JPH0374908A - Microstrip antenna of stack type - Google Patents

Microstrip antenna of stack type

Info

Publication number
JPH0374908A
JPH0374908A JP21100589A JP21100589A JPH0374908A JP H0374908 A JPH0374908 A JP H0374908A JP 21100589 A JP21100589 A JP 21100589A JP 21100589 A JP21100589 A JP 21100589A JP H0374908 A JPH0374908 A JP H0374908A
Authority
JP
Japan
Prior art keywords
radome
microstrip antenna
stacked microstrip
parasitic element
resistive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21100589A
Other languages
Japanese (ja)
Inventor
Yuujirou Taguchi
田口 裕二朗
Tomoyuki Watanabe
智之 渡辺
Toshikiyo Hirata
平田 俊清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP21100589A priority Critical patent/JPH0374908A/en
Publication of JPH0374908A publication Critical patent/JPH0374908A/en
Pending legal-status Critical Current

Links

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

PURPOSE:To simplify the manufacture process and to reduce the manufacture cost by adhering a resistive element onto an inner face of a radome covering the entire antenna or embedding the element in the inside of the radome. CONSTITUTION:In this antenna, a radome 2 having a resistive element 1 on its inner face is fixed onto a metallic base 3 being a bottom base with a rivet or the like, and an exciting element board 7 having an exciting element 5 on its front side and having a ground face 6 on its rear side is fixed onto the metallic base 3. Then a coaxial feeder 8 is provided, which connects respectively to the exciting element 5 and a ground plane 6 through the board 7 and the metallic base 3. An air vent hole 9 is formed to the radome 2 so that no pressure due to the pressure difference is exerted even when an external pressure is fluctuated. Since the resistive element 1 is directly fitted to the inside of the radome 2, the interval between the resistive element 1 and the exciting element 5 is kept constant without using the spacer such as a honey-comb structure material.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はスタック型マイクロストリップアンテナに関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a stacked microstrip antenna.

(従来の技術) 航空機等に搭載されるアンテナとして、近年、スタック
型マイクロストリップアンテナが注口され、各種の構造
のものが開発されている。
(Prior Art) In recent years, stacked microstrip antennas have been used as antennas mounted on aircraft, etc., and those with various structures have been developed.

第6図はこのようなスタック型マイクロストリップアン
テナの一例を示す斜視図である。
FIG. 6 is a perspective view showing an example of such a stacked microstrip antenna.

この図に示すスタック型マイクロストリップアンテナは
裏面に無給電素子+01を形成した熊給電素子縞板10
2と、表面に励振素子+03を形成するとともに裏面に
グランド面(アース面)104を形成した励振素子基板
105と、この励振素T・Jk板105 tlti[l
シテ1ijl記励振aT−IO2やグランド而104に
各々接続される同軸給電1a106と、前記励振素子基
板105と無給電素子基板102との間隔を所定の植に
保持するハニカム構造材107とを備えている。
The stacked microstrip antenna shown in this figure has a parallel feed element striped plate 10 with a parasitic element +01 formed on the back side.
2, an excitation element substrate 105 with an excitation element +03 formed on the front surface and a ground plane (earth surface) 104 on the back side, and this excitation element T/Jk board 105 tlti[l
A coaxial power supply 1a106 connected to the excitation aT-IO2 and the ground 104, respectively, and a honeycomb structure material 107 that maintains a predetermined distance between the excitation element substrate 105 and the parasitic element substrate 102. There is.

同軸給電線106を介して送信機等から高周波信号が給
電されたとき、グランド而104と、励振素(−103
と、無給電素rloIとの相TF作用によって電波を放
Q−t−する。また、電波を受G′jたときは同様に可
逆的に同軸給電&Q 106を介して受fa機等に出力
する。
When a high frequency signal is fed from a transmitter etc. via the coaxial feed line 106, the ground 104 and the excitation element (-103
A radio wave is emitted Qt- by the phase TF action with the parasitic element rloI. Furthermore, when a radio wave G'j is received, it is similarly reversibly outputted to a receiving fa device or the like via the coaxial power supply &Q 106.

ところでこのような従来のスタック型マイクロストリッ
プアンテナにおいては、ハニカム構造材[07によって
励振素子基板+05と無給a1素r基板102との間隔
を一定に保つようにしているので、ハニカム構造材10
7を使用する分だけアンテナ製造コストが高くなるεと
もに、製逍■、程が複雑になるという問題があった。
By the way, in such a conventional stacked microstrip antenna, since the distance between the excitation element substrate +05 and the unfed A1 element substrate 102 is kept constant by the honeycomb structure material [07], the honeycomb structure material 10
There is a problem in that the manufacturing cost of the antenna increases due to the use of antenna 7, and the manufacturing process becomes complicated.

(発明の口約〉 本発明はト、記の如き従来の欠点を除去するためになさ
れたものであって、ハニカム構造材のような部材を用い
ることなく励振素子基板と無給電素子基板との間隔を一
定に保つことができ、こねによって!!造ココスト低減
や52造−T、程の簡略化を図ることができるスタック
型マイクロストリツブアンデナを提供することを目的と
している。
(Statement of the Invention) The present invention has been made in order to eliminate the drawbacks of the prior art as described in (g) and (g) below. It is an object of the present invention to provide a stacked micro-stripe antenna which can keep the spacing constant and which can be kneaded to reduce manufacturing cost and simplify construction to the extent of 52-T.

(5′e明の概安〉 一1記の問題点を解決するために本発明によるスタック
型マイクロストリップアンテナにおいては、誘電体J、
%板を挟んでアース導体と励振素子とを配したマイクロ
ストリップアンテナの面証励振素r土部に無給電素子を
備λたスタック型マイクロス)・リップアンブナにおい
て、 +3il記無給電素子な゛11該アンテナ全体を
覆うレドーム2内に貼着し。
(General safety of 5'e light) In order to solve the problem of item 11, in the stacked microstrip antenna according to the present invention, the dielectric J,
In a stacked type microstrip antenna with a parasitic element in the ground part (lambda) and a lip amplifier, the parasitic element described in +3il is 11. It is pasted inside the radome 2 that covers the entire antenna.

または該レボーム内面に理論したことを特徴とする。Or, it is characterized by having theory on the inner surface of the revolution.

以F、本発明を開面に示した実施例に基づいて詳細に説
明する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the open.

第1図は本発明の第1実施例を示す断面図である。FIG. 1 is a sectional view showing a first embodiment of the present invention.

この図に示すスタック型マイクロストリップアンテナは
内底面上に無給電素Tlをイ■したレドーム2と、この
レドーム2を底部載板となる金属へ−ス3Lにリベット
4等にて固定するとともに、表面に励振素子5を有し、
[■つ裏面にグランド面6を有した励振素子基板7を前
記基板金属ベース3上に取り付けたもので、この励振素
子基板7および前記金属ベース3を貞通してが1記励振
素子5およびグランド面6に各々接続される同軸給電線
8とを備えている6 前記レドーム2は外気圧とレドーム2内の気圧とを同じ
くするための空気抜き穴9が形成されており、外気圧が
変動してもこれに応じてレドーム2内の気圧が変化して
レドーム2に気脈差による注力が畑わらないように構成
されている。これは、気IF差によりレドームが内外方
向に変形することによる放Q’を電波への影響を防ぐた
めである。
The stacked microstrip antenna shown in this figure includes a radome 2 with a parasitic element Tl on the inner bottom surface, and this radome 2 is fixed to a metal base 3L that serves as a bottom mounting plate with rivets 4, etc. It has an excitation element 5 on the surface,
[■] An excitation element substrate 7 having a ground surface 6 on the back surface is mounted on the substrate metal base 3, and by passing the excitation element substrate 7 and the metal base 3 through, the excitation element 5 and the ground are connected. 6. The radome 2 is provided with an air vent hole 9 for equalizing the outside pressure and the inside pressure of the radome 2, so that the outside pressure may fluctuate. The air pressure inside the radome 2 changes in response to this, so that the radome 2 is not affected by the focus caused by the air pulse difference. This is to prevent the radiation Q' caused by the radome being deformed in the outward and outward directions due to the air IF difference from affecting the radio waves.

また、無給電素子+ i;iボ1記レドーム2の内側の
うち、リベット4によって的=己しドーム2を金属ベー
ス3上に取り付けたとき、その無給電素子■の中心軸ヒ
前記励振素T−5の中心軸とが一致するような位置に固
定されている。
Furthermore, when the dome 2 is mounted on the metal base 3 by the rivet 4, the center axis of the parasitic element + i; It is fixed at a position where the center axis of T-5 coincides with the center axis.

このようにこの実施例においては、レドーム2の内側(
無給電素子lを直接取り付けているので、ハニカム構造
材等のスペーサを用いることなく無給[tFIと励振素
r5との間隔を一定に保つことができる。
In this way, in this embodiment, the inside of the radome 2 (
Since the parasitic element l is directly attached, the distance between the parasitic element tFI and the excitation element r5 can be kept constant without using a spacer such as a honeycomb structure material.

第2図は本発明の第2実施例を示す断面図である。なお
この図において、第1図の各部と同し部分には同じ符号
を付しである。
FIG. 2 is a sectional view showing a second embodiment of the present invention. In this figure, the same parts as those in FIG. 1 are given the same reference numerals.

この図に示すスタック型マイクロストリップアンテナが
第1図に示すものと穴なる点は、レドーム2の外面に凹
部10を形成し、この間部lOに無給電素子lを嵌入し
てその1面側に耐雨塗料Ilを所定のF、!みになるま
で塗布したことである。
The stacked microstrip antenna shown in this figure is different from the one shown in FIG. Rainproof paint Il to the specified F,! I applied it until it looked like the color.

このようにしても、上述した実施例と同様にハニカム構
造材等のスペーサを用いるこヒなく無給電素子1と励振
素子5との間隔を一定に保ことかできる。
Even in this case, the distance between the parasitic element 1 and the excitation element 5 can be kept constant without using a spacer such as a honeycomb structure material, as in the above embodiment.

第3図は本発明の第3実施例を示ず断面図で、この図に
示すスタック型マイクロストリップアンテナが第1図及
び第2図に示すものと異なる点は、レドーム2の肉厚内
に無給電素子1を理め込む如く一体成形したことである
FIG. 3 is a cross-sectional view of the third embodiment of the present invention, and the difference between the stacked microstrip antenna shown in this figure and those shown in FIGS. 1 and 2 is that This is because the parasitic element 1 is integrally molded so as to fit into it.

このようにすれば、耐雨塗料等を用いることなく無給電
素子室の腐蝕を完全に防止しながら無給電素子1と励振
素子5との間隔を一定に保つことができる。
In this way, it is possible to maintain a constant distance between the parasitic element 1 and the excitation element 5 while completely preventing corrosion of the parasitic element chamber without using rain-resistant paint or the like.

第4図は本発明の第4実施例を示す断面図であって、こ
の図に示すスタック型マイクロストリップアンテナが上
記各実施例と異なる点は、空気抜き穴を持たないレドー
ム2aを用い、更にレドーム2a内を発泡材によって充
填してレドーム2aとアンテナ全体を一体化させたこと
である。
FIG. 4 is a sectional view showing a fourth embodiment of the present invention. The stacked microstrip antenna shown in this figure differs from the above embodiments in that it uses a radome 2a without air vent holes, and The radome 2a and the entire antenna are integrated by filling the inside of the radome 2a with a foam material.

このように空気抜き穴がなくても発泡材がレドームの変
形を防止するので問題はない。
Even if there is no air vent hole, there is no problem because the foam material prevents the radome from deforming.

このようにすることにより、励振素子5や無給電素子1
の腐蝕を防1Lすることができるとともに、無給電素子
1と励振素子5との間隔を一定に保つことができ、また
アンテナ全体の強度を高めることができる。
By doing this, the excitation element 5 and the parasitic element 1
1L of corrosion can be prevented, the distance between the parasitic element 1 and the excitation element 5 can be kept constant, and the strength of the entire antenna can be increased.

第5図は本発明の第5実施例を示す断面図である。FIG. 5 is a sectional view showing a fifth embodiment of the present invention.

この図に示すスタック型マイクロストリップアンテナの
特徴は、励振素子5が取り付けられた誘電体板+6と、
グランド面+7が形成された誘電体板+7と、これらの
誘電体板16、+7によってサンドイッチ状に挟まれる
へニカム構造材15とによって励振素子基板7aを構成
したことである。
The features of the stacked microstrip antenna shown in this figure include a dielectric plate +6 to which an excitation element 5 is attached;
The excitation element substrate 7a is constituted by a dielectric plate +7 on which a ground plane +7 is formed, and a henicum structure material 15 sandwiched between these dielectric plates 16 and +7.

このようにするこパとにより、励振素子5とグランド面
6との間隔を調整し易くするとともに、励振素″′F−
鰭板7aの軽量化を図り、且つ強度を向上させながら無
給電素子1と励振索子5との間隔を一定に保ことかでき
る。
By doing this, it becomes easy to adjust the distance between the excitation element 5 and the ground plane 6, and the excitation element "'F-
The distance between the parasitic element 1 and the excitation cable 5 can be kept constant while reducing the weight of the fin plate 7a and improving its strength.

(9TllIの効果) 以上説明したように本発明によれば、ハニカム構造材の
ような部材を用いることなく励振素T基板と無給電素子
基板との間隔を一定に保つことが・でき、これによって
製造コストの低減やBF2 iff工程の簡略化を図る
ことができる。
(Effect of 9TllI) As explained above, according to the present invention, the distance between the excitation element T substrate and the parasitic element substrate can be kept constant without using a member such as a honeycomb structure material, and thereby It is possible to reduce manufacturing costs and simplify the BF2 if process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるスタック型マイクロストリップア
ンテナの第1実施例を示す断面図、第2図は本発明によ
るスタック型マイクロストリップアンテナの第2実施例
を示す断面図、第3図は本発明によるスタック型マイク
ロストリップアンテナの第3実施例を示す断面図、第4
図は本発明によるスタック型マイクロストリップアンテ
ナの第4実施例を示す断面図、第5図は本発明によるス
タック型マイクロストリップアンテナの第5実施例を示
す断面図、第6図は従来から知られているスタック型マ
イクロストリップアンテナの一例を示す斜視図である。 目・・・無給電素子、2・−レドーム、3・・・アンテ
ナ取り付は対象側(金属ベース)、7=励振素T基板。
FIG. 1 is a cross-sectional view showing a first embodiment of a stacked microstrip antenna according to the present invention, FIG. 2 is a cross-sectional view showing a second embodiment of a stacked microstrip antenna according to the present invention, and FIG. 3 is a cross-sectional view showing a second embodiment of a stacked microstrip antenna according to the present invention. A cross-sectional view showing a third embodiment of a stacked microstrip antenna according to
The figure is a cross-sectional view showing a fourth embodiment of the stacked microstrip antenna according to the present invention, FIG. 5 is a cross-sectional view showing a fifth embodiment of the stacked microstrip antenna according to the present invention, and FIG. FIG. 2 is a perspective view showing an example of a stacked microstrip antenna. Eye: Parasitic element, 2: -radome, 3: Antenna is mounted on the target side (metal base), 7: Excitation element T board.

Claims (4)

【特許請求の範囲】[Claims] (1)誘電体基板を挟んでアース導体と励振素子とを配
したマイクロストリップアンテナの前記励振素子上部に
無給電素子を備えたスタック型マイクロストリップアン
テナにおいて、前記無給電素子を当該アンテナ全体を覆
うレボーム内面に貼着し、または該レドーム内部に埋設
したことを特徴とするスタック型マイクロストリップア
ンテナ。
(1) In a stacked microstrip antenna in which a parasitic element is provided above the excitation element of a microstrip antenna in which a ground conductor and an excitation element are arranged with a dielectric substrate in between, the parasitic element covers the entire antenna. A stacked microstrip antenna characterized by being attached to the inner surface of a radome or embedded inside the radome.
(2)前記無給電素子は前記レドームの外面に形成され
た凹部に嵌入固定される請求項1記載のスタック型マイ
クロストリップアンテナ。
(2) The stacked microstrip antenna according to claim 1, wherein the parasitic element is fitted and fixed in a recess formed on the outer surface of the radome.
(3)前記レドーム内は発泡材によって充填されている
請求項1又は2のいずれかに記載のスタック型マイクロ
ストリップアンテナ。
(3) The stacked microstrip antenna according to claim 1 or 2, wherein the inside of the radome is filled with a foam material.
(4)前記励振素子基板はハニカム構造材によって構成
される請求項1乃至3のいずれかに記載のスタック型マ
イクロストリップアンテナ。
(4) The stacked microstrip antenna according to any one of claims 1 to 3, wherein the excitation element substrate is formed of a honeycomb structure material.
JP21100589A 1989-08-16 1989-08-16 Microstrip antenna of stack type Pending JPH0374908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21100589A JPH0374908A (en) 1989-08-16 1989-08-16 Microstrip antenna of stack type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21100589A JPH0374908A (en) 1989-08-16 1989-08-16 Microstrip antenna of stack type

Publications (1)

Publication Number Publication Date
JPH0374908A true JPH0374908A (en) 1991-03-29

Family

ID=16598751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21100589A Pending JPH0374908A (en) 1989-08-16 1989-08-16 Microstrip antenna of stack type

Country Status (1)

Country Link
JP (1) JPH0374908A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515518U (en) * 1991-07-31 1993-02-26 三菱電機株式会社 Antenna device
JPH09246851A (en) * 1996-03-11 1997-09-19 Nec Corp Patch antenna and its manufacture
JPH1051227A (en) * 1996-07-31 1998-02-20 Nec Corp Planar antenna
JP2005348032A (en) * 2004-06-02 2005-12-15 Yokohama Rubber Co Ltd:The On-vehicle communication antenna
WO2006061307A1 (en) * 2004-12-09 2006-06-15 Robert Bosch Gmbh Antenna assembly for a radar transceiver
WO2006072511A1 (en) * 2004-12-30 2006-07-13 Robert Bosch Gmbh Antenna array for a radar transceiver
DE102005054286B4 (en) * 2005-11-11 2011-04-07 Delphi Delco Electronics Europe Gmbh antenna array
JP2012235351A (en) * 2011-05-02 2012-11-29 Denso Corp Antenna device
CN107546481A (en) * 2017-08-09 2018-01-05 深圳三星通信技术研究有限公司 A kind of patch-antenna structure, feeder plate and base station transceiver
CN108376833A (en) * 2017-02-01 2018-08-07 株式会社村田制作所 The manufacturing method of antenna assembly and antenna assembly
WO2019116718A1 (en) * 2017-12-11 2019-06-20 株式会社村田製作所 Substrate with antenna, and antenna module
JP2019153926A (en) * 2018-03-02 2019-09-12 パナソニックIpマネジメント株式会社 Antenna device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515518U (en) * 1991-07-31 1993-02-26 三菱電機株式会社 Antenna device
JPH09246851A (en) * 1996-03-11 1997-09-19 Nec Corp Patch antenna and its manufacture
EP0795925A3 (en) * 1996-03-11 1998-01-14 Nec Corporation Patch antenna and method for making the same
US5977710A (en) * 1996-03-11 1999-11-02 Nec Corporation Patch antenna and method for making the same
JPH1051227A (en) * 1996-07-31 1998-02-20 Nec Corp Planar antenna
JP2005348032A (en) * 2004-06-02 2005-12-15 Yokohama Rubber Co Ltd:The On-vehicle communication antenna
WO2006061307A1 (en) * 2004-12-09 2006-06-15 Robert Bosch Gmbh Antenna assembly for a radar transceiver
WO2006072511A1 (en) * 2004-12-30 2006-07-13 Robert Bosch Gmbh Antenna array for a radar transceiver
US7671806B2 (en) 2004-12-30 2010-03-02 Robert Bosch Gmbh Antenna system for a radar transceiver
DE102005054286B4 (en) * 2005-11-11 2011-04-07 Delphi Delco Electronics Europe Gmbh antenna array
JP2012235351A (en) * 2011-05-02 2012-11-29 Denso Corp Antenna device
CN108376833A (en) * 2017-02-01 2018-08-07 株式会社村田制作所 The manufacturing method of antenna assembly and antenna assembly
KR20180089853A (en) 2017-02-01 2018-08-09 가부시키가이샤 무라타 세이사쿠쇼 Antenna device and method for manufacturing antenna device
JP2018125704A (en) * 2017-02-01 2018-08-09 株式会社村田製作所 Antenna device and method of manufacturing antenna device
CN108376833B (en) * 2017-02-01 2021-11-05 株式会社村田制作所 Antenna device and method for manufacturing antenna device
CN107546481A (en) * 2017-08-09 2018-01-05 深圳三星通信技术研究有限公司 A kind of patch-antenna structure, feeder plate and base station transceiver
CN107546481B (en) * 2017-08-09 2020-11-06 深圳三星通信技术研究有限公司 Patch antenna structure, antenna feeder board and base station transceiver
WO2019116718A1 (en) * 2017-12-11 2019-06-20 株式会社村田製作所 Substrate with antenna, and antenna module
JPWO2019116718A1 (en) * 2017-12-11 2020-11-19 株式会社村田製作所 Board with antenna and antenna module
US11658405B2 (en) 2017-12-11 2023-05-23 Murata Manufacturing Co., Ltd. Antenna-attached substrate and antenna module
JP2019153926A (en) * 2018-03-02 2019-09-12 パナソニックIpマネジメント株式会社 Antenna device

Similar Documents

Publication Publication Date Title
US9246231B2 (en) High-gain wideband antenna apparatus
US7071879B2 (en) Dielectric-resonator array antenna system
US4724443A (en) Patch antenna with a strip line feed element
JPH0374908A (en) Microstrip antenna of stack type
JP5652605B2 (en) Patch antenna for generating circularly polarized wave and linearly polarized wave simultaneously and generation method thereof
JP2004535721A5 (en)
JPH07104052A (en) Assembled radiation structure for millimeter-wave radar sensor
US20150171511A1 (en) Structure and Technique For Antenna Decoupling In A Vehicle Mounted Sensor
WO2004008571A3 (en) Antenna system with spatial filtering surface
JP2009165098A (en) Vehicular fractal antenna
JP2000134022A (en) Antenna system for aircraft and method for its use
WO2018094625A1 (en) Frame of unmanned aerial vehicle, unmanned aerial vehicle and antenna switching method
KR100847144B1 (en) PCB printed typed dual band antenna and Wireless communication module bodied with the PCB printed typed dual band antenna on PCB
JP2952212B2 (en) Assembly structure of planar antenna
CN213936552U (en) Integrated dielectric lens antenna
WO2019085437A1 (en) Antenna structure of unmanned aerial vehicle, and unmanned aerial vehicle
JPH0777325B2 (en) Dual frequency resonant printed dipole antenna
JP4858575B2 (en) Broadcast receiving antenna device
JPH1051227A (en) Planar antenna
JP2019176271A (en) Antenna apparatus
JP3878141B2 (en) Patch array antenna and excitation method thereof
JP3003604B2 (en) Microstrip planar antenna
JP5998786B2 (en) Patch antenna and wireless communication device
JPH0644687B2 (en) Dual frequency print dipole antenna
KR102673808B1 (en) Quasi-omni-directional antennas and signal transceivers