JPH0375319A - Method for vaporizing active metal - Google Patents

Method for vaporizing active metal

Info

Publication number
JPH0375319A
JPH0375319A JP21060189A JP21060189A JPH0375319A JP H0375319 A JPH0375319 A JP H0375319A JP 21060189 A JP21060189 A JP 21060189A JP 21060189 A JP21060189 A JP 21060189A JP H0375319 A JPH0375319 A JP H0375319A
Authority
JP
Japan
Prior art keywords
metal
vaporizing
porous body
copper
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21060189A
Other languages
Japanese (ja)
Inventor
Yutaka Ishiwatari
裕 石渡
Yoshiyasu Ito
義康 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21060189A priority Critical patent/JPH0375319A/en
Publication of JPH0375319A publication Critical patent/JPH0375319A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable stable supply of metallic vapor for long time by arranging a porous body on molten metal surface in heating and vaporizing parts and a device, in which the metal for vaporizing is supplied from outer part, in molten metal part to execute heating to me porous body and melting and vaporizing the metal. CONSTITUTION:A tungsten-made crucible liner 4 is arranged at inside of a water cooling copper crucible 5 arranged in a vacuum chamber, and in this, the vaporizing metal 1 of copper powder, etc., is charged. The tungsten porous body set on the molten copper surface is heated with an electron beam 6, and by vaporizing the copper, temp. drop in the vaporizing part caused by heat loss with convection of the copper at the vaporizing part and vaporized latent heat can be prevented and vaporizing ratio of the copper can be drastically improved. Further, as volume of the porous body 2 possessed in capacity in the liner 4 is smaller than that of the conventional method, a large quantity of the vaporizing metal can be charged in the liner 4. Further, as the vaporizing metal can be charged through a pipe 7 from between the porous body 2 and be liner 4, the vaporizing operation for long time can be executed.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は金属の蒸発方法に係り、特に化学的に活性な金
属蒸気を長時間、安定供給するための活性金属の蒸発方
法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a metal evaporation method, and in particular to an active metal evaporation method for stably supplying chemically active metal vapor for a long period of time. Regarding the method.

(従来の技術) イオンブレーティング等の表面改質や同位体分離におい
ては、生産効率を上げるために単位時間当たりの蒸気発
生量を増加させる工夫が種々なされている。例えば、電
子銃を用いたタイプのものにおいては、電子ビーム径を
絞り入力密度を向上させる方法、または、るつぼ内で溶
融した金属の対流による熱損失を低減するため、溶融金
属中に高融点材料(例えばタングステン)の粒を混入す
る方法などである。しかし、これらの方法はいずれも、
るつぼが化学的に非常に活性な溶融状態の蒸発金属(例
えばTi、 Cr、 U)と接しているため、るつぼが
溶融金属により浸食されるという問題が有する。このる
つぼの浸食は、蒸発効率を上げるため、溶融金属の加熱
温度を高くするほど顕著になる傾向があり、従来の方法
では蒸発効率を上げることができず、金属蒸気を長時間
、安定に供給することは不可能であった。
(Prior Art) In surface modification such as ion brating and isotope separation, various efforts have been made to increase the amount of steam generated per unit time in order to increase production efficiency. For example, in the case of a type that uses an electron gun, it is necessary to narrow down the electron beam diameter to improve the input density, or to reduce heat loss due to convection of the molten metal in the crucible. (for example, tungsten). However, all of these methods
Since the crucible is in contact with vaporized metals in a chemically very active molten state (eg Ti, Cr, U), there is a problem that the crucible is eroded by the molten metal. This erosion of the crucible tends to become more pronounced as the molten metal is heated to a higher temperature in order to increase evaporation efficiency. Conventional methods cannot increase evaporation efficiency and provide a stable supply of metal vapor for a long time. It was impossible to do so.

第5図は既に発表されている金属の蒸発方法を示すもの
であり、これは多孔質タングステンに銅を含浸させたも
のをターゲットとして電子銃で加熱することにより蒸気
量の増加を図ったものである。すなわち、水冷の銅るつ
ぼを設け、このるつぼ内にるつぼ内面の形状に機械加工
した蒸発金属1を含浸させた多孔質体(タングステンブ
ロック)2を置き、電子ビーム6で加熱したものである
Figure 5 shows a method of vaporizing metals that has already been announced.This method aims to increase the amount of vapor by heating porous tungsten with copper as a target and heating it with an electron gun. be. That is, a water-cooled copper crucible was provided, and a porous body (tungsten block) 2 impregnated with evaporated metal 1 machined into the shape of the inner surface of the crucible was placed inside the crucible and heated with an electron beam 6.

この方法によれば、るつぼ内に銅のみをおいて電子銃で
加熱した場合よりも銅蒸気の蒸着速度が工桁以上向上す
ることが現象的に確認されている。
According to this method, it has been experimentally confirmed that the deposition rate of copper vapor is increased by more than an order of magnitude compared to when only copper is placed in a crucible and heated with an electron gun.

(発明が解決しようとする課題) 上記方法を用いることにより、確かに蒸発速度は向上す
るが、蒸発させる金属の量が多孔質タングステンに含浸
された金属の量で決められるため、るつぼ容積の10〜
50%ぐらいしか蒸発金属を入れることしかできなかっ
た。したがって、長時間の蒸発を得るためにはるつぼの
容量を従来よりも数倍大きくする必要が有る。さらに、
上記方法では運転中の蒸発金属の供給要不可能なため、
いくらるつぼ容量を大きくしても蒸発金属量が有限のた
め、連続運転は出来ない等の問題があった。
(Problem to be Solved by the Invention) Using the above method certainly improves the evaporation rate, but since the amount of metal to be evaporated is determined by the amount of metal impregnated into porous tungsten, ~
I was only able to put in about 50% of the vaporized metal. Therefore, in order to obtain long-term evaporation, it is necessary to increase the capacity of the crucible several times as compared to conventional crucibles. moreover,
Since the above method does not require supply of evaporated metal during operation,
No matter how large the capacity of the crucible is, the amount of evaporated metal is limited, so continuous operation is not possible.

さらに、安定した蒸発速度を得るためるつぼと多孔質体
間のギャップは無くし、系の熱伝導率を)し 一定にする必要があるが、極めて脆い勢声体をるつぼ形
状に正確に加工することは不可能であった。
Furthermore, in order to obtain a stable evaporation rate, it is necessary to eliminate the gap between the crucible and the porous body and to maintain a constant thermal conductivity of the system. was impossible.

本発明の目的は上記問題点を解決するためになされたも
ので、化学的に活性な金属蒸気を長時間、安定に供給す
るための活性金属蒸発方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention was made to solve the above-mentioned problems, and it is an object of the present invention to provide an active metal evaporation method for stably supplying chemically active metal vapor for a long period of time.

〔発明の構成〕[Structure of the invention]

(11題を解決するための手段) 本発明は金属表面を加熱し溶融、蒸発させる方法におい
て、加熱、蒸発部となる溶融金属表面に多孔質体を設け
、この多孔質体を加熱することにより金属を溶融、蒸発
させる。
(Means for Solving Problem 11) The present invention provides a method for heating, melting, and evaporating a metal surface, by providing a porous body on the molten metal surface that serves as a heating and evaporating part, and heating this porous body. Melt and evaporate metal.

また、多孔質体周囲の溶融金属部に固体状または液体状
の蒸発用金属を供給する装置を設けて外部から蒸発用金
属を供給しながら多孔質体の加熱を行い金属を溶融、蒸
発させる。加熱源としては電子ビーム、イオンビーム、
レーザビームが好適である。
Further, a device for supplying solid or liquid evaporation metal to the molten metal portion around the porous body is provided, and the porous body is heated while the evaporation metal is supplied from the outside to melt and evaporate the metal. As a heating source, electron beam, ion beam,
A laser beam is preferred.

(作 用) 発明者らは銅を含浸させた多孔質タングステンをターゲ
ットとして用いた場合の銅蒸発の効率向上は第1図に示
すメカニズムによることを明らかにした。すなわち、第
1図(a)のように銅の蒸発が起こるとその周辺は銅の
蒸発潜熱により溶融金属温度が低下し金属の蒸発が一時
的に止まり、かつ、対流による熱損失も重畳されるため
蒸発面近傍の平均温度は相対的に下がり鋼の蒸発速度が
低下する。一方、同図(b)のように多孔質タングステ
ンに銅を含浸させたターゲットを用いた場合では9周囲
のタングステンが高温に加熱されているため、タングス
テンから銅へ熱が供給され銅の蒸発潜熱による溶融金属
温度の低下が抑制されるので、はぼ連続的に銅の蒸発が
起こる。また、従来方法に比べ対流も著しく抑制される
ので、対流による熱損失も大幅に改善さる。
(Function) The inventors have clarified that the improvement in copper evaporation efficiency when porous tungsten impregnated with copper is used as a target is due to the mechanism shown in FIG. 1. In other words, as shown in Figure 1 (a), when copper evaporates, the temperature of the molten metal decreases in the surrounding area due to the latent heat of vaporization of the copper, temporarily stopping the evaporation of the metal, and heat loss due to convection is also added. Therefore, the average temperature near the evaporation surface decreases relatively, and the evaporation rate of the steel decreases. On the other hand, when using a target made of porous tungsten impregnated with copper as shown in Figure (b), the surrounding tungsten is heated to a high temperature, so heat is supplied from the tungsten to the copper, causing the latent heat of vaporization of the copper. Since the molten metal temperature is suppressed from decreasing due to oxidation, evaporation of copper occurs almost continuously. Furthermore, since convection is significantly suppressed compared to conventional methods, heat loss due to convection is also significantly improved.

さらに発明者らは上記メカニズムを検討した結果、蒸発
効率向上のためのターゲットの多孔質化はターゲット全
体について行う必要はないことがわかった。すなわち、
多孔質体から蒸発金属への熱の供給と溶融蒸発金属の対
流防止は金属の蒸発が激しく起こっている電子ビーム照
射部のみでも同等の効果が得られることがわかった。
Furthermore, as a result of studying the above mechanism, the inventors found that it is not necessary to make the entire target porous in order to improve the evaporation efficiency. That is,
It was found that the same effect can be obtained in supplying heat from the porous body to the evaporated metal and preventing convection of the molten evaporated metal only in the electron beam irradiation area where metal evaporation is occurring intensely.

すなわち、第2図に示すように溶融蒸発金属1の表面の
電子ビーム照射部3の周囲にのみ多孔質体2を設けるこ
とにより、回度の低下した溶融蒸発金属への熱供給と蒸
発部における対流を効果的に防止できる。したがって、
ターゲット全体を多孔質体とした従来方法に比べ蒸発金
属1の容量を著しく増加できるだけでなく、この多孔質
体2をるつぼライナ4に固定せず溶融蒸発金属1の表面
に浮遊させることより、溶融蒸発金属lの表面位置が変
化しても多孔質体2は常に溶融蒸発金属1の表面に位置
しているため、多孔質体2の周囲の溶融蒸発金属1から
毛管現象により蒸発部である電子ビーム照射部3へ蒸発
金属1を容易に供給することができる。
That is, as shown in FIG. 2, by providing the porous body 2 only around the electron beam irradiation section 3 on the surface of the molten evaporation metal 1, heat supply to the molten evaporation metal with a reduced degree of rotation and improvement in the evaporation section. Convection can be effectively prevented. therefore,
Not only can the capacity of the evaporated metal 1 be significantly increased compared to the conventional method in which the entire target is made of a porous material, but also the porous material 2 is not fixed to the crucible liner 4 but is suspended on the surface of the molten evaporated metal 1. Even if the surface position of the evaporated metal l changes, the porous body 2 is always located on the surface of the molten evaporated metal 1, so that electrons are transferred from the molten evaporated metal 1 around the porous body 2 to the evaporation part by capillary action. The evaporated metal 1 can be easily supplied to the beam irradiation section 3.

また、蒸発金属1は液体状なので常にるつぼライナ4に
密着した状態となるため、系の熱伝導率は常に一定にな
り安定した蒸発速度を得ることができ、蒸発金属1の温
度も蒸発の起こる電子ビーム照射部3の近傍のみ高くす
れば良いためるつぼライナ4と接している領域の温度を
低く抑えることによりるつぼライナ4の浸食も軽減され
る。
In addition, since the evaporated metal 1 is in a liquid state, it is always in close contact with the crucible liner 4, so the thermal conductivity of the system is always constant and a stable evaporation rate can be obtained, and the temperature of the evaporated metal 1 is also low enough for evaporation to occur. Since it is only necessary to raise the temperature near the electron beam irradiation section 3, erosion of the crucible liner 4 is also reduced by keeping the temperature of the region in contact with the crucible liner 4 low.

さらに、多孔質体2とるつぼライナ4の隙間から溶融蒸
発金属1の供給も可能となりその結果、ターゲット全体
を多孔質体とした従来方法では数時間程度の蒸発運転し
かできなかったが、本発明によれば数100時間の蒸発
運転が可能となる。
Furthermore, it becomes possible to supply the molten evaporated metal 1 through the gap between the porous body 2 and the crucible liner 4, and as a result, the conventional method in which the entire target is made of porous material could only perform evaporation operation for several hours, but the present invention According to this method, evaporation operation for several hundred hours is possible.

(実施例) 以下、本発明に係る活性金属の蒸発方法の一実施例を第
2図を参照して説明する。
(Example) An example of the active metal evaporation method according to the present invention will be described below with reference to FIG.

まず、第2図において真空チャンバーの中に設置した水
冷鋼るつぼ5の内側にタングステン製のるつぼライナ4
を設け、その中に銅粉末またはチップ等の蒸発金属1を
入れる。この銅粉の表面中央部にタングステンの多孔質
体2を置き、電子ビーム6により多孔質体2を加熱する
ことによりるつぼ内の銅粉末を加熱、溶融させると共に
多孔質体2内にも銅を含浸させる。その後、電子ビーム
のパワーを上げ銅の蒸発運転を行った。るつぼライナ4
の材質は溶融状態の蒸発用金属に対し反応しないもの、
もしくは耐食性に優れている必要がありタングステン以
外にもタンタル、モリブデン。
First, in Fig. 2, a tungsten crucible liner 4 is placed inside a water-cooled steel crucible 5 installed in a vacuum chamber.
A vaporized metal 1 such as copper powder or chips is placed therein. A tungsten porous body 2 is placed in the center of the surface of this copper powder, and by heating the porous body 2 with an electron beam 6, the copper powder in the crucible is heated and melted, and copper is also deposited inside the porous body 2. Impregnate. After that, the power of the electron beam was increased to perform copper evaporation operation. Crucible liner 4
The material is one that does not react with the molten metal for evaporation,
Or, in addition to tungsten, tantalum and molybdenum must have excellent corrosion resistance.

レニウム、ニオビウム、ハフニウム等の高融点金属が適
している。また、多孔質体2の材質はるつぼライナ4の
材質と同じものでもよいが、より高い温度の溶融金属と
接するため、さらに、耐食性を必要とする場合にはAQ
、 、 0. 、 ZrO2,Y、O,、SiC。
Refractory metals such as rhenium, niobium and hafnium are suitable. The material of the porous body 2 may be the same as that of the crucible liner 4, but since it comes into contact with molten metal at a higher temperature, if corrosion resistance is required, AQ
, , 0. , ZrO2, Y, O,, SiC.

TaC,HfC,Si、N、、 ZrN、 TiN等の
セラミックスが好ましい。また、多孔質体2の気孔率は
低すぎると蒸発効率が低下し逆に高すぎると多孔質体の
強度、耐食性が低下するので20〜70%が好ましい。
Ceramics such as TaC, HfC, Si, N, ZrN, and TiN are preferred. Further, if the porosity of the porous body 2 is too low, the evaporation efficiency will decrease, and if it is too high, the strength and corrosion resistance of the porous body will decrease, so it is preferably 20 to 70%.

さらに、るつぼライナ4の上方には蒸発金属供給用のパ
イプ7を設け、蒸発により溶融蒸発金属1の場面が低下
した場合には、本パイプ7により予め加熱し溶融状態に
しである溶融蒸発金属1をるつぼライナ4の内へ供給す
ることができる。
Further, a pipe 7 for supplying evaporated metal is provided above the crucible liner 4, and when the molten evaporated metal 1 decreases due to evaporation, the molten evaporated metal 1 is preheated to a molten state by this pipe 7. can be fed into the crucible liner 4.

次に本実施例の作用効果について説明する。第2図に示
すように、この方法により蒸発金属である溶融鋼表面に
設置したタングステン多孔質体を電子ビーム6で加熱し
、銅を蒸発させることより蒸発部での銅の対流による熱
損失と蒸発潜熱による蒸発部の温度低下を防止すること
ができ銅の蒸発効率を著しく向上できる。さらに、るつ
ぼライナ4内の容積に占める多孔質体2の体積が従来例
に比べ非常に小さいため、るつぼライナ4内に多量の蒸
発金属を入れることができる。かつ、多孔質体2とるつ
ぼライナ4の間から蒸発金属を供給することができるの
で、長時間の蒸発運転が可能となる。
Next, the effects of this embodiment will be explained. As shown in Figure 2, by this method, a tungsten porous body placed on the surface of molten steel, which is the evaporation metal, is heated with an electron beam 6, and the copper is evaporated. It is possible to prevent the temperature of the evaporator from decreasing due to the latent heat of evaporation, and the copper evaporation efficiency can be significantly improved. Furthermore, since the volume of the porous body 2 occupying the volume within the crucible liner 4 is much smaller than that of the conventional example, a large amount of evaporated metal can be placed inside the crucible liner 4. In addition, since the evaporated metal can be supplied from between the porous body 2 and the crucible liner 4, long-term evaporation operation is possible.

このような方法により、溶融蒸発金属表面に設置したタ
ングステン多孔質体を電子ビームで加熱した場合と従来
のようなるつぼライナ内に全てタングステン多孔質体に
蒸発金属を含浸させた場合について、銅、チタン、ウラ
ンを蒸発させた結果を第3図に示す、第3図は横軸に電
子銃入力を。
By this method, copper, Figure 3 shows the results of vaporizing titanium and uranium. In Figure 3, the horizontal axis shows the electron gun input.

縦軸には得られた蒸着速度と多孔質体を用いない上記金
属で得られた蒸着速度の比をとったものである。なお、
蒸着速度はるつぼ上部に設けた基板に付着した金属の蒸
着重量を測定して求めた。第3図の結果から本実施例に
よる方法でも従来方法とほぼ同じ蒸着速度が得られるこ
とがわかる。さらに、本実施例によれば、外部からの蒸
発金属の供給も自由に行うことが可能なため連続した蒸
発運転ができる。
The vertical axis shows the ratio of the vapor deposition rate obtained to the vapor deposition rate obtained with the above metal without using a porous body. In addition,
The deposition rate was determined by measuring the weight of the metal deposited on the substrate placed above the crucible. From the results shown in FIG. 3, it can be seen that the method according to this example can also achieve almost the same deposition rate as the conventional method. Furthermore, according to this embodiment, since the evaporation metal can be freely supplied from the outside, continuous evaporation operation is possible.

また他の実施例として蒸発金属の供給方法は多孔質体の
形状を種々変えることにより比較的自由に選択できる。
Further, as another embodiment, the method of supplying the evaporated metal can be relatively freely selected by variously changing the shape of the porous body.

その−例を第4図に示す。第4図は固体状の蒸発金属を
るつぼライナ4内へ供給するため多孔質体2の周囲に凹
部を設けたもので、この凹部を通してるつぼライナ4の
中に蒸発金属を供給する。このような多孔質体の形状を
用いることにより液体状金属に比べ取扱が容易な固体状
金属を供給できるだけでなく、溶融蒸発金属表面におけ
る多孔質体の位置も一定にすることが可能となる。
An example of this is shown in FIG. In FIG. 4, a recess is provided around the porous body 2 in order to supply solid evaporated metal into the crucible liner 4, and the evaporated metal is supplied into the crucible liner 4 through this recess. By using such a shape of the porous body, not only can solid metal which is easier to handle than liquid metal be supplied, but also the position of the porous body on the surface of the molten evaporated metal can be made constant.

〔発明の効果〕〔Effect of the invention〕

本発明によれば化学的に活性な金属の蒸気をるつぼ内の
溶融蒸発金属の温度を上げずに効率良く蒸発でき、かつ
従来方法よりも多量の蒸発金属をるつぼ内に設置できる
のに加え、外部からの蒸発金属の供給も自由に行うこと
が可能なため連続した蒸発運転ができ、システムの高効
率化、長寿命化が達成できる。
According to the present invention, chemically active metal vapor can be efficiently evaporated without increasing the temperature of the molten evaporated metal in the crucible, and a larger amount of evaporated metal can be placed in the crucible than in conventional methods. Since evaporated metal can be freely supplied from outside, continuous evaporation operation is possible, and high efficiency and long life of the system can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理を示す概念図、第2図は本発明の
一実施例に係る活性金属蒸発装置の断面模式図、第3図
は本発明と従来例との蒸着速度の比較図、第4図は他の
実施例を示す図、第5図は従来の金属蒸発法を示す図。 I・・・蒸発金属     2・・・多孔質体4・・・
るつぼライナ   5・・・水冷鋼るつぼ6・・・電子
ビーム
Fig. 1 is a conceptual diagram showing the principle of the present invention, Fig. 2 is a schematic cross-sectional view of an active metal evaporator according to an embodiment of the present invention, and Fig. 3 is a comparison diagram of the evaporation rate of the present invention and a conventional example. , FIG. 4 is a diagram showing another embodiment, and FIG. 5 is a diagram showing a conventional metal evaporation method. I... Evaporated metal 2... Porous body 4...
Crucible liner 5...Water-cooled steel crucible 6...Electron beam

Claims (2)

【特許請求の範囲】[Claims] (1)金属表面を加熱し溶融、蒸発させる方法において
、加熱、蒸発部となる溶融金属表面に多孔質体を設け、
この多孔質体を加熱することにより金属を溶融、蒸発さ
せることを特徴とする活性金属の蒸発方法。
(1) In a method of heating, melting, and evaporating a metal surface, a porous body is provided on the molten metal surface that serves as the heating and evaporation part,
An active metal evaporation method characterized by melting and evaporating metal by heating this porous body.
(2)多孔質体周囲の溶融金属部に固体状または液体状
の蒸発用金属を供給する装置を備え蒸発用金属を外部か
ら供給しながら前記多孔質体を加熱し金属を溶融、蒸発
させることを特徴とする活性金属の蒸発方法。
(2) A device that supplies solid or liquid evaporation metal to the molten metal portion around the porous body is provided, and the porous body is heated while the evaporation metal is supplied from the outside to melt and evaporate the metal. A method for evaporating active metals, characterized by:
JP21060189A 1989-08-17 1989-08-17 Method for vaporizing active metal Pending JPH0375319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21060189A JPH0375319A (en) 1989-08-17 1989-08-17 Method for vaporizing active metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21060189A JPH0375319A (en) 1989-08-17 1989-08-17 Method for vaporizing active metal

Publications (1)

Publication Number Publication Date
JPH0375319A true JPH0375319A (en) 1991-03-29

Family

ID=16592030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21060189A Pending JPH0375319A (en) 1989-08-17 1989-08-17 Method for vaporizing active metal

Country Status (1)

Country Link
JP (1) JPH0375319A (en)

Similar Documents

Publication Publication Date Title
US2665223A (en) Process for depositing an aluminum film on a substrate by thermal vaporization
KR20020083128A (en) Ion source vaporizer
US6245280B1 (en) Method and apparatus for forming polycrystalline particles
JP4522709B2 (en) Method and apparatus for coating a substrate
WO1990012485A2 (en) Multiple source evaporation for alloy production
JPH0375319A (en) Method for vaporizing active metal
JP4435523B2 (en) Deposition method
Mendez et al. Effect of electrode droplet size on evaporation and fume generation in GMAW
JPH04504283A (en) Medium pressure electron beam furnace
JPH03126865A (en) Electron beam evaporating device
JP4056680B2 (en) Film forming apparatus and method
US4262160A (en) Evaporator feed
CN105316628A (en) Film forming device
US3356487A (en) Prevention of splattering during vaporization processing
GB1595192A (en) Alkali metal/sulphur cells
KR102585453B1 (en) Filtered cathodic arc source device operating system and Filtered cathodic arc source operating method using the same
KR102585449B1 (en) Filtered cathodic arc source device including anode
Beilis et al. Chromium and titanium film deposition using a hot refractory anode vacuum arc plasma source
Gao et al. Characteristics and electrode erosion rates of a DC plasma torch operating with TiCl 4 plasma gas
Nikolaev et al. Desiliconization of a leucoxene concentrate during plasma–arc heating
JPH0390561A (en) Vapor generator for active metal
JPH0892734A (en) Evaporation of mg
JP2001262320A (en) Surface heating and evaporating method
Frey Vacuum Evaporation
JPS5840743A (en) Metal ion source