JPH0374561A - Exhaust gas purifying device for engine - Google Patents

Exhaust gas purifying device for engine

Info

Publication number
JPH0374561A
JPH0374561A JP1209146A JP20914689A JPH0374561A JP H0374561 A JPH0374561 A JP H0374561A JP 1209146 A JP1209146 A JP 1209146A JP 20914689 A JP20914689 A JP 20914689A JP H0374561 A JPH0374561 A JP H0374561A
Authority
JP
Japan
Prior art keywords
exhaust gas
engine
egr
purification catalyst
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1209146A
Other languages
Japanese (ja)
Other versions
JP2675405B2 (en
Inventor
Hirobumi Yamauchi
山内 博文
Tsugio Hatsuhira
次男 服平
Hisayuki Yamane
久幸 山根
Hiroshi Murakami
浩 村上
Kazuya Komatsu
一也 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP1209146A priority Critical patent/JP2675405B2/en
Publication of JPH0374561A publication Critical patent/JPH0374561A/en
Application granted granted Critical
Publication of JP2675405B2 publication Critical patent/JP2675405B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE:To improve the purifying performance of a catalyst in a device with an NOx purifying catalyst provided at an exhaust pipe by providing an EGR device for taking exhaust gas switchingly out of the upstream and downstream sides of the catalizer so as to be recirculated to an intake system and performing the take-out switching according to load. CONSTITUTION:A diesel particulate filter 21 is provided at the intermediate part of the exhaust pipe 18 of an diesel engine, as well as an NOx purifying catalyst 20 for deoxidizing NOx in exhaust gas is provided on the downstream side of the exhaust pipe 18. There is also provided with an EGR passage 24 for connecting the exhaust pipe 18 on the upstream and downstream sides of the catalizer 20 to an exhaust pipe 12 more on the downstream side than an intake throttle valve 12a, and EGR valves 26a, 26b are respectively interposed in the vicinity of the communicating part of the passage 24 with the exhaust pipe 18, thus forming an EGR device 32. The respective valves 26a, 26b are controlled by a controller 60 so that the exhaust gas is recirculated through the EGR valve 26a on the upstream side at the time of low load and through the EGR valve 26b on the downstream side at the time of high load.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はエンジンの排気ガス浄化装置の改良に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to an improvement in an engine exhaust gas purification device.

(従来の技術) 近年の排気ガス浄化技術の進歩により大気中に放出され
るHC及びCOの量は減少しているが、NOxに対する
対策が遅れているので、都市部を中心にしてNOxに起
因する酸性雨が降る等の被害が発生している。
(Conventional technology) Recent advances in exhaust gas purification technology have reduced the amount of HC and CO emitted into the atmosphere, but measures against NOx are lagging behind, so Damages such as acid rain are occurring.

もっとも、排気ガス中のNOxを浄化できるものとして
NH3接触還元法が知られているが、このNH3接触還
元法は、システムが複雑でコストが高い上に、燃焼ガス
温度が高い時にNH,が排出されるという二次公害の問
題を有しているため、自動車に適用するには未解決の問
題が多い。
However, the NH3 catalytic reduction method is known as a method that can purify NOx in exhaust gas, but this NH3 catalytic reduction method has a complicated system and high cost, and NH, is emitted when the combustion gas temperature is high. However, there are many unresolved problems in applying it to automobiles, as there is the problem of secondary pollution caused by air pollution.

これに対して、排気ガス中のIC,Co及びNOxを1
つの触媒コンバータで同時に浄化できる三元触媒方式も
提案されているが、この三元触媒方式は理論空燃比付近
では効果的であるが、排気ガスの空燃比がリーン状態で
は浄化性能が不十分であるという問題がある。
On the other hand, IC, Co and NOx in the exhaust gas are reduced to 1
A three-way catalytic system has also been proposed in which two catalytic converters can purify the air at the same time, but although this three-way catalytic system is effective near the stoichiometric air-fuel ratio, its purification performance is insufficient when the air-fuel ratio of exhaust gas is lean. There is a problem.

そこで、近時、特開昭63−100919号公報に示さ
れるように、酸化雰囲気中、HCの存在下でNOxを浄
化することができる触媒としてCUを含有するNOx浄
化触媒が提案されている。
Therefore, as disclosed in Japanese Patent Application Laid-Open No. 63-100919, a NOx purification catalyst containing CU has been proposed as a catalyst capable of purifying NOx in the presence of HC in an oxidizing atmosphere.

(発明が解決しようとする課′XJ) しかるに、このCuを含有するNOx浄化触媒は、第8
図に示すように、触媒を通過する排気ガス温度によって
浄化性能が異なり、排気ガス温度が500℃付近のとき
に浄化性能がピークで、この温度以上或いはこの温度以
下では浄化性能が低下するという問題がある。
(Problem to be solved by the invention 'XJ) However, this NOx purification catalyst containing Cu is
As shown in the figure, the purification performance varies depending on the temperature of the exhaust gas passing through the catalyst, and the purification performance peaks when the exhaust gas temperature is around 500℃, and the problem is that the purification performance decreases above or below this temperature. There is.

そこで、本発明者は、排気ガスの温度が低い時と高い時
つまりエンジンの低負荷時と高負荷時に、EGR装置を
作動させて排気ガスを吸気系へ還流させて排気ガス中に
排出されるNOxの低減を図り、これにより前記NOx
浄化触媒の浄化性能を捕うことを考慮した。
Therefore, the present inventor operated the EGR device to recirculate the exhaust gas to the intake system when the exhaust gas temperature is low or high, that is, when the engine load is low or high, and the exhaust gas is discharged into the exhaust gas. The aim is to reduce NOx, thereby reducing the amount of NOx.
Consideration was given to capturing the purification performance of the purification catalyst.

ところが、このEGR装置を備えた排気ガス浄化装置に
よると、NOx浄化触媒が十分に機能しない領域でEG
R装置によってNOx浄化触媒の浄化能力を補うことは
できるが、エンジンの低負荷時には、低温の排気ガスが
還流する結果、エンジンの燃焼性が十分でないという問
題、及び、エンジンの高負荷時には、高温の排気ガスが
還流する結果、燃焼室における燃焼温度を十分に抑える
ことができないためNOxの低減効果が十分でないとい
う問題が避けられなかった。
However, according to the exhaust gas purification device equipped with this EGR device, the EGR
The R device can supplement the purification ability of the NOx purification catalyst, but when the engine is under low load, low-temperature exhaust gas recirculates, resulting in insufficient engine combustibility, and when the engine is under high load, high temperature As a result of the exhaust gas being recirculated, the combustion temperature in the combustion chamber cannot be sufficiently suppressed, so the problem of insufficient NOx reduction effect cannot be avoided.

前記に鑑み、本発明は、Cuを含有するNOx浄化触媒
の浄化性能が低いエンジンの低負荷時及び高負荷時に、
EGR装置によってNOx浄化性能を補いつつ、エンジ
ンの低負荷時にはエンジン燃焼性の向上を図ると共に、
エンジンの高負荷時にはNOx排出量の低減効果の向上
を図ることを目的とする。
In view of the foregoing, the present invention provides a method for reducing the purification performance of the NOx purification catalyst containing Cu during low load and high load of the engine.
While supplementing NOx purification performance with the EGR device, it also aims to improve engine combustibility when the engine is under low load.
The purpose is to improve the effect of reducing NOx emissions when the engine is under high load.

(課題を解決するための手段) 前記の目的を達成するため、本発明は、エンジンの低負
荷時にはNOx浄化触媒通過前の高温状態の排気ガスを
還流させる一方、エンジンの高負荷時にはNOx浄化触
媒通過後の高比熱で低温状態の排気ガスを還流させるも
のである。
(Means for Solving the Problems) In order to achieve the above object, the present invention recirculates high-temperature exhaust gas before passing through the NOx purification catalyst when the engine is under low load, while recirculating the high-temperature exhaust gas before passing through the NOx purification catalyst when the engine is under high load. After passing through, the exhaust gas is refluxed at a high specific heat and low temperature.

具体的に本発明の講じた解決手段は、エンジンの排気系
にCuを含有するNOx浄化触媒を備えたエンジンの排
気ガス浄化装置を前提とし、前記NOx浄化触媒の上流
側及び下流側から排気ガスを取出して吸気系へ還流させ
ると共に、前記NOx浄化触媒の上流側からの還流と下
流側からの還流とを切換えるEGR装置と、エンジンの
低負荷時には排気ガスを前記NOx浄化触媒の上流側か
ら還流させる一方、エンジンの高負荷時には排気ガスを
前記NOx浄化触媒の下流側から還流させるよう前記E
GR装置を制御するEGR制御手段とを備える構成とす
るものである。
Specifically, the solution taken by the present invention is based on an engine exhaust gas purification device equipped with a NOx purification catalyst containing Cu in the engine exhaust system, and exhaust gas is removed from the upstream and downstream sides of the NOx purification catalyst. an EGR device that extracts and recirculates the exhaust gas to the intake system and switches between recirculation from the upstream side of the NOx purification catalyst and recirculation from the downstream side; and an EGR device that recirculates the exhaust gas from the upstream side of the NOx purification catalyst when the engine is under low load. On the other hand, when the engine is under high load, the E
The configuration includes an EGR control means for controlling the GR device.

(作用) 本発明の構成により、NOx浄化触媒の浄化性能が低い
エンジンの低負荷時及び高負荷時においては、EGR装
置によるEGRによって排気ガス中に排出されるNOX
量を低減させることができる。
(Function) According to the configuration of the present invention, NOx is emitted into the exhaust gas by EGR by the EGR device during low load and high load of the engine where the purification performance of the NOx purification catalyst is low.
The amount can be reduced.

また、エンジンの低負荷時には排気ガスをNOx浄化触
媒の上流側から取出すため、高温状態の排気ガスが吸気
系に還流する。
Furthermore, when the engine is under low load, the exhaust gas is taken out from the upstream side of the NOx purification catalyst, so the high-temperature exhaust gas is returned to the intake system.

さらに、エンジンの高負荷時には排気ガスをNOx浄化
触媒の下流側から取出すので、比熱の高い排気ガスが吸
気系に還流することにより燃焼室の熱容量が高められる
と共に、NOx浄化触媒を通過して低温状態になった排
気ガスが吸気系に還流する。
Furthermore, when the engine is under high load, exhaust gas is extracted from the downstream side of the NOx purification catalyst, so the exhaust gas with high specific heat returns to the intake system, increasing the heat capacity of the combustion chamber, and passes through the NOx purification catalyst to a low temperature. Exhaust gas in this state is returned to the intake system.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1図は、本発明の第1実施例に係るディーゼルエンジ
ンの排気ガス浄化装置がディーゼルエンジンIOAに適
用された場合の全体構成を示し、同図において、12は
ディーゼルエンジンIOAにエアを吸入するための吸気
管、14はディーゼルエンジンIOAの各シリンダへエ
アを配給するインテークマニホールド、15は前記各シ
リンダに燃料を噴射、供給する燃料噴射ポンプ、16は
前記各シリンダから排出される排気ガスを集めるエキゾ
ーストマニホールド、18は排気ガスを排出する排気管
である。
FIG. 1 shows the overall configuration when the diesel engine exhaust gas purification device according to the first embodiment of the present invention is applied to a diesel engine IOA. 14 is an intake manifold that distributes air to each cylinder of the diesel engine IOA; 15 is a fuel injection pump that injects and supplies fuel to each cylinder; 16 is a collection of exhaust gas discharged from each cylinder; Exhaust manifold 18 is an exhaust pipe that discharges exhaust gas.

また、同図において、20は排気ガス中のN。Further, in the figure, 20 is N in the exhaust gas.

×を還元するためのCuを含有するNOx浄化触媒であ
って、次のようにして製造される。すなわち、ゼオライ
トの一種であるモルデナイト[Na201AI203 
*nSiO2コのNaがHで置換され、S i O::
 /A 1203のモル比が10以上で、細孔径が7オ
ングストロ一ム程度のものを準備し、これを有機酸鋼の
水溶液に含浸させ、イオン交換を起こさせてCuを担持
させる。この場合、銅イオン交換率が多いものほどNO
xの浄化率は高いと共に、S to、2 /A 120
3のモル比が高いほど触媒活性が高い。
This is a NOx purification catalyst containing Cu for reducing x, and is manufactured as follows. That is, mordenite [Na201AI203, which is a type of zeolite]
*Na of nSiO2 is replaced with H, S i O::
/A1203 having a molar ratio of 10 or more and a pore diameter of about 7 angstroms is prepared, and this is impregnated with an aqueous solution of organic acid steel to cause ion exchange and support Cu. In this case, the higher the copper ion exchange rate, the more NO
The purification rate of x is high and S to,2 /A 120
The higher the molar ratio of 3, the higher the catalyst activity.

また、このNOX浄化触媒20は、2Cu”+NO−2
Cu2”+N0−−”2Cu” +N2 +02に示す
ような分解反応を行なうことにより、N。
In addition, this NOx purification catalyst 20 has 2Cu"+NO-2
Cu2"+N0--"2Cu"+N2+02 By performing a decomposition reaction as shown in FIG.

をNごと02に分解するものであって、前記のように5
00℃前後でNOに対する高い浄化率を有していると共
に、他の触媒と比べてNo分解性能がかなり高い。また
、このNOx浄化触媒20は排気ガスの空燃比がリーン
雰囲気ではNOXの浄化性能が高いが、02分圧が高い
ほど浄化率が低下し、またC0分圧が低いほど浄化率が
低下するという性質を有している。
is decomposed into 02 for each N, and as mentioned above, 5
It has a high NO purification rate at around 00°C, and has considerably higher NO decomposition performance than other catalysts. In addition, this NOx purification catalyst 20 has high NOx purification performance in an atmosphere where the air-fuel ratio of exhaust gas is lean, but the higher the 02 partial pressure, the lower the purification rate, and the lower the C0 partial pressure, the lower the purification rate. It has properties.

また、同図において、21はNOx浄化触媒20の上流
側の排気管18に配設され、排気ガス中の微粒子を捕集
して濾過するDPF (ディーゼルパティキュレートフ
ィルター)、22はDPF21の上流側の排気管18の
壁部に配設され、DPF21に付着した微粒子を燃焼さ
せるバーナーである。このように、NOx浄化触媒20
の上流側にDPF21が配設されているため、排気ガス
中の微粒子はDPF21によって捕集されてNOx浄化
触媒20に達しないので、NOx浄化触媒20の浄化性
能の低下が防止される。また、DPF21の上流側にバ
ーナー22が配設されているので、DPF21に微粒子
が多く付着して目づまり状態になり、排気ガスが流通し
難くなったときに、バーナー22により微粒子を燃焼さ
せて除去することができる。
In addition, in the same figure, 21 is a DPF (diesel particulate filter) disposed in the exhaust pipe 18 upstream of the NOx purification catalyst 20 to collect and filter particulates in the exhaust gas, and 22 is a DPF 21 upstream of the DPF 21. This burner is disposed on the wall of the exhaust pipe 18 and burns particulates attached to the DPF 21. In this way, the NOx purification catalyst 20
Since the DPF 21 is disposed upstream of the exhaust gas, fine particles in the exhaust gas are collected by the DPF 21 and do not reach the NOx purification catalyst 20, thereby preventing a reduction in the purification performance of the NOx purification catalyst 20. In addition, since the burner 22 is disposed upstream of the DPF 21, when the DPF 21 is clogged with a large number of particles and it becomes difficult for exhaust gas to flow through, the burner 22 burns the particles. Can be removed.

また、第1図及び第2図において、24はDPF21の
上流側つまりNOX浄化触媒20の上流側の排気管18
及びNOx浄化触媒20の下流側の排気管18と、吸気
管12とを各々連通させ、排気ガスを排気管18から吸
気管12に還流させるEGR通路、26A、26BはE
GR通路24における排気管18との連通部近傍に介設
され、NOx浄化触媒20の上流側からの還流量、及び
NOX浄化触媒20の下流側からの還流量を各々可変す
るEGRバルブ、28A、28Bはオルタネータに装着
された真空ポンプ29とEGRパルプ26A  26B
とを連通させ、EGRバルブ26A、26Bに負圧を導
入する負圧導入通路、30A、30Bは負圧導入通路2
8A、28Bに介設され、EGRバルブ26A、26B
の開度をデユーティ制御により調節するEGR用ソリソ
レノイドバルブる。
In FIGS. 1 and 2, 24 is an exhaust pipe 18 upstream of the DPF 21, that is, upstream of the NOx purification catalyst 20.
EGR passages 26A and 26B communicate the exhaust pipe 18 on the downstream side of the NOx purification catalyst 20 with the intake pipe 12 and recirculate the exhaust gas from the exhaust pipe 18 to the intake pipe 12.
an EGR valve, 28A, which is interposed near the communication portion with the exhaust pipe 18 in the GR passage 24 and varies the amount of recirculation from the upstream side of the NOx purification catalyst 20 and the amount of recirculation from the downstream side of the NOx purification catalyst 20; 28B is the vacuum pump 29 attached to the alternator and EGR pulp 26A 26B
Negative pressure introduction passages 30A and 30B communicate with each other and introduce negative pressure into the EGR valves 26A and 26B, and 30A and 30B are negative pressure introduction passages 2.
8A, 28B, EGR valves 26A, 26B
EGR solenoid valve whose opening degree is adjusted by duty control.

以上説明したEGR通路24、EGRバルブ26A、2
6B、負圧導入通路28A、28B、真空ポンプ29及
びEGR用ソリソレノイドバルブ30A0BによってE
GR装置32が構成されており、このEGR装置32に
よって、排気ガスが吸気系に還流され、燃焼室の熱容量
が高められる結果、排気ガス中へのNOx排出量が低減
する。
The EGR passage 24 and EGR valves 26A and 2 explained above
6B, negative pressure introduction passages 28A, 28B, vacuum pump 29, and EGR solenoid valve 30A0B.
A GR device 32 is configured, and as a result of this EGR device 32, exhaust gas is recirculated to the intake system and the heat capacity of the combustion chamber is increased, the amount of NOx discharged into the exhaust gas is reduced.

なお、本実施例では、吸気管12におけるEGR通路2
4との連通部より上流側に吸気絞り弁12aが配設され
ている。その理由は、ディーゼルエンジンでは、吸気圧
と排気圧との差が小さいため、排気ガスがEGR通路2
4から吸気管12へ流入しにくい。そこで、排気ガスを
還流させる際、この吸気絞り弁12aを絞って所定の吸
気圧にし、排気ガスを還流させ易くするためである。も
っとも、この場合でも、排気ガスの還流量はEGRバル
ブ26A、26Bの開度を調節することによって調整す
る。
Note that in this embodiment, the EGR passage 2 in the intake pipe 12
An intake throttle valve 12a is disposed on the upstream side of the communication portion with 4. The reason for this is that in a diesel engine, the difference between intake pressure and exhaust pressure is small, so exhaust gas flows into the EGR passage 2.
4 into the intake pipe 12. Therefore, when the exhaust gas is recirculated, the intake throttle valve 12a is throttled to a predetermined intake pressure to facilitate the recirculation of the exhaust gas. However, even in this case, the amount of recirculation of exhaust gas is adjusted by adjusting the opening degrees of the EGR valves 26A and 26B.

また、第1図において、36は二次エアの供給源である
エアポンプ、38はエアポンプ36と、排気管18にお
けるDPF21とNOX浄化触媒20との間とを連通さ
せ、二次エアを排気管18へ供給するための二次エア通
路、40は二次エア通路36を流通する二次エア量を可
変する二次工ア調整バルブ、42は前記真空ポンプ29
と二次エア![バルブ40とを連通させ、二次エア調整
バルブ40に負圧を導入する負圧導入通路、44は負圧
導入通路42に介設され、二次エア調整バルブ40の開
度をデユーティ制御により調節する二次エア用ソレノイ
ドバルブである。
Further, in FIG. 1, reference numeral 36 is an air pump that is a supply source of secondary air, and 38 is a communication between the air pump 36 and the DPF 21 and the NOx purification catalyst 20 in the exhaust pipe 18, and the secondary air is supplied to the exhaust pipe 18. 40 is a secondary air adjustment valve that changes the amount of secondary air flowing through the secondary air passage 36; 42 is the vacuum pump 29;
And secondary air! [A negative pressure introduction passage 44 is interposed in the negative pressure introduction passage 42 to communicate with the valve 40 and introduce negative pressure into the secondary air adjustment valve 40, and the opening degree of the secondary air adjustment valve 40 is controlled by duty control. This is a solenoid valve for regulating secondary air.

以上説明した二次エアポンプ36、二次エア通路38、
二次エア調整バルブ40、負圧導入通路42及び二次エ
ア用ソレノイドバルブ44によって、NOx浄化触媒2
0の上流に二次エアを供給する二次エア供給装置46が
構成されており、排気ガスの空燃比がリッチで且つ排気
ガスの温度が高いときに、この二次エア供給装置46に
よって排気ガス中に二次エアを供給すると、NOx浄化
触媒20に流入する排気ガスがリーン傾向になると共に
排気ガス温度が低下して、NOx浄化触媒20の保護が
図られると共にNOX浄化触媒の性能が向上する。
The secondary air pump 36, the secondary air passage 38, described above,
The secondary air adjustment valve 40, negative pressure introduction passage 42, and secondary air solenoid valve 44 control the
A secondary air supply device 46 is configured to supply secondary air upstream of the exhaust gas.When the air-fuel ratio of exhaust gas is rich and the temperature of the exhaust gas is high, this secondary air supply device 46 When secondary air is supplied into the NOx purification catalyst 20, the exhaust gas flowing into the NOx purification catalyst 20 tends to be lean and the exhaust gas temperature decreases, thereby protecting the NOx purification catalyst 20 and improving the performance of the NOx purification catalyst. .

また、第1図において、50はエンジン冷却水温度を検
出する冷却水温度センサ、51はエンジンの吸気温度を
検出する吸気温度センサ、52はエンジンの吸気圧を検
出する吸気圧センサ、54はNOx浄化触媒20の上流
側の排気ガス温度を検出する排気ガス温度センサ、55
は排気ガス中の酸素濃度を検出する02センサ、56は
排気ガスの圧力を検出する圧力センサであって、この圧
力センサ56によりDPF21のフィルターに微粒子が
多く付着してフィルターが目づまりを起こしている状態
を検知できる。
Further, in FIG. 1, 50 is a cooling water temperature sensor that detects the engine cooling water temperature, 51 is an intake air temperature sensor that detects the engine intake air temperature, 52 is an intake pressure sensor that detects the engine intake pressure, and 54 is NOx an exhaust gas temperature sensor 55 that detects the exhaust gas temperature upstream of the purification catalyst 20;
02 sensor detects the oxygen concentration in exhaust gas, 56 is a pressure sensor that detects the pressure of exhaust gas, and this pressure sensor 56 causes a lot of particles to adhere to the filter of the DPF 21, causing the filter to become clogged. The state can be detected.

また、第1図において、60はエンジンの低負荷時には
排気ガスをNOx浄化触媒20の上流側から還流させる
一方、エンジンの高負荷時には排気ガスをNOx浄化触
媒20の下流側から還流させるようEGR装置32を制
御するEGR制御手段としてのCPU内蔵のコントロー
ルユニットである。
In FIG. 1, reference numeral 60 denotes an EGR device that recirculates exhaust gas from the upstream side of the NOx purification catalyst 20 when the engine is under low load, while recirculating exhaust gas from the downstream side of the NOx purification catalyst 20 when the engine is under high load. This is a control unit with a built-in CPU as an EGR control means for controlling 32.

そして、コントロールユニット60は、冷却水温度セン
サ50からエンジン冷却水温度信号、吸気温度センサ5
1からエンジンの吸気温度信号、吸気圧センサ52から
のエンジンの吸気圧信号、排気ガス温度センサ54から
排気ガス温度信号、02センサ55からの排気ガスの空
燃比信号、圧力センサ56からの排気ガス圧力信号、燃
料噴射ポンプ15からのエンジン回転数信号及びエンジ
ン負荷信号等を受け、排気ガス温度信号及び空燃比信号
に基づき二次エア用ソレノイドバルブ44をデユーティ
制御し、圧力センサ56からの排気ガス圧力信号に基づ
きバーナー22の燃焼を制御する。
The control unit 60 receives an engine coolant temperature signal from the coolant temperature sensor 50, and receives an engine coolant temperature signal from the coolant temperature sensor 50.
1 to the engine intake temperature signal, the engine intake pressure signal from the intake pressure sensor 52, the exhaust gas temperature signal from the exhaust gas temperature sensor 54, the exhaust gas air-fuel ratio signal from the 02 sensor 55, and the exhaust gas from the pressure sensor 56. In response to the pressure signal, the engine speed signal and the engine load signal from the fuel injection pump 15, the secondary air solenoid valve 44 is duty-controlled based on the exhaust gas temperature signal and the air-fuel ratio signal, and the exhaust gas from the pressure sensor 56 is controlled. Combustion of the burner 22 is controlled based on the pressure signal.

また、コントロールユニット60は、エンジン負荷信号
及びエンジン回転数信号に基づき、第3図に示すように
、エンジンの高負荷時(同図において(a)で示す)に
はNOx浄化触媒20の下流側から排気ガスを還流させ
、エンジンの低負荷時(同図において(b)で示す)に
はNOx浄化触媒の上流側から排気ガスを還流させ、エ
ンジンの中負荷時(同図において(C)で示す)には排
気ガスをいずれからも還流させないか若しくは下流側か
ら少量還流させるようにEGR用ソリソレノイドバルブ
30A0Bを各々制御する。なお、前記実施例に代えて
、エンジン負荷信号のみに基づいて前記のような制御を
行なってもよい。
Further, the control unit 60 controls the downstream side of the NOx purification catalyst 20 when the engine is under high load (indicated by (a) in the figure), as shown in FIG. 3, based on the engine load signal and the engine rotation speed signal. The exhaust gas is recirculated from the upstream side of the NOx purification catalyst when the engine is under low load (indicated by (b) in the same figure), and the exhaust gas is recirculated from the upstream side of the NOx purification catalyst when the engine is under medium load (indicated by (C) in the same figure). (shown), the EGR soli solenoid valves 30A0B are controlled so that the exhaust gas is not recirculated from either side or is recirculated in a small amount from the downstream side. Note that instead of the above embodiment, the above control may be performed based only on the engine load signal.

以上のように、エンジンの低負荷時及び高負荷時、つま
りNOx浄化触媒の浄化性能が低い場合にEGR装置3
2によって、燃焼室の熱容量が高められるため排気ガス
中へのNOxの排出量が低減すると共に、排気ガス中の
Noの分圧が高まってNOx浄化率の向上が図られる。
As described above, the EGR device 3
2, the heat capacity of the combustion chamber is increased, so the amount of NOx discharged into the exhaust gas is reduced, and the partial pressure of No in the exhaust gas is increased to improve the NOx purification rate.

また、エンジンの低負荷時には排気ガスをN。Also, when the engine is under low load, the exhaust gas is reduced to N.

×浄化触媒20の上流側から取出すので高温の排気ガス
が得られ、この高温の排気ガスが吸気系に還流するため
エンジン燃焼性の向上が図られる。
*Since the exhaust gas is taken out from the upstream side of the purification catalyst 20, high-temperature exhaust gas is obtained, and since this high-temperature exhaust gas is recirculated to the intake system, engine combustibility is improved.

さらに、エンジンの高負荷時には排気ガスをNOx浄化
触媒20の下流側から取出すため、N。
Furthermore, when the engine is under high load, the exhaust gas is taken out from the downstream side of the NOx purification catalyst 20, so N gas is used.

×がO!とN2とに分解されて比熱の高い(つまり分子
数が多い)排気ガスが吸気系に還流される結果、燃焼室
の熱容量が高められると共に、NOx浄化触媒20を通
過することにより低温になった排気ガスが還流するので
、NOxの排出が低減する。
× is O! As a result of decomposing the exhaust gas into N2 and N2 and having a high specific heat (that is, a large number of molecules), the exhaust gas is returned to the intake system, increasing the heat capacity of the combustion chamber and reducing the temperature by passing through the NOx purification catalyst 20. Since the exhaust gas is recirculated, NOx emissions are reduced.

なお、EGR装置32による排気ガスの還流量について
は、第4図に示すような、平均有効圧(エンジンの負荷
に相当する)とエンジンの回転数とに応じて設定される
EGR率マツプに基づくことが好ましい。
Note that the amount of recirculation of exhaust gas by the EGR device 32 is based on an EGR rate map that is set according to the average effective pressure (corresponding to the engine load) and the engine speed, as shown in FIG. It is preferable.

第5図及び第6図は本発明の第2実施例に係るエンジン
の排気ガス浄化装置がガソリンエンジン10Bに適用さ
れた場合を示し、前記第1実施例と同様、吸気管12、
インテークマニホールド14、エキゾーストマニホール
ド16、排気管18、NOx浄化触媒20が配設されて
いる。
5 and 6 show a case where the engine exhaust gas purification device according to the second embodiment of the present invention is applied to a gasoline engine 10B, in which, as in the first embodiment, the intake pipe 12,
An intake manifold 14, an exhaust manifold 16, an exhaust pipe 18, and a NOx purification catalyst 20 are provided.

また、本第2実施例はガソリンエンジンIOBに適用し
た場合であるから、排気ガス中の微粒子は問題にならな
いためDPF21及びバーナー22が配設されておらず
、代わりに、排気ガス中のIC及びC○を酸化させる酸
化触媒23が配設されている。従って、本第2実施例に
おいては、EGR通路24は、酸化触媒23の上流側の
排気管18及びNOx浄化触媒20の下流側の排気管1
8と、吸気管12とを各々連通させている。
In addition, since this second embodiment is applied to a gasoline engine IOB, fine particles in the exhaust gas are not a problem, so the DPF 21 and the burner 22 are not provided, and instead, the IC and burner 22 in the exhaust gas are not provided. An oxidation catalyst 23 for oxidizing C○ is provided. Therefore, in the second embodiment, the EGR passage 24 includes the exhaust pipe 18 upstream of the oxidation catalyst 23 and the exhaust pipe 18 downstream of the NOx purification catalyst 20.
8 and the intake pipe 12, respectively.

また、本第2実施例では、EGR装置32の負圧導入通
路28A、28B及び二次エア供給装置46の負圧導入
通路42は各々吸気絞り弁12aの下流側の吸気管12
に連通しており、前記真空ポンプ2つに代えて吸気管1
2から負圧を導入している。
Further, in the second embodiment, the negative pressure introduction passages 28A, 28B of the EGR device 32 and the negative pressure introduction passage 42 of the secondary air supply device 46 are connected to the intake pipe 12 downstream of the intake throttle valve 12a.
The intake pipe 1 is connected to the vacuum pump in place of the two vacuum pumps.
Negative pressure is introduced from 2.

さらに、本第2実施例では、コントロールユニット60
は、エンジン回転数センサ57からエンジン回転数信号
、エンジン吸入負圧センサ58からエンジン負荷信号等
を受けて、前記同様つまりエンジンの低負荷時には排気
ガスをNOx浄化触媒20の上流側から還流させる一方
、エンジンの高負荷時には排気ガスをNOx浄化触媒2
oの下流側から還流させるようにEGR用ソレノイドバ
ルブ30A、30Bを各々制御する。
Furthermore, in the second embodiment, the control unit 60
receives an engine speed signal from the engine speed sensor 57 and an engine load signal from the engine suction negative pressure sensor 58, and as described above, when the engine load is low, the exhaust gas is recirculated from the upstream side of the NOx purification catalyst 20. When the engine is under high load, the exhaust gas is converted to NOx purification catalyst 2.
The EGR solenoid valves 30A and 30B are controlled so that the EGR solenoid valves 30A and 30B are recirculated from the downstream side of the EGR.

なお、本第2実施例に係るエンジンの排気ガス浄化装置
がガソリンエンジンIOBに適用される場合、排気ガス
の還流量については、第7図に示すような、平均有効圧
とエンジンの回転数とに応じて設定されるEGR率マツ
プに基づくことが好ましい。
Note that when the engine exhaust gas purification device according to the second embodiment is applied to a gasoline engine IOB, the amount of recirculation of exhaust gas is determined based on the average effective pressure and engine rotation speed as shown in FIG. It is preferable to use an EGR rate map set according to the EGR rate map.

(発明の効果) 以上説明したように、本発明に係るエンジンの排気ガス
浄化装置によると、排気ガスをエンジンの低負荷時には
NOx浄化触媒の上流側から還流させると共に、高負荷
時にはNOx浄化触媒の下流側から還流させるようにし
たため、NOx浄化触媒の浄化性能が低いエンジンの低
負荷時及び高負荷時には、EGR装置により排気ガス中
に排出されるN0xjlを低減させてNOx浄化触媒の
浄化性能を補う二とができる。
(Effects of the Invention) As explained above, according to the engine exhaust gas purification device according to the present invention, the exhaust gas is recirculated from the upstream side of the NOx purification catalyst when the engine is under low load, and the exhaust gas is recirculated from the upstream side of the NOx purification catalyst when the engine is under high load. Since the flow is recirculated from the downstream side, when the engine is under low load or under high load, when the NOx purification catalyst has low purification performance, the EGR device reduces the NOxjl emitted into the exhaust gas and compensates for the purification performance of the NOx purification catalyst. I can do two things.

また、エンジンの低負荷時にはNOx浄化触媒の上流側
から取出した高温状態の排気ガスを還流させるので、エ
ンジンの燃焼性の向上を図ることができると共に、エン
ジンの高負荷時にはNOx浄化触媒の下流側から取出し
た熱容量が高く且つ低温状態の排気ガスを還流させるの
で、NOX排出量の低減を図ることができる。
In addition, when the engine is under low load, the high-temperature exhaust gas taken out from the upstream side of the NOx purification catalyst is recirculated, making it possible to improve engine combustibility. Since the exhaust gas extracted from the exhaust gas having a high heat capacity and at a low temperature is recirculated, it is possible to reduce the amount of NOx emissions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は本発明の第1実施例を示し、第1図は
エンジンの排気ガス浄化装置の全体構成図、第2図はE
GR装置の断面図、第3図はEGR装置に対する制御概
念図、第4図はエンジン回転数と平均有効圧に対応する
EGR率マツプ図、′m5図〜第7図は本発明の第2実
施例を示し、第5図はエンジンの排気ガス浄化装置の全
体構成図、第6図はEGR装置の断面図、第7図はエン
ジン回転数と平均有効圧に対応するEGR率マツプ図、
第8図はNOx浄化触媒における排気ガス温度とNOX
浄化性能との関係を示す図である。 10A・・・ディーゼルエンジン 10B・・・ガソリンエンジン 12・・・吸気管 18・・・排気管 20・・・NOx浄化触媒 21・・・DPF 23・・・酸化触媒 24・・・EGR通路 26A、26B・・・EGRバルブ 28A、28B・・・負圧導入通路 29・・・真空ポンプ 30A、30B ・・・EGR用ソリソレノイドパ ルプ・・・EGR装置 60・・・コントロールユニット 工゛/ジ゛゛7回転数 第3図
1 to 4 show a first embodiment of the present invention, FIG. 1 is an overall configuration diagram of an engine exhaust gas purification device, and FIG. 2 is an E
A sectional view of the GR device, FIG. 3 is a conceptual diagram of control for the EGR device, FIG. 4 is an EGR rate map diagram corresponding to engine speed and average effective pressure, and FIGS. For example, Fig. 5 is an overall configuration diagram of an engine exhaust gas purification device, Fig. 6 is a sectional view of an EGR device, Fig. 7 is an EGR rate map diagram corresponding to engine speed and average effective pressure,
Figure 8 shows the exhaust gas temperature and NOx at the NOx purification catalyst.
It is a figure showing the relationship with purification performance. 10A...Diesel engine 10B...Gasoline engine 12...Intake pipe 18...Exhaust pipe 20...NOx purification catalyst 21...DPF 23...Oxidation catalyst 24...EGR passage 26A, 26B...EGR valve 28A, 28B...Negative pressure introduction passage 29...Vacuum pump 30A, 30B...Soli solenoid pulp for EGR...EGR device 60...Control unit engineering/division 7 Rotation speed figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)エンジンの排気系にCuを含有するNO_x浄化
触媒を備えたエンジンの排気ガス浄化装置において、 前記NO_x浄化触媒の上流側及び下流側から排気ガス
を取出して吸気系へ還流させると共に、前記NO_x浄
化触媒の上流側からの還流と下流側からの還流とを切換
えるEGR装置と、 エンジンの低負荷時には排気ガスを前記NO_x浄化触
媒の上流側から還流させる一方、エンジンの高負荷時に
は排気ガスを前記NO_x浄化触媒の下流側から還流さ
せるよう前記EGR装置を制御するEGR制御手段とを
備えたことを特徴とするエンジンの排気ガス浄化装置。
(1) In an engine exhaust gas purification device including an NO_x purification catalyst containing Cu in the engine exhaust system, exhaust gas is extracted from the upstream and downstream sides of the NO_x purification catalyst and recirculated to the intake system; The EGR device switches between recirculation from the upstream side of the NO_x purification catalyst and recirculation from the downstream side. An exhaust gas purification device for an engine, comprising: EGR control means for controlling the EGR device to cause recirculation from the downstream side of the NO_x purification catalyst.
JP1209146A 1989-08-12 1989-08-12 Engine exhaust gas purification device Expired - Lifetime JP2675405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1209146A JP2675405B2 (en) 1989-08-12 1989-08-12 Engine exhaust gas purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1209146A JP2675405B2 (en) 1989-08-12 1989-08-12 Engine exhaust gas purification device

Publications (2)

Publication Number Publication Date
JPH0374561A true JPH0374561A (en) 1991-03-29
JP2675405B2 JP2675405B2 (en) 1997-11-12

Family

ID=16568073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1209146A Expired - Lifetime JP2675405B2 (en) 1989-08-12 1989-08-12 Engine exhaust gas purification device

Country Status (1)

Country Link
JP (1) JP2675405B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693839A (en) * 1992-09-10 1994-04-05 Hitachi Ltd Exhaust emission control device for internal combustion engine
JPH09122447A (en) * 1995-10-27 1997-05-13 Sangyo Souzou Kenkyusho Purifying process for engine exhaust gas
WO2004018850A1 (en) * 2002-08-26 2004-03-04 Hitachi, Ltd. Apparatus and method for clarifying exhaust gas of diesel engine
FR2872861A1 (en) * 2004-07-06 2006-01-13 Peugeot Citroen Automobiles Sa Exhaust gas re-circulating system for internal combustion engine, has control unit to control relative proportion of processed and unprocessed exhaust gas that are re-circulated through conduits towards combustion chamber
JP2008248878A (en) * 2007-03-02 2008-10-16 Honda Motor Co Ltd Internal combustion engine and control device for internal combustion engine
WO2011128943A1 (en) * 2010-04-15 2011-10-20 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US8813490B2 (en) 2009-02-06 2014-08-26 Honda Motor Co., Ltd. Internal combustion engine exhaust emission control device and exhaust emission control method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006022770A (en) 2004-07-09 2006-01-26 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP5053306B2 (en) 2009-02-06 2012-10-17 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
JP5365261B2 (en) * 2009-03-02 2013-12-11 マツダ株式会社 Method and system for controlling exhaust gas recirculation in an internal combustion engine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693839A (en) * 1992-09-10 1994-04-05 Hitachi Ltd Exhaust emission control device for internal combustion engine
JPH09122447A (en) * 1995-10-27 1997-05-13 Sangyo Souzou Kenkyusho Purifying process for engine exhaust gas
WO2004018850A1 (en) * 2002-08-26 2004-03-04 Hitachi, Ltd. Apparatus and method for clarifying exhaust gas of diesel engine
FR2872861A1 (en) * 2004-07-06 2006-01-13 Peugeot Citroen Automobiles Sa Exhaust gas re-circulating system for internal combustion engine, has control unit to control relative proportion of processed and unprocessed exhaust gas that are re-circulated through conduits towards combustion chamber
JP2008248878A (en) * 2007-03-02 2008-10-16 Honda Motor Co Ltd Internal combustion engine and control device for internal combustion engine
US8205449B2 (en) 2007-03-02 2012-06-26 Honda Motor Co., Ltd. Internal combustion engine and control system for internal combustion engine
US8813490B2 (en) 2009-02-06 2014-08-26 Honda Motor Co., Ltd. Internal combustion engine exhaust emission control device and exhaust emission control method
WO2011128943A1 (en) * 2010-04-15 2011-10-20 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
CN102822463A (en) * 2010-04-15 2012-12-12 丰田自动车株式会社 Exhaust gas purification device for internal combustion engine
JP5141824B2 (en) * 2010-04-15 2013-02-13 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine

Also Published As

Publication number Publication date
JP2675405B2 (en) 1997-11-12

Similar Documents

Publication Publication Date Title
US8341943B2 (en) Exhaust gas purification method and exhaust gas purification system
JP3252793B2 (en) Exhaust gas purification device for internal combustion engine
US6467257B1 (en) System for reducing the nitrogen oxide (NOx) and particulate matter (PM) emissions from internal combustion engines
JP2013545014A (en) Vehicle internal combustion engine having exhaust gas recirculation function
WO2000077353A3 (en) Improvements in emissions control
US7464540B2 (en) Ammonia producing engine utilizing oxygen separation
JPH0374561A (en) Exhaust gas purifying device for engine
US20050193724A1 (en) Oxygen-enriched feedgas for reformer in emissions control system
US20050178109A1 (en) Exhaust gas purifying apparatus for internal combustion engine
JP2933644B2 (en) Engine exhaust gas purification device
JP3577956B2 (en) Exhaust gas purification device for internal combustion engine
CN107100702B (en) Method and apparatus for engine exhaust gas reprocessing
JP6112297B2 (en) Engine exhaust purification system
JP2010185369A (en) Fuel supply device of engine
JP2019082121A (en) Exhaust-temperature rise mode egr device
CN111779584B (en) Fuel combustion system and engine combustion control method
JP3888115B2 (en) Control device for internal combustion engine
JP2006097469A (en) Pm continuous regenerating method under low load on diesel engine
WO2005073525A1 (en) Method for controlling an internal combustion engine
JP4893493B2 (en) Exhaust gas purification device for internal combustion engine
JP2009264203A (en) Exhaust device for internal combustion engine
KR100802722B1 (en) Method for preventing uncontrolled burning of diesel catalyzed particulate filter
JP2006037857A (en) Exhaust emission control device
JP3744220B2 (en) Engine exhaust gas purification device
JP2798219B2 (en) Denitration equipment for internal combustion engines