JPH0375304A - Method for desulfurizing molten iron - Google Patents

Method for desulfurizing molten iron

Info

Publication number
JPH0375304A
JPH0375304A JP21142189A JP21142189A JPH0375304A JP H0375304 A JPH0375304 A JP H0375304A JP 21142189 A JP21142189 A JP 21142189A JP 21142189 A JP21142189 A JP 21142189A JP H0375304 A JPH0375304 A JP H0375304A
Authority
JP
Japan
Prior art keywords
desulfurization
soda ash
hot metal
powder
molten iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21142189A
Other languages
Japanese (ja)
Inventor
San Nakato
中戸 參
Tetsuya Fujii
徹也 藤井
Tsutomu Nozaki
野崎 努
Atsushi Matsutani
松谷 淳
Michio Sato
道夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP21142189A priority Critical patent/JPH0375304A/en
Publication of JPH0375304A publication Critical patent/JPH0375304A/en
Pending legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE:To reduce the cost of desulfurization of molten iron by mixing soda ash with iron oxide in a specified ratio and blowing this mixture as a desulfurizing agent with a carrier gas. CONSTITUTION:When molten iron is desulfurized by blowing a desulfurizing agent into the molten iron with a carrier gas through a blowing lance, soda ash is mixed with 5-65wt.% iron oxide and this mixture is blown as the desulfurizing agent. Low sulfur molten iron requiring <=0.003% S is obtd. after desulfurization.

Description

【発明の詳細な説明】 【産業上の利用分野] 本発明は、反応利用効率に優れた脱硫剤を用いることを
特徴とする溶銑の予備処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a hot metal pretreatment method characterized by using a desulfurization agent with excellent reaction utilization efficiency.

〔従来の技術] 最近、溶銑または溶鋼などの溶融金属の脱燐または脱硫
を行う場合、あるいは溶鋼中の介在物の形態制御や除去
等を行う場合に、搬送気体を用いた粉体吹込が盛んに行
われている。この方法は、設備が比較的単純で、かつ安
価に処理を行うことができるという利点がある。
[Prior Art] Recently, powder injection using a carrier gas has become popular when dephosphorizing or desulfurizing molten metals such as hot metal or molten steel, or when controlling or removing inclusions in molten steel. is being carried out. This method has the advantage that the equipment is relatively simple and the process can be carried out at low cost.

搬送気体を用いた粉体吹込方法としては一般に空気、酸
素、窒素あるいはアルゴンのような搬送気体を用いて、
酸化物、炭酸塩、弗化物、炭素粉末あるいは合金粉等の
粉体もしくはこれらの混合粉体を搬送し、浸漬ランスに
より溶融金属中へ吹込んでいる。
Powder blowing methods using a carrier gas generally use a carrier gas such as air, oxygen, nitrogen, or argon.
Powders such as oxides, carbonates, fluorides, carbon powders, or alloy powders, or mixed powders thereof, are transported and blown into the molten metal using an immersion lance.

第1図はその1例を示したもので、トビ−ビカー11内
の溶銑の脱硫方法を示す。
FIG. 1 shows one example of this, and shows a method for desulfurizing hot metal in a tobicar 11.

粉体ホッパ12内に貯蔵されている脱硫剤(例えばソー
ダ灰)の粉末は、デイスペンサ13を介してロータリバ
ルブ14により一定量が切出される。この粉体は粉体供
給管15内を搬送ガス(例えば窒素)によって搬送され
、粉体吹込ランスlを用いて溶銑(溶融金属3)内に吹
込まれる。吹込まれた粉体は、溶銑中で粉体分散部5を
形成して浮上しつつ溶銑中の硫黄と反応して湯面スラグ
7となる。
A fixed amount of desulfurizing agent (for example, soda ash) powder stored in the powder hopper 12 is cut out by a rotary valve 14 via a dispenser 13 . This powder is conveyed in the powder supply pipe 15 by a carrier gas (for example, nitrogen), and is blown into the hot metal (molten metal 3) using the powder injection lance l. The injected powder forms powder dispersed portions 5 in the hot metal and floats up, reacting with the sulfur in the hot metal to become hot metal slag 7.

粉体の気送能力は、次式で定義される固気比が最大50
、通常5から20程度である。
The pneumatic conveyance capacity of powder is defined by the following formula, with a solid-air ratio of up to 50.
, usually about 5 to 20.

固気比=[輸送固体(kg/m1n)]/[搬送気体(
k g/m i n) ]〔発明が解決しようとする課
題〕 従来の粉体吹込方法では、粉体供給管側の圧力(吹込圧
力)が絶対圧で10kg/crn”未満、通常は3〜8
 k g / e rn”である。このため溶融金属中
での粉体の分散が悪く、著しい場合には第2図に示すよ
うに、溶融金IX3中に浸漬されたランス1から吹込ま
れた粉体5は、粉体が凝集した凝集状態8で溶融金属3
中を浮上するため、粉体5の利用効率、例えば脱燐や脱
硫の反応効率が低いという欠点がある。
Solid-gas ratio = [transport solid (kg/m1n)] / [carrier gas (
kg/min) ] [Problems to be Solved by the Invention] In the conventional powder blowing method, the pressure on the powder supply pipe side (blowing pressure) is less than 10 kg/min in absolute pressure, usually 3~ 8
kg/e rn". Therefore, the dispersion of the powder in the molten metal is poor, and in severe cases, as shown in Fig. 2, the powder blown from the lance 1 immersed in the molten metal IX3 is The body 5 is the molten metal 3 in the agglomerated state 8 where the powder is agglomerated.
Since it floats inside, there is a drawback that the utilization efficiency of the powder 5, such as the reaction efficiency of dephosphorization and desulfurization, is low.

例えばトビードカー内の脱硫においては、極めて多量の
ソーダ灰が必要となり、処理コストの上昇と処理時の温
度降下が大きい。また処理時の発塵が著しいという問題
を生じていた。すなわち、次の反応によってNaが蒸発
して損失となるものであり蒸発による損失量は吹込まれ
たソーダ灰の約20%を占めるほどである。
For example, desulfurization in a tobbed car requires an extremely large amount of soda ash, which increases processing costs and causes a large temperature drop during processing. Further, there was a problem in that significant dust was generated during processing. That is, Na evaporates through the next reaction, resulting in a loss, and the amount of loss due to evaporation accounts for about 20% of the injected soda ash.

Na2CO3(I2)+2C=2Na (g)+3CO
(g) ・・・・・・ (1) N a 20  (12)  + C= 2 N a 
 (g )+CO(g)  ・・・・・−(2) 特開昭61−87808には、見掛は比重、粒度分布、
平均粒径を特定した微粉炭酸ソーダを用いて安定して溶
銑中に吹込む技術が開示されている。また、特開昭53
−026715には、スラグ中のNa2O/5i02C
モル比)を3以下にすることによりソーダの揮発損失を
防ぎ、ソーダ灰の原単位を低減して脱燐、脱硫する方法
が示されている。
Na2CO3(I2)+2C=2Na(g)+3CO
(g) ...... (1) Na 20 (12) + C= 2 Na
(g)+CO(g)・・・・・・-(2) JP-A-61-87808 states that the apparent value is specific gravity, particle size distribution,
A technique has been disclosed in which powdered soda carbonate having a specified average particle size is stably injected into hot metal. Also, JP-A-53
-026715 has Na2O/5i02C in slag.
A method of dephosphorization and desulfurization is shown in which the volatilization loss of soda is prevented by reducing the molar ratio (mole ratio) to 3 or less, and the basic unit of soda ash is reduced.

単に、用いるソーダ灰の粒径を揃えるのみでは、反応利
用効率の向上効果が十分でない、スラグ中の”a20/
5i02比を小さくすることはソーダの揮発損失を少な
くするが、脱硫反応を明害するばかりでなく、処理後の
排滓を完全にしないと湯面スラグから復硫のおそれがあ
る。また。
Simply adjusting the particle size of the soda ash used is not sufficient to improve the reaction utilization efficiency.
Decreasing the 5i02 ratio reduces the volatilization loss of soda, but not only does it impair the desulfurization reaction, but also there is a risk of resulfurization from the hot water surface slag if the slag is not completely discharged after treatment. Also.

脱硫剤が浮上時に溶銑と接して脱硫反応を行う、いわゆ
るトランジトリ−反応が主体であるソーダ灰の反応効率
向上のためには不十分である。すなわち、ソーダ灰の蒸
発反応(1)、(2)式は溶銑中を浮上している時にも
生じ、これによる損失量は甚だ多い。
This is insufficient for improving the reaction efficiency of soda ash, which is mainly based on the so-called transitory reaction in which the desulfurization agent contacts the hot metal during floating and performs a desulfurization reaction. In other words, the evaporation reactions (1) and (2) of soda ash occur even when floating in hot metal, and the amount of loss due to this is extremely large.

ソーダ灰に酸化鉄を添加すると、先に示した(1)、(
2)式で生成するNaの蒸発損失を抑制することができ
る。これは、酸化鉄により溶銑中の旦を優先酸化するた
めと推察される。
When iron oxide is added to soda ash, the above-mentioned (1), (
The evaporation loss of Na generated by formula 2) can be suppressed. This is presumed to be due to preferential oxidation of iron in the hot metal by iron oxide.

特開昭57−98617には、溶銑中の旦を酸化させる
酸素源としてミルスケールを添加する技術が開示されて
いるが、脱硫剤としてのソーダ灰に酸素源となる固体酸
化物を積極的に添加した例は見当たらない、これは、脱
硫反応は酸化雰囲気よりも還元雰囲気でより進行するた
め、酸素源を混合してら脱硫促進効果がない(鉄と鋼、
67(19811,p、323 )か、むしろ阻害する
のではないかと考えられていたことによる。
JP-A No. 57-98617 discloses a technique of adding mill scale as an oxygen source to oxidize the iron in hot metal. I can't find any examples of it being added. This is because the desulfurization reaction progresses more in a reducing atmosphere than in an oxidizing atmosphere, so mixing an oxygen source has no effect on promoting desulfurization (iron and steel,
67 (19811, p. 323), or rather, it was thought that it might inhibit it.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、脱硫剤を搬送気体と共に吹込みランスを介し
て溶銑中に吹込む脱硫方法において、ソーダ灰に5〜6
5重量%の酸化鉄を、より望ましくは10〜60重量%
の酸化鉄を混合した脱硫剤を用いることを特徴とする溶
銑の脱硫方法である。
The present invention provides a desulfurization method in which a desulfurization agent is blown into hot metal through a blowing lance together with a carrier gas.
5% by weight iron oxide, more preferably 10-60% by weight
This is a hot metal desulfurization method characterized by using a desulfurization agent mixed with iron oxide.

ソーダ灰に酸化鉄(例えば鉄鉱石)を混合すると、第3
図に示すように、混合物のかさ比重が大きくなる。比重
が大きくなると吹込み時に脱硫剤の運動エネルギーが増
して搬送ガス気泡域から溶銑中への脱硫剤粒子の侵入と
溶銑中での分散が促進される。特に、トランジトリ−反
応が主体であるソーダ灰吹込みによる脱硫反応では、粒
子の溶銑中への均一分散を促進することが反応利用効率
のために極めて重要である。さらに、脱硫剤の比重が大
きくなると脱硫剤の浮上速度が小さくなるので、その分
だけ反応時間が長くなる。
When iron oxide (e.g. iron ore) is mixed with soda ash, the third
As shown in the figure, the bulk specific gravity of the mixture increases. When the specific gravity increases, the kinetic energy of the desulfurizing agent increases during blowing, and the penetration of the desulfurizing agent particles from the carrier gas bubble region into the hot metal and their dispersion in the hot metal are promoted. In particular, in the desulfurization reaction by soda ash injection, which is mainly a transitory reaction, promoting uniform dispersion of particles into the hot metal is extremely important for reaction utilization efficiency. Furthermore, as the specific gravity of the desulfurizing agent increases, the floating speed of the desulfurizing agent decreases, so the reaction time increases accordingly.

〔作用1 ソーダ灰による溶銑脱硫速度に及ぼす酸化鉄添加量の影
響を50kg高周波誘導溶解炉を用いた吹込実験により
調べた。溶銑の目標組成は、C:約4.30重量% Si:約0.03重量% 秩旦:約0.10重量% S:約0.030重量% 旦:約0.020重量%と約0.040重量%の2種 とした。溶銑温度は1270℃である。脱硫剤の搬送ガ
スに空気を用い、流量は3ONI2/minとした。ラ
ンスは内径8mmであり、浸漬深さは100mmである
。溶銑中の互濃度と溶銑1トン当りの脱硫剤中のソーダ
灰の吹込量ξp  (kgソーダ灰/l?a銑)の間に
ほぼ直線関係が成り立ったので、その傾きをks  (
%S/kg/l)とした。
[Effect 1] The influence of the amount of iron oxide added on the desulfurization rate of hot metal using soda ash was investigated by a blowing experiment using a 50 kg high-frequency induction melting furnace. The target composition of the hot metal is C: about 4.30% by weight, Si: about 0.03% by weight, Chichidan: about 0.10% by weight, S: about 0.030% by weight, Dan: about 0.020% by weight, and about 0. There were two types of .040% by weight. The hot metal temperature is 1270°C. Air was used as the carrier gas for the desulfurization agent, and the flow rate was 3ONI2/min. The lance has an internal diameter of 8 mm and an immersion depth of 100 mm. Since an almost linear relationship was established between the compatibility concentration in hot metal and the amount of soda ash blown in the desulfurization agent per ton of hot metal ξp (kg soda ash/l?a pig iron), the slope of the relationship can be expressed as ks (
%S/kg/l).

実験に用いたソーダ灰は純度99重量%以上で調和平均
径54μmであり、鉄鉱石はマウントニューマンで調和
平均径84μmのものを予め混合し、所望の脱硫剤組成
とした。第4図に脱硫剤中の鉄鉱石含有量(重量%)と
ksおよび次の(3)式で定義するソーダ灰の脱硫反応
効率ηS(%)との関係を示す。
The soda ash used in the experiment had a purity of 99% by weight or more and a harmonic mean diameter of 54 μm, and the iron ore had a harmonic mean diameter of 84 μm at Mount Newman and was mixed in advance to give the desired desulfurization agent composition. FIG. 4 shows the relationship between the iron ore content (wt%) in the desulfurizing agent, ks, and the soda ash desulfurization reaction efficiency ηS (%) defined by the following equation (3).

・−・・・・ (3) ソーダ灰への鉄鉱石添加量を0〜90重量%の範囲で変
えて溶銑の脱硫速度を調べた。第4図において、Pin
’は脱硫剤中のソーダ灰の吹込速度を、Pinは脱硫剤
(ソーダ灰+鉄鉱石)の吹込速度をそれぞれ表わす。第
4図から明らかなように、ソーダ灰に鉄鉱石を添加する
とソーダ灰の脱硫反応効率が向上する。
(3) The desulfurization rate of hot metal was investigated by varying the amount of iron ore added to soda ash in the range of 0 to 90% by weight. In Figure 4, Pin
' represents the blowing speed of soda ash in the desulfurizing agent, and Pin represents the blowing speed of the desulfurizing agent (soda ash + iron ore). As is clear from FIG. 4, adding iron ore to soda ash improves the desulfurization reaction efficiency of soda ash.

鉄鉱石含有量の好適範囲は70重量%までであり、これ
を越えると反応効率が低下する。したがって反応効率向
上効果を得るには、鉄鉱石で5〜65重量%の範囲がよ
く、より望ましくは10〜60重量%の範囲がよい。
The preferred range of iron ore content is up to 70% by weight, and if it exceeds this, the reaction efficiency will decrease. Therefore, in order to obtain the effect of improving reaction efficiency, the content of iron ore is preferably in the range of 5 to 65% by weight, more preferably in the range of 10 to 60% by weight.

[実施例] 第1図に示したトビードカー内溶銑180〜220tを
本発明に基づく脱硫剤を用いて下記の条件で脱硫した。
[Example] 180 to 220 tons of hot metal in the tobbed car shown in FIG. 1 was desulfurized using the desulfurization agent based on the present invention under the following conditions.

脱[1ifffl銑温度: 1260〜1320℃脱硫
剤吹込速度: 80〜lookg/mi n搬送空気流
量: 8〜l ONrd/m i n吹込ランス内径:
40mm ランス浸漬深さ:2m 用いたソーダ灰は先の50kg高周波溶解炉での実験と
同じものであり、酸化鉄は平均粒径63μmであり、次
の化学組成を有する鉄鉱石粉である。
Desulfurization agent blowing speed: 80~look kg/min Conveying air flow rate: 8~l ONrd/min Inner diameter of blowing lance:
40 mm Lance immersion depth: 2 m The soda ash used was the same as in the previous experiment in the 50 kg high frequency melting furnace, and the iron oxide was iron ore powder with an average particle size of 63 μm and the following chemical composition.

T−Fe=68重量% Fe0=16重量% 5iO2=2.5重量% P=0.018重量% S=0.005重量% lOOヒートを越える実験を用い、はぼ同じ条件で実施
した従来例(ソーダ灰100%)と比較した。
T-Fe = 68% by weight Fe0 = 16% by weight 5iO2 = 2.5% by weight P = 0.018% by weight S = 0.005% by weight Conventional example conducted under almost the same conditions using an experiment exceeding lOO heat (100% soda ash).

第5図に示すように、脱硫剤に鉄鉱石を混合することに
より、ソーダ灰の脱硫反応効率が2〜5%向上する結果
が得られた。これにより、従来は溶銑1トン当り7〜8
kgのソーダ灰を用い、処理前S=0.020〜0.0
30%のちのを処理後景≦O,OO5%に脱硫していた
のに対し1本発明に基づいて酸化鉄を10〜40%配合
した脱硫剤を用いた場合、溶銑lトン当り4〜6kgの
ソーダ灰で同等の脱硫が可能となり、ソーダ灰の削減量
は1〜3 k g / tに達した。酸化鉄はまた、溶
銑に溶解するので、溶銑歩留も向上する。
As shown in FIG. 5, by mixing iron ore with the desulfurization agent, the desulfurization reaction efficiency of soda ash was improved by 2 to 5%. As a result, the conventional method was 7 to 8 per ton of hot metal.
Using kg of soda ash, S = 0.020 to 0.0 before treatment
30% of the molten pig iron after treatment was desulfurized to 5% ≦O, OO, but when a desulfurization agent containing 10 to 40% iron oxide according to the present invention is used, 4 to 6 kg per ton of hot metal is used. It became possible to achieve the same level of desulfurization using soda ash, and the amount of soda ash reduced reached 1 to 3 kg/t. Iron oxide also dissolves in hot metal, thereby improving hot metal yield.

〔発明の効果1 本発明によりソーダ灰削減が可能となったので大幅に脱
硫処理コストが低減した。
[Effect of the invention 1 The present invention has made it possible to reduce the amount of soda ash, so the cost of desulfurization treatment has been significantly reduced.

本発明の効果は、処理後互≦0.003%を要求される
低値溶銑を得る場合に特に顕著である。用いる酸化鉄は
搬送性を阻害するものでなければ特に制限を受けないが
P及びSの低いものであれば好ましい0例えばP≦o、
 o s o%、S≦0.060%のものが有利に用い
られる。酸化鉄の平均粒径は、反応効率向上の点から3
0〜200μm程度が好ましい。
The effects of the present invention are particularly remarkable when obtaining low-value hot metal that requires ≦0.003% after treatment. The iron oxide to be used is not particularly limited as long as it does not impede transportability, but it is preferable that it has low P and S. For example, P≦o,
Oso%, S≦0.060% is advantageously used. The average particle size of iron oxide is set at 3 to improve reaction efficiency.
The thickness is preferably about 0 to 200 μm.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は溶銑の事前処理のための脱硫装置の模式図、第
2図はその説明図、第3図は鉄鉱石含有量と嵩比重の関
係を示すグラフ、第4図は鉄鉱石含有量とks、ηSの
関係を示すグラフ、第5図は鉄鉱石含有量とηSとの関
係を示す説明図である。 1・・・粉体吹込ランス 3・・・溶融金属 5・・・粉体 7・・・ン場面スラグ 8・・・凝集状態 11・・・トビード力− 12・・・粉体貯槽 13・・・デイスペンサ 14・・・ロータリーバルブ 15・・−粉体供給管 16・・・圧力計
Figure 1 is a schematic diagram of a desulfurization equipment for pre-treatment of hot metal, Figure 2 is an explanatory diagram thereof, Figure 3 is a graph showing the relationship between iron ore content and bulk specific gravity, and Figure 4 is iron ore content. FIG. 5 is an explanatory diagram showing the relationship between iron ore content and ηS. 1... Powder injection lance 3... Molten metal 5... Powder 7... Scene slag 8... Agglomeration state 11... Tobead force - 12... Powder storage tank 13...・Dispenser 14...Rotary valve 15...-Powder supply pipe 16...Pressure gauge

Claims (1)

【特許請求の範囲】[Claims] 1 脱硫剤を搬送気体とともに溶銑中に吹込む脱硫方法
において、ソーダ灰に5〜65重量%の酸化鉄を混合し
、該混合物を脱硫剤として吹込むことを特徴とする溶銑
の脱硫方法。
1. A desulfurization method for hot metal in which a desulfurization agent is blown into hot metal along with a carrier gas, the method comprising mixing 5 to 65% by weight of iron oxide with soda ash and injecting the mixture as a desulfurization agent.
JP21142189A 1989-08-18 1989-08-18 Method for desulfurizing molten iron Pending JPH0375304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21142189A JPH0375304A (en) 1989-08-18 1989-08-18 Method for desulfurizing molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21142189A JPH0375304A (en) 1989-08-18 1989-08-18 Method for desulfurizing molten iron

Publications (1)

Publication Number Publication Date
JPH0375304A true JPH0375304A (en) 1991-03-29

Family

ID=16605679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21142189A Pending JPH0375304A (en) 1989-08-18 1989-08-18 Method for desulfurizing molten iron

Country Status (1)

Country Link
JP (1) JPH0375304A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6336057B1 (en) 1998-04-30 2002-01-01 Nidek Co., Ltd. Lens grinding apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6336057B1 (en) 1998-04-30 2002-01-01 Nidek Co., Ltd. Lens grinding apparatus

Similar Documents

Publication Publication Date Title
JP5087905B2 (en) Hot metal dephosphorization method
JP2005179690A (en) Method for desulfurizing molten pig iron
US4600434A (en) Process for desulfurization of ferrous metal melts
JP2008050659A (en) Desulfurizing agent for molten iron and method for desulfurization treatment
JP6648711B2 (en) Hot metal desulfurization method
JPH0375304A (en) Method for desulfurizing molten iron
JP3888264B2 (en) Method for producing low phosphorus hot metal
JP2018035376A (en) Hot metal dephosphorization method
JP4779464B2 (en) Method for producing low phosphorus hot metal
JP2009114489A (en) Method for dephosphorizing molten iron
JP2000345224A (en) Method for desulfurizing molten iron
JP3333339B2 (en) Converter steelmaking method for recycling decarburized slag
JP2006241502A (en) Desulfurizing agent for molten iron and method for desulfurizing molten iron
RU2735536C1 (en) Method for dephosphorization of fused iron and a refining additive
JP4360239B2 (en) Method for desulfurization of molten steel in vacuum degassing equipment
JP2011058046A (en) Method for dephosphorizing molten iron
US3304172A (en) Process for the manufacture of low phosphorus pig iron
JP4513340B2 (en) Hot metal dephosphorization method
JP2005146335A (en) Method for dephosphorizing molten pig iron
JPH01252716A (en) Method for injecting powdery material into molten metal and lance for injecting powdery material
JP2005048238A (en) Method for dephosphorizing molten iron
KR100336857B1 (en) Method for improving desulfurization efficiency of desulfurization agent
JPS6036447B2 (en) Simultaneous dephosphorization and desulfurization of hot metal
JPS61104014A (en) Method for reducing mn ore with high efficiency in oxidation refining furnace
JPH0125363B2 (en)