効率
良く気体を加熱するためには表面積の大きいことが必要
である。さらに、この発熱体は被熱処理試料に直接接触
する気体に接触するため清浄度も必要であり、シリコン
などの半導体ウェハを多数置くことがこの目的にかなっ
ている。該発熱体を目的とする熱処理と同温度の輻射熱
で暖めると、十分な加熱領域長さえあれば、冷たい気流
6の気体温度は気体の流量に影響されずに該発熱体の温
度と全く同一になり、温度の不均一を防ぐのに都合がよ
い。短い距離で加熱するには、該発熱体付近のヒータ温
度を高めに設定すれば良い。但し、この場合には、気体
流量に応じてヒータ温度を制御して所望の気体温度に制
御する必要がある。
In the embodiment, a quartz gas heating wafer stand 8 is used as the heating element.
A large number of gas heating wafers 7 are shown as an example. In order to efficiently generate heat by receiving radiant heat, a black object that easily absorbs radiant light is preferable, and in order to efficiently heat gas through contact with gas, it is necessary to have a large surface area. Furthermore, since this heating element comes into contact with a gas that directly contacts the sample to be heat-treated, cleanliness is also required, and placing a large number of semiconductor wafers such as silicon serves this purpose. If the heating element is heated with radiant heat at the same temperature as the intended heat treatment, the gas temperature of the cold air stream 6 will be exactly the same as the temperature of the heating element, unaffected by the gas flow rate, as long as there is a sufficient heating area length. This is convenient for preventing temperature unevenness. To heat over a short distance, the heater temperature near the heating element may be set high. However, in this case, it is necessary to control the heater temperature according to the gas flow rate to maintain the desired gas temperature.

このような加熱を行うと、炉芯管l中で高温の気流11
が試料ウェハ2に接触して試料ウェハ2の温度が均一に
なる。
When such heating is performed, a high temperature air flow 11 is generated in the furnace core tube l.
contacts the sample wafer 2, and the temperature of the sample wafer 2 becomes uniform.

ところで、気体の比重が温度に逆比例することから、炉
芯管1中で高温気流11が炉芯管1の上部内壁に沿って
流れ、低温気体が炉芯管lの下部内壁に滞留する。この
状態で被熱処理試料ウェハ2に気体流が当たると、試料
ウェハ2の下方では低温のままの気体が流れ、温度の不
均一が発生する。
By the way, since the specific gravity of the gas is inversely proportional to the temperature, the high-temperature air current 11 flows along the upper inner wall of the furnace core tube 1, and the low-temperature gas stays on the lower inner wall of the furnace core tube 1. When the gas flow hits the sample wafer 2 to be heat-treated in this state, the gas remains at a low temperature flowing below the sample wafer 2, causing temperature non-uniformity.

そこで、本発明の第2の発明では炉芯管l内の試料ウェ
ハ2より上流側に、低温気体流入阻止用障壁9を設置し
、該障壁9の上縁と炉芯管1の上部内壁との間に高温気
流11の流路13を形成したものである。このようにす
れば、加熱され高温気流11のみが流路13を通して被
熱処理試料ウェハ2の方に流れ、試料ウェハ2に当たる
気体温度の均一性が達成される。ここでは、低温気体流
入阻止用障壁9を炉芯管1と一体に成形した例を示した
が、障壁9を炉芯管1と別体とし、炉芯管1の下部内壁
との間を封止し、上部内壁との間に流路13を形成する
ように自立構造としてもよい。この方法は特に第1図の
気体加熱用ウェハ7のような積極的な発熱体を持たない
場合でも炉芯管1の内壁での加熱などのため気体が暖め
られるので有効である。
Therefore, in the second aspect of the present invention, a barrier 9 for preventing the inflow of low temperature gas is installed upstream of the sample wafer 2 in the furnace core tube l, and the upper edge of the barrier 9 and the upper inner wall of the furnace core tube 1 are connected to each other. A flow path 13 for high-temperature airflow 11 is formed between the two. In this way, only the heated and high-temperature airflow 11 flows toward the sample wafer 2 to be heat-treated through the flow path 13, and uniformity of the gas temperature hitting the sample wafer 2 is achieved. Here, an example was shown in which the barrier 9 for preventing inflow of low-temperature gas was molded integrally with the furnace core tube 1, but the barrier 9 is formed separately from the furnace core tube 1, and the space between it and the lower inner wall of the furnace core tube 1 is sealed. It may be a self-supporting structure in which the flow path 13 is formed between the upper inner wall and the upper inner wall. This method is particularly effective even when no active heating element is provided, such as the gas heating wafer 7 shown in FIG. 1, because the gas can be warmed by heating on the inner wall of the furnace core tube 1.

ところが、均一に加熱された気体を被熱処理試料ウェハ
2に吹き付けるようにしても、被熱処理試料ウェハ2付
近に低温の気体が存在すると、高温の気体は低温の気体
の上方を流れ、炉芯管の下部には流れない可能性がある
。このような低温の気体は、炉芯管の出口から逆流して
くる空気などがある。そこで、本発明の第3の発明では
炉芯管1内の試料ウェハ2より上流側に気体混合用障壁
10を設置し、該障壁lOの上縁で炉芯管l内の上部空
間を封止し、障壁IOの下縁と炉芯管lの下部内壁との
間に高温気流11の吹出口14を形成したものである。
However, even if a uniformly heated gas is blown onto the heat-treated sample wafer 2, if low-temperature gas exists near the heat-treated sample wafer 2, the high-temperature gas will flow above the low-temperature gas, causing the furnace core tube to There is a possibility that it will not flow to the bottom. Such low-temperature gas includes air flowing back from the outlet of the furnace core tube. Therefore, in the third aspect of the present invention, a gas mixing barrier 10 is installed in the furnace core tube 1 upstream of the sample wafer 2, and the upper edge of the barrier 10 seals the upper space in the furnace core tube 1. However, an outlet 14 for the high-temperature airflow 11 is formed between the lower edge of the barrier IO and the lower inner wall of the furnace core tube 1.

したがって、高温気流11は障壁10により炉芯管1の
下部側に向けられて吹出口14から吹き出されることに
より低温の気体と効率よく混合し、ウェハ2に接触する
混合気流12の気体全体の温度を均一に高めることがで
きる。なお、実施例では障壁lOを炉芯管lと一体に成
形したが、別体としてもよい。
Therefore, the high-temperature airflow 11 is directed toward the lower side of the furnace core tube 1 by the barrier 10 and blown out from the blow-off port 14, thereby efficiently mixing with the low-temperature gas, and reducing the total amount of gas in the mixed airflow 12 that contacts the wafer 2. Temperature can be raised uniformly. In addition, although the barrier lO was molded integrally with the furnace core tube l in the embodiment, it may be formed separately.

以上、説明した3つの装置は、各々独立に存在しても炉
芯管に流れる気体が被熱処理試料ウェハに到達する前に
管壁などで加熱されるならば、有効に機能する。最も効
果を上げるのは第1図のように上記の3つの発明を組合
せて使うことが望ましい。
Even if the three devices described above exist independently, they function effectively if the gas flowing through the furnace core tube is heated by the tube wall or the like before reaching the sample wafer to be heat-treated. For the most effect, it is desirable to use the above three inventions in combination as shown in FIG.

〔発明の効果〕〔Effect of the invention〕

熱処理用の気体を一定の温度に加熱するにはいろいろな
方法があり得るが、本発明によれば、半導体用の熱処理
工程において通常使われる、シリコンウェハ、石英部品
などを用いることで簡単に、かつ、安全、清浄、正確に
気体温度を上げ、均一な温度での熱処理を実現できる。
There are various ways to heat the gas for heat treatment to a certain temperature, but according to the present invention, it is possible to easily heat the gas for heat treatment by using silicon wafers, quartz parts, etc. that are normally used in the heat treatment process for semiconductors. In addition, it is possible to raise the gas temperature safely, cleanly, and accurately, and to achieve heat treatment at a uniform temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す構成図、第2図は従来例
を示す構成図である。 1・・・炉芯管      2・・・試料ウェハ3・・
・試料ウェハ台   4・・・気体流入口5・・・ヒー
タ      6・・・冷たい気流7・・・気体加熱用
ウェハ 8・・・気体加熱用ウェハ台9・・・低温気体
流入阻止用障壁 10・・・気体混合用障壁
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a block diagram showing a conventional example. 1...Furnace core tube 2...Sample wafer 3...
-Sample wafer stand 4...Gas inlet 5...Heater 6...Cold air flow 7...Wafer for gas heating 8...Wafer stand for gas heating 9...Barrier 10 for preventing inflow of low temperature gas ...Gas mixing barrier

Claims (3)

【特許請求の範囲】[Claims] (1)管内を流れる気体流中にて輻射熱により被熱処理
試料を加熱する熱処理装置において、被熱処理試料より
該気体流の上流側に、輻射熱を受けて発熱し、かつ気体
との接触により該気体を加熱する発熱体を有することを
特徴とする熱処理装置。
(1) In a heat treatment apparatus that heats a sample to be heat-treated using radiant heat in a gas flow flowing in a pipe, a portion upstream of the gas flow from the sample to be heat-treated receives radiant heat and generates heat, and upon contact with the gas, the gas A heat treatment apparatus characterized by having a heating element that heats.
(2)管内を流れる気体流中にて輻射熱により被熱処理
試料を加熱する熱処理装置において、被熱処理試料より
該気体流の上流側に、管の上部内壁との間に高温気体の
みを流通させる流路を形成する低温気体流入阻止用障壁
を有することを特徴とする熱処理装置。
(2) In a heat treatment device that heats a sample to be heat-treated using radiant heat in a gas flow flowing inside a tube, a system in which only high-temperature gas is passed between the upper inner wall of the tube and the upstream side of the gas flow from the sample to be heat-treated. A heat treatment apparatus characterized by having a barrier for preventing inflow of low-temperature gas forming a path.
(3)管内を流れる気体流中にて輻射熱により被熱処理
試料を加熱する熱処理装置において、被熱処理試料より
該気体流の上流側に、管の下部内壁との間に高温気流を
低温気流に向けて吹き出す吹出口を形成する気体混合用
障壁を有することを特徴とする熱処理装置。
(3) In a heat treatment device that heats a sample to be heat-treated using radiant heat in a gas flow flowing inside a tube, a high-temperature airflow is directed toward a low-temperature airflow between the sample to be heat-treated and the lower inner wall of the tube on the upstream side of the gas flow. 1. A heat treatment apparatus comprising a gas mixing barrier forming a gas outlet.
JP21247589A 1989-08-18 1989-08-18 Heat treatment device Pending JPH0376227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21247589A JPH0376227A (en) 1989-08-18 1989-08-18 Heat treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21247589A JPH0376227A (en) 1989-08-18 1989-08-18 Heat treatment device

Publications (1)

Publication Number Publication Date
JPH0376227A true JPH0376227A (en) 1991-04-02

Family

ID=16623261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21247589A Pending JPH0376227A (en) 1989-08-18 1989-08-18 Heat treatment device

Country Status (1)

Country Link
JP (1) JPH0376227A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051505A (en) * 2001-06-01 2003-02-21 Semiconductor Energy Lab Co Ltd Apparatus and method for heat treatment
US7879693B2 (en) 2001-06-01 2011-02-01 Semiconductor Energy Laboratory Co., Ltd. Thermal treatment equipment and method for heat-treating
US7974524B2 (en) 2001-03-16 2011-07-05 Semiconductor Energy Laboratory Co., Ltd. Heat treatment apparatus and heat treatment method
TWI581335B (en) * 2015-07-24 2017-05-01 茂迪股份有限公司 Heating treatment apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7974524B2 (en) 2001-03-16 2011-07-05 Semiconductor Energy Laboratory Co., Ltd. Heat treatment apparatus and heat treatment method
US9666458B2 (en) 2001-03-16 2017-05-30 Semiconductor Energy Laboratory Co., Ltd. Heat treatment apparatus and heat treatment method
JP2003051505A (en) * 2001-06-01 2003-02-21 Semiconductor Energy Lab Co Ltd Apparatus and method for heat treatment
US7879693B2 (en) 2001-06-01 2011-02-01 Semiconductor Energy Laboratory Co., Ltd. Thermal treatment equipment and method for heat-treating
US7923352B2 (en) 2001-06-01 2011-04-12 Semiconductor Energy Laboratory Co., Ltd. Thermal treatment equipment and method for heat-treating
US8318567B2 (en) 2001-06-01 2012-11-27 Semiconductor Energy Laboratory Co., Ltd. Thermal treatment equipment and method for heat-treating
TWI581335B (en) * 2015-07-24 2017-05-01 茂迪股份有限公司 Heating treatment apparatus

Similar Documents

Publication Publication Date Title
US8987123B2 (en) Heat treatment apparatus and heat treatment method for heating substrate by irradiating substrate with flash of light
US4550245A (en) Light-radiant furnace for heating semiconductor wafers
US9330949B2 (en) Heat treatment apparatus for heating substrate by irradiating substrate with flash of light
JPS59928A (en) Photo heating device
US20070117362A1 (en) Heat treatment apparatus and method of manufacturing a semiconductor device
JPH11145148A (en) Apparatus and method for heat plasma annealing
US20130206747A1 (en) Heat treatment apparatus for heating substrate by irradiating substrate with flash of light
JP3718688B2 (en) Heating device
JP2004503074A (en) Process chamber cooling
JPH0917742A (en) Heat-treating apparatus
JPH0376227A (en) Heat treatment device
JPH045822A (en) Apparatus and method for lamp annealing
JP3111395B2 (en) Heat treatment equipment
CN102002758A (en) Novel rapid wafer annealing device
JPS61129834A (en) Heat treatment apparatus
JP2000100683A (en) Method and device for heat treatment
JP2001257253A (en) Wafer processing device and method of manufacturing wafer
JPH10163122A (en) Semiconductor wafer heat treating apparatus and furnace core tube
US20060174981A1 (en) Heat treatment apparatus
Cho et al. Development of a hexagonal-shaped rapid thermal processor using a vertical tube
CN1216408C (en) Method for increasing thermal oxidation uniformity and oxidation oven system
CN214747206U (en) Infrared annealing furnace capable of quickly heating and cooling
JP2001196321A (en) Gas-cooled vertical wafer processing device
JPH10172977A (en) Heat treatment method and its device for compound semiconductor substrate
JP2004079794A (en) Device for manufacturing semiconductor