JPH0374322B2 - - Google Patents

Info

Publication number
JPH0374322B2
JPH0374322B2 JP57223408A JP22340882A JPH0374322B2 JP H0374322 B2 JPH0374322 B2 JP H0374322B2 JP 57223408 A JP57223408 A JP 57223408A JP 22340882 A JP22340882 A JP 22340882A JP H0374322 B2 JPH0374322 B2 JP H0374322B2
Authority
JP
Japan
Prior art keywords
sensor
steel pipe
robot
weld
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57223408A
Other languages
Japanese (ja)
Other versions
JPS59112209A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP22340882A priority Critical patent/JPS59112209A/en
Publication of JPS59112209A publication Critical patent/JPS59112209A/en
Publication of JPH0374322B2 publication Critical patent/JPH0374322B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 本発明は、産業用ロボツトによる鋼管溶接部形
状の測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the shape of a steel pipe weld using an industrial robot.

UO鋼管は厚鋼板を曲げてその両側縁を突合さ
せ溶接してなり、大径鋼管によく採用される。こ
の種溶接鋼管の品質管理には溶接部の形状測定が
欠かさず、従来は人手によりビート高さ、ビート
幅、オフセツト量などを測定していた。第1図は
その概要を示し、(a)はビート高さを測定例であ
る。1は治具、2はダイヤルゲージで、これらの
先端を鋼管34の溶接部36に図示のように当
て、ダイヤルゲージの先端が治具先端より後退す
る距離によりビート高さを測定する。(b)はビート
幅の測定例で、ノギス3を溶接部36の両側に当
て幅を測定する。(c)はオフセツトの測定例で、治
具1とダイヤルゲージ2を実線位置において同図
(e)に示す点δ3の位置(高さ)を求め、また治具1
とダイヤルゲージを点線位置において同図(e)の点
δ1の位置(高さ)を求め、これらよりオフセツト
量δ3−δ1を求める。(d)はピーキングの測定例を示
す。この場合は治具1より大型の治具4を用い、
これにダイヤルゲージを2,5の2個取付け、鋼
管34上の所定の2点に対する溶接部36の両側
の点c,dの高さを測定する。鋼管34の径Dは
既知であるから2点a,bを通る径Dの円を同図
(f)の点線6の如く画くことができ、溶接部36は
点線7で示すように周囲の円弧を延長したものに
平坦化し、これらの円弧6,7間の間隔の最大値
ΔXnaxとしてピーキングを求める。
UO steel pipes are made by bending thick steel plates, butting the edges on both sides and welding them together, and are often used for large-diameter steel pipes. Measuring the shape of the weld is essential for quality control of this type of welded steel pipe, and conventionally beat height, beat width, offset amount, etc. were measured manually. Figure 1 shows the outline, and (a) shows an example of measuring the beat height. 1 is a jig, 2 is a dial gauge, and the tips of these are applied to the welded part 36 of the steel pipe 34 as shown in the figure, and the beat height is measured by the distance that the tip of the dial gauge retreats from the tip of the jig. (b) is an example of measuring the beat width, in which the caliper 3 is applied to both sides of the welded part 36 to measure the width. (c) is an example of offset measurement, with jig 1 and dial gauge 2 placed at the solid line position.
Find the position (height) of point δ 3 shown in (e), and
and the dial gauge at the dotted line position, find the position (height) of point δ 1 in FIG. (d) shows an example of peaking measurement. In this case, jig 4, which is larger than jig 1, is used.
Two dial gauges 2 and 5 are attached to this, and the heights of points c and d on both sides of the welded portion 36 with respect to two predetermined points on the steel pipe 34 are measured. Since the diameter D of the steel pipe 34 is known, a circle with a diameter D passing through the two points a and b is drawn in the same figure.
It can be drawn as shown by dotted line 6 in (f), and the welded part 36 is flattened into an extension of the surrounding arc as shown by dotted line 7, and the peak is expressed as the maximum value of the distance between these arcs 6 and 7 Δ Xnax seek.

かゝる人手による測定は測定所要時間が比較的
長く、測定精度に個人差が入り、単調な作業であ
るから特に多量の鋼管を扱うような場合は苦痛を
伴なうなどの難がある。
Such manual measurement requires a relatively long time, measurement accuracy varies from person to person, and the work is monotonous, which can be painful, especially when handling a large quantity of steel pipes.

本発明はかゝる測定はロボツトにギヤツプセン
サを取付けて行なうようにすることにより上記諸
問題を解決しようとするものであり、特に該ギヤ
ツプセンサの走査軌跡、それらによる誤差問題に
対処しようとするものである。即ち本発明の鋼管
溶接部形状の測定方法は多関節ロボツトの先端に
光ギヤツプセンサを取付け、鋼管長手方向に延び
る溶接部を持つ溶接鋼管の端面に該ロボツトを対
向させ、該ロボツトを制御して該センサが、該溶
接部を中心としての左右に延びそして鋼管表面と
の間隔がセンサ測定レンジ内に収まるように非線
形にされた軌跡上を移動するようにし、結像位置
が該センサの中心での左右に流れる電流値の差を
検出し、この検出値に基づいて該センサに間隔測
定させ、その出力を鋼管軸方向の溶接部にほぼ直
角で、かつ、溶接部の設定角に対してほぼ直交す
る直線と鋼管表面との間隔に変換し、その変換出
力に基ずいてビート高さ、ビート幅、オフセツ
ト、ピーキングなどの溶接部形状を算出すること
を特徴とするが、次に実施例を参照しながらこれ
を説明する。
The present invention attempts to solve the above-mentioned problems by attaching a gap sensor to a robot to carry out such measurements, and in particular to deal with the scanning locus of the gap sensor and the errors caused by these. be. That is, the method for measuring the shape of a welded part of a steel pipe according to the present invention involves attaching an optical gap sensor to the tip of an articulated robot, placing the robot opposite to the end face of a welded steel pipe having a welded part extending in the longitudinal direction of the steel pipe, and controlling the robot to measure the shape of the welded part. The sensor extends to the left and right with the welded part as the center, and moves on a nonlinear trajectory so that the distance to the steel pipe surface falls within the sensor measurement range, and the imaging position is at the center of the sensor. Detects the difference in the current value flowing on the left and right sides, has the sensor measure the distance based on this detected value, and outputs the output approximately perpendicular to the weld in the axial direction of the steel pipe and approximately perpendicular to the set angle of the weld. This method is characterized by converting the distance between the straight line and the surface of the steel pipe, and calculating the shape of the weld such as the beat height, beat width, offset, and peaking based on the converted output.Please refer to the following examples. I will explain this as follows.

第2図は本発明の鋼管溶接部形状の測定法の概
要を説明する図で、10は多関節ロボツトで先端
にセンサ20を取付けられる。ロボツト10は台
座部12、この台座部に回動自在に取付けられた
第1腕部14、該腕部14に枢着された第2腕部
16、該腕部16に枢着された第3腕部18など
からなり、センサ20に後述の軌跡に沿つた移動
をさせることができる。センサ20は光ギヤツプ
センサで第3図に示すようにレーザ光源22、レ
ンズ24,26,P−N−P半導体素子などから
なる位置センサ28、および信号処理回路30な
どからなる。34は前述のUO鋼管で、36はそ
の溶接部である。38はターニングローラで、鋼
管34をその管中心線を中心として回転させる。
FIG. 2 is a diagram illustrating the outline of the method for measuring the shape of a welded steel pipe according to the present invention, and 10 is an articulated robot to which a sensor 20 is attached at the tip. The robot 10 includes a pedestal 12, a first arm 14 rotatably attached to the pedestal, a second arm 16 pivotally attached to the arm 14, and a third arm 16 pivotally attached to the arm 16. It consists of an arm part 18 and the like, and can move the sensor 20 along a trajectory described below. The sensor 20 is an optical gap sensor, and as shown in FIG. 3, it consists of a laser light source 22, lenses 24, 26, a position sensor 28 made of a PNP semiconductor element, and a signal processing circuit 30. 34 is the aforementioned UO steel pipe, and 36 is its welded part. 38 is a turning roller which rotates the steel pipe 34 around its pipe centerline.

ギヤツプセンサ20の動作を説明すると、レー
ザ光源22より細く絞られたレーザ光32がレン
ズ24を介して鋼管34の表面に投射されると、
レーザ光32は該表面で乱反射する。点線の橢円
様ループ32aはこの乱反射光の強度分布曲線を
略示するものである。レンズ26はこの乱反射光
の一部を集めてポジションサンサ28上に結像さ
せる。鋼管34が点線で示すように後退すると乱
反射光発生位置もそれに伴つて後退し、このとき
レンズ26が該乱反射光を集束してポジションサ
ンセ28上に結像させる位置は点線で示すように
ずれる。かゝる機能があるのでセンサ28上の結
像位置と、センサ20および対象物34間距離と
の関係を予め求めておけば、該結像位置から該距
離を知ることができる。結像位置が、センサ28
の中心であれば左右に流れる電流値が等しく、セ
ンサ28中心からずれた位置に結像すると左右に
流れる電流値に差を生ずる。信号処理回路30は
その左右の電流値の差を検出し、ギヤツプ距離に
換算することにより該距離を求める。
To explain the operation of the gap sensor 20, when a narrowly focused laser beam 32 from the laser light source 22 is projected onto the surface of the steel pipe 34 via the lens 24,
The laser beam 32 is diffusely reflected on the surface. A dotted circle-like loop 32a schematically represents the intensity distribution curve of this diffusely reflected light. The lens 26 collects a part of this diffusely reflected light and forms an image on the position sensor 28. When the steel pipe 34 retreats as shown by the dotted line, the position where the diffusely reflected light is generated also moves backwards, and at this time, the position where the lens 26 focuses the diffusely reflected light and forms an image on the position sensor 28 shifts as shown by the dotted line. Because of this function, if the relationship between the image formation position on the sensor 28 and the distance between the sensor 20 and the object 34 is determined in advance, the distance can be determined from the image formation position. The imaging position is the sensor 28
If the sensor 28 is at the center, the current values flowing to the left and right will be equal, but if the image is formed at a position shifted from the center of the sensor 28, a difference will occur in the current values flowing to the left and right. The signal processing circuit 30 detects the difference between the left and right current values, and calculates the distance by converting it into a gap distance.

第4図はギヤツプセンサ20の出力の一例を示
す。鋼管34は突合せ溶接のため管端を開先加工
されており、かゝる鋼管端に同図aに示すように
ギヤツプセンサ20が配置され矢印方向に移動し
てセンサ、鋼管間ギヤツプの測定を行なう。同図
bは測定出力を示し、縦軸にはセンサ移動距離
を、横軸にはセンサ・被検体間距離をとつている
図示のようにかゝる測定結果は、管端形状を表示
してもいる。なおギヤツプセンサ20の測定可能
なギヤツプ長はそれ程大ではないので、センサ詳
しくはレーザビームの投射光が管端を外れたりし
てギヤツプ過大となると測定不能になる。
FIG. 4 shows an example of the output of the gap sensor 20. The steel pipe 34 has a beveled end for butt welding, and a gap sensor 20 is disposed at the end of the steel pipe as shown in FIG. . Figure b shows the measurement output, with the vertical axis representing the sensor travel distance and the horizontal axis representing the distance between the sensor and the subject. There are some too. Note that the measurable gap length of the gap sensor 20 is not so large, and therefore, if the projection light of the laser beam deviates from the tube end and the gap becomes excessive, the sensor becomes unable to measure the gap length.

本発明はかゝるセンサおよびロボツトを用いて
溶接部形状を測定しようとするもので、第5図に
その測定要領を示す。鋼管34は例えば溶接部3
6が設定角(位置)に、この場合最上部にくるよ
うにターニングローラ38により回転して位置決
め、かゝる状態でロボツト10を操作してサンセ
20が直線(水平面)40を辿るように移動さ
せ、この間にギヤツプ測定させると、第4図に示
したと同様にセンサ出力をプロツトすると鋼管3
4の外表面形状が得られ、これより前述のビート
高さ、ビート幅、オフセツト、及びピーキングな
どを信号処理により求めることができる。即ち直
線40の座標位置はロボツト10の位置指令信号
またはロボツトに取付けられた負帰還制御用の位
置センサの出力などによりロボツト側で把握で
き、この直線と鋼管表面との間の距離はギヤツプ
センサ20の出力により求まるから、溶接部両側
の点c,dを急に曲率が変る点、溶接部の頂点e
は間隔が最も小さい点などとして認識してビート
高さはe−cc,dの平均値:いずれもy座標、ビ
ート幅はd−c(いずれもx座標)、オフセツトは
d−c(いずれもy座標)などとして求めること
ができる。
The present invention attempts to measure the shape of a welded part using such a sensor and robot, and FIG. 5 shows the measurement procedure. The steel pipe 34 is, for example, the welded part 3
6 is rotated and positioned by the turning roller 38 so that it is at the set angle (position), in this case at the top, and in such a state, the robot 10 is operated so that the sensor 20 moves along a straight line (horizontal plane) 40. If the gap is measured during this time, and the sensor output is plotted in the same way as shown in Fig. 4, the steel pipe 3
4 is obtained, and from this the above-mentioned beat height, beat width, offset, peaking, etc. can be determined by signal processing. That is, the coordinate position of the straight line 40 can be grasped on the robot side by the position command signal of the robot 10 or the output of a position sensor for negative feedback control attached to the robot, and the distance between this straight line and the surface of the steel pipe can be determined by the gap sensor 20. Since it is determined by the output, the points c and d on both sides of the weld are the points where the curvature suddenly changes, and the apex of the weld is e.
is recognized as the point with the smallest interval, and the beat height is e-cc, the average value of d: both are y coordinates, the beat width is d-c (both are x coordinates), and the offset is d-c (both are y coordinate), etc.

しかし前述のように光ギヤツプセンサの測定レ
ンジはそれ程広くなく(例えば中心から±16mm以
内)、鋼管34が相当に大径の場合はとも角、径
がそれ程大きくない場合は曲率が大きいので、セ
ンサ走行軌跡が直線40であると溶接部36から
離れるに従つて直線40と鋼管34の表面との間
隔が大になり、測定レンジを外れてしまう。この
ような場合は段付き線42または山形線44、あ
るいは図示しないが円弧として、センサ軌跡と鋼
管34の外表面との間隔が測定レンジ内に収まる
ようにするとよい。しかしこのまゝでは、特に軌
跡が44などのように連続的に変る場合は前記溶
接部形状の演算がやりにくい。またセンサ移動軌
跡を非直線形状にするとセンターずれの問題が生
じる。第6図はこれを図示するもので、46は円
弧にしたセンサ移動軌跡で、その中心は0′であ
り、鋼管34の外表面円弧の中心0とはδだけず
れている。このような場合はセンサ軌跡の彎曲の
外に中心ずれも考慮して前記溶接部形状演算をし
なければならない。このような中心ずれの問題は
直線(水平面)40以外のもの例えば軌跡44な
どでも生じる。
However, as mentioned above, the measurement range of the optical gap sensor is not so wide (for example, within ±16 mm from the center), and if the steel pipe 34 has a fairly large diameter, it will have a large curvature, and if the diameter is not that large, the curvature will be large, so the sensor If the locus is a straight line 40, the distance between the straight line 40 and the surface of the steel pipe 34 increases as it moves away from the weld 36, and the distance falls outside the measurement range. In such a case, it is preferable to use a stepped line 42 or a chevron line 44, or a circular arc (not shown) so that the distance between the sensor locus and the outer surface of the steel pipe 34 falls within the measurement range. However, if this continues, it is difficult to calculate the shape of the welded portion, especially when the locus changes continuously, such as 44. Furthermore, if the sensor movement locus is made into a non-linear shape, a problem of center deviation occurs. This is illustrated in FIG. 6, where 46 is an arcuate sensor movement locus, the center of which is 0', and is offset by δ from the center 0 of the arc of the outer surface of the steel pipe 34. In such a case, it is necessary to calculate the shape of the welded part by taking into consideration not only the curvature of the sensor trajectory but also the center deviation. Such a problem of center deviation also occurs in areas other than the straight line (horizontal plane) 40, such as the trajectory 44.

そこで本発明ではセンサ軌跡は間隔が測定レン
ジ内に入るように非直線にし、センサ出力は直線
軌跡で得られる出力に変換する。例えば第6図の
場合は、走査点Pにおけるセンサ出力はPP1であ
るからこれを直線40からセンサ出力に変換する
には、走査点Pと直線40との間隔PP2をセンサ
出力PP1に加えればよい。PP2は、軌跡46の半
径をR、垂直に対するOP(O′は円弧走査軌跡の中
心)のなす角をθとすればR(1−cosθ)である
から、これを補正量としてセンサ出力PP1に対し
R(1−cosθ)を加える演算を行なう演算装置を
設ける。軌跡44の場合はその傾斜角をα、頂点
からの距離をxとしてセンサ出力にxsinθを加え
ればよく、軌跡42の場合はその段部以後におい
てそのステツプ高さをセンサ出力に加えればよ
い。センサ軌跡はロボツト側において既知である
からこの演算は実行可能である。
Therefore, in the present invention, the sensor trajectory is made non-linear so that the interval falls within the measurement range, and the sensor output is converted into an output obtained with a straight trajectory. For example, in the case of Fig. 6, the sensor output at the scanning point P is PP 1 , so in order to convert this from the straight line 40 to the sensor output, the distance PP 2 between the scanning point P and the straight line 40 must be changed to the sensor output PP 1 . Just add it. PP 2 is R (1 - cos θ), where R is the radius of the trajectory 46 and θ is the angle formed by OP (O' is the center of the arc scanning trajectory) with respect to the vertical, so this is the correction amount and the sensor output PP An arithmetic device is provided which performs an arithmetic operation of adding R(1-cos θ) to 1 . In the case of the trajectory 44, it is sufficient to add xsin θ to the sensor output, where α is the inclination angle and x is the distance from the apex, and in the case of the trajectory 42, the step height after the step portion may be added to the sensor output. Since the sensor trajectory is known on the robot side, this calculation is executable.

尚、直線40は鋼管軸方向の溶接部にほぼ直角
で、かつ、溶接部の設定角に対してほぼ直交する
直線であり、第6図に示すように溶接部が36′
の設定角の位置にある場合、直線40は40′の
位置に来る。
Note that the straight line 40 is a straight line that is approximately perpendicular to the weld in the axial direction of the steel pipe and approximately perpendicular to the set angle of the weld, and as shown in FIG.
, the straight line 40 comes to the position 40'.

第6図ではセンサは常に垂直方向で下方を向く
ようにロボツトに取付けられ、このためセンサが
軌跡中心から離れる程光入射角は大になる。しか
し光ギヤツプセンサは第3図で説明したように乱
反射光で動作するので被検体表面の傾斜角にはそ
れ程敏感では傾斜角が余りに大でなければ格別問
題は生じない。なおセンサ移動軌跡も、溶接部周
辺をカバーするもの、ピーキング測定の場合でも
前記(第1図d)の点a,bをカバーするもので
あればよいから(ロボツトは始終端付近での位置
精度がよくないのでこれを外すようにするから、
若干の余裕は必要)それ程長くはない。しかしセ
ンサが被検体表面と対向する、従つて光入射角は
0である方が精度は高いから、高精度を望むなら
センサを被検体表面に対向させるのがよい。この
種の機構は既知であるからそれを利用すればよ
い。センサを被検体表面に対向させた場合の測定
結果は例えば第6図のPP3であるから、直線40
からのギヤツプを求めるには簡単にはPP3をPP1
へ変換すればよい(PP1=PP3/cosθ)。
In FIG. 6, the sensor is mounted on the robot so as to always face vertically and downward, so that the angle of incidence of light increases as the sensor moves away from the center of the trajectory. However, since the optical gap sensor operates with diffusely reflected light as explained in FIG. 3, it is not so sensitive to the tilt angle of the surface of the object to be examined, and no particular problem will occur unless the tilt angle is too large. Note that the sensor movement trajectory only needs to cover the surrounding area of the weld, and even in the case of peaking measurement, it only needs to cover points a and b as shown in Figure 1 (d). Since this is not good, I will remove this.
(Some leeway is required) It's not that long. However, since accuracy is higher when the sensor faces the surface of the object to be examined, and therefore the light incident angle is 0, if high precision is desired, it is better to have the sensor face the surface of the object to be examined. This type of mechanism is already known, so it can be used. The measurement result when the sensor is opposed to the surface of the object is, for example, PP 3 in Figure 6, so the straight line 40
To find the gap from PP 3 to PP 1
(PP 1 = PP 3 /cosθ).

第7図は本発明の測定を行なう装置の概要を示
すブロツク図である。モータ54はロボツト10
の各関節を駆動するモータで、図では1つして示
さないが関節の数だけある。エンコーダ56は各
モータ従つて各関節の移動量を測定するもので、
出力はパルスである。50はロボツト制御部で、
各関節に対する移動量指令値の出力装置58と、
エンコーダ56からのパルスを計数して帰還量を
出力するカウンタ60と、これらの出力を比較し
て偏差出力を生じる比較器62と、該偏差出力を
アナログ量に変換するD/A変換器64と、サー
ボアンプ68からなり、ロボツトの各関節を指令
値通りに移動させる。またロボツト制御部50は
カウンタ60の出力を受けてロボツト先端つまり
センサの位置のx,y,z座標を出力する座標変
換装置70を備える。
FIG. 7 is a block diagram showing an outline of a measuring device according to the present invention. The motor 54 is the robot 10
There are as many motors as there are joints, although not one is shown in the figure. The encoder 56 measures the amount of movement of each motor and therefore each joint.
The output is a pulse. 50 is a robot control unit;
an output device 58 for a movement amount command value for each joint;
A counter 60 that counts pulses from the encoder 56 and outputs a feedback amount, a comparator 62 that compares these outputs and generates a deviation output, and a D/A converter 64 that converts the deviation output into an analog amount. , and a servo amplifier 68 to move each joint of the robot according to command values. The robot control unit 50 also includes a coordinate conversion device 70 that receives the output from the counter 60 and outputs the x, y, and z coordinates of the robot tip, that is, the position of the sensor.

次に52は演算部で、センサ20の間隔測定出
力をデジタル値に変換するA/D変換器72、該
変換器の出力(間隔、こゝではプロフイルデータ
という)を記憶するメモリ74、前記直線40と
走査線42,44、または46との間隔を演算す
る偏差値演算器76、加算器78等を備える。メ
モリ74も演算器76も座標変換装置70の出力
つまりセンサの立体座標x,y,zを基準に演算
され、格納される。この立体座標を基準(例えば
アドレス)にしたメモリ74および演算器76の
出力の和をとると、これは前記直線40から見た
鋼管表面プロフイルを示しており、これより前述
のビート幅、ビード高さなどを求めることができ
る。
Next, 52 is a calculation unit, which includes an A/D converter 72 that converts the interval measurement output of the sensor 20 into a digital value, a memory 74 that stores the output of the converter (interval, hereinafter referred to as profile data), and a memory 74 that stores the output of the converter (interval, herein referred to as profile data). 40 and a scanning line 42, 44, or 46, a deviation value calculator 76, an adder 78, etc. are provided. Both the memory 74 and the calculator 76 perform calculations based on the output of the coordinate conversion device 70, that is, the three-dimensional coordinates x, y, z of the sensor, and store them. The sum of the outputs of the memory 74 and the arithmetic unit 76 using this three-dimensional coordinate as a reference (for example, an address) indicates the steel pipe surface profile as seen from the straight line 40, and from this, the beat width and bead height described above are determined. You can ask for things such as:

以上説明したように、本発明ではロボツトにギ
ヤツプセンサを取付けて溶接部上を走査すること
により溶接部形状を測定するので、人手による測
定の前述の諸問題を解決することができる。また
光ギヤツプセンサは測定範囲が比較的狭く、鋼管
表面のような彎曲面では走査軌跡の端部でセンサ
と鋼管表面との間隔が大になつて測定不能または
誤差増大の問題がある。これに対しては走査軌跡
と鋼管表面との間隔が測定範囲に収まるように該
走査軌跡を非線形とし、この際生じる中心ずれの
問題に対してセンサ出力を直線(水平面)からの
測定出力に変換するので中心ずれの問題もなくな
り、正確な溶接部形状測定が可能になる。
As explained above, in the present invention, the shape of the welded part is measured by attaching a gap sensor to the robot and scanning the welded part, so that the above-mentioned problems of manual measurement can be solved. In addition, the optical gap sensor has a relatively narrow measurement range, and on curved surfaces such as the surface of a steel pipe, the distance between the sensor and the steel pipe surface becomes large at the end of the scanning locus, making measurement impossible or increasing errors. To deal with this, the scanning trajectory is made non-linear so that the distance between the scanning trajectory and the steel pipe surface falls within the measurement range, and the sensor output is converted to the measurement output from a straight line (horizontal plane) to solve the problem of center deviation that occurs at this time. This eliminates the problem of center deviation and enables accurate weld shape measurement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は溶接部形状測定の従来例を示す説明
図、第2図は本発明の測定の概要を示す説明図、
第3図は光ギヤツプセンサの説明図、第4図は光
ギヤツプセンサによる測定例を示す説明図、第5
図は本発明で用いるセンサ軌跡の説明図、第6図
は中心ずれおよびその補正要領の説明図、第7図
は本発明測定法の実施例装置を示すブロツク図で
ある。 図面で10はロボツト、20は光ギヤツプセン
サ、34は鋼管、36は溶接部、42,44,4
6は走査軌跡である。
FIG. 1 is an explanatory diagram showing a conventional example of weld shape measurement, FIG. 2 is an explanatory diagram showing an overview of the measurement of the present invention,
Fig. 3 is an explanatory diagram of the optical gap sensor, Fig. 4 is an explanatory diagram showing an example of measurement by the optical gap sensor, and Fig. 5 is an explanatory diagram of the optical gap sensor.
FIG. 6 is an explanatory diagram of the sensor trajectory used in the present invention, FIG. 6 is an explanatory diagram of center deviation and its correction procedure, and FIG. 7 is a block diagram showing an embodiment of the measuring method of the present invention. In the drawing, 10 is a robot, 20 is an optical gap sensor, 34 is a steel pipe, 36 is a welded part, 42, 44, 4
6 is a scanning locus.

Claims (1)

【特許請求の範囲】 1 多関節ロボツトの先端に光ギヤツプセンサを
取付け、 鋼管長手方向に延びる溶接部を持つ溶接鋼管の
端面に該ロボツトを対向させ、 該ロボツトを制御して該センサが、該溶接部を
中心としてその左右に延びそして鋼管表面との間
隔がセンサ測定レンジ内に収まるように非線形に
された軌跡上を移動するようにし、 結像位置が該センサの中心での左右に流れる電
流値の差を検出し、この検出値に基づいて該セン
サに間隔測定させ、 その出力を鋼管軸方向の溶接部にほぼ直角で、
かつ、溶接部の設定角に対してほぼ直交する直線
と鋼管表面に変換し、 その変換出力に基ずいてビード高さ、ビード
幅、オフセツト、ピーキングなどの溶接部形状を
算出する ことを特徴とする鋼管溶接部形状の測定法方。
[Scope of Claims] 1. An optical gap sensor is attached to the tip of an articulated robot, the robot is opposed to the end face of a welded steel pipe having a welded part extending in the longitudinal direction of the steel pipe, and the robot is controlled so that the sensor detects the welding. The image is moved on a non-linear trajectory extending left and right around the center of the sensor, and the distance from the steel pipe surface is within the sensor measurement range, and the image forming position is set to the value of the current flowing left and right at the center of the sensor. Detect the difference between
It also converts the set angle of the weld into a straight line and the surface of the steel pipe, and calculates the weld shape such as bead height, bead width, offset, and peaking based on the converted output. A method for measuring the shape of steel pipe welds.
JP22340882A 1982-12-20 1982-12-20 Measuring method of shape of steel tube weld zone Granted JPS59112209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22340882A JPS59112209A (en) 1982-12-20 1982-12-20 Measuring method of shape of steel tube weld zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22340882A JPS59112209A (en) 1982-12-20 1982-12-20 Measuring method of shape of steel tube weld zone

Publications (2)

Publication Number Publication Date
JPS59112209A JPS59112209A (en) 1984-06-28
JPH0374322B2 true JPH0374322B2 (en) 1991-11-26

Family

ID=16797670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22340882A Granted JPS59112209A (en) 1982-12-20 1982-12-20 Measuring method of shape of steel tube weld zone

Country Status (1)

Country Link
JP (1) JPS59112209A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1257404B (en) * 1992-09-30 1996-01-15 Comau Spa PROCEDURE FOR CHECKING THE INSTALLATION OF A SILICON CORD, IN PARTICULAR FOR THE SEAL BETWEEN THE BASE AND THE CUP OF AN INTERNAL COMBUSTION ENGINE.
JP2522053Y2 (en) * 1993-06-01 1997-01-08 ▼うお▲谷鉄工 株式会社 Sugar cane harvester
WO1999044763A1 (en) * 1998-03-04 1999-09-10 Elpatronic Ag Method and device for producing pipes
DE102005046767A1 (en) * 2005-09-29 2007-04-05 Arvinmeritor Emissions Technologies Gmbh Process to fabricate automotive catalytic converter housing by external application over weld seam
JP4762851B2 (en) * 2006-10-24 2011-08-31 新日本製鐵株式会社 Cross-sectional shape detection method and apparatus
CN103542819A (en) * 2012-07-17 2014-01-29 宝山钢铁股份有限公司 Detection and quality judgment method for strip steel weld surface appearance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5280148A (en) * 1975-12-26 1977-07-05 Mitsubishi Motors Corp Contactless measuring method and apparatus for same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5280148A (en) * 1975-12-26 1977-07-05 Mitsubishi Motors Corp Contactless measuring method and apparatus for same

Also Published As

Publication number Publication date
JPS59112209A (en) 1984-06-28

Similar Documents

Publication Publication Date Title
JPS60185108A (en) Method and device for measuring body in noncontacting manner
US20090145888A1 (en) Preparing and performing of a laser welding process
JPH0374322B2 (en)
JP4762851B2 (en) Cross-sectional shape detection method and apparatus
JP2746511B2 (en) Method for measuring orientation flat width of single crystal ingot
JPH01109058A (en) Contactless copy controller
JPH0711412B2 (en) Pipe shape measuring device
JPS649116B2 (en)
JP7170223B2 (en) Welding determination device, welding device, and welding determination method
JPS62502034A (en) Adaptive welding equipment with fill control correction function for curved weld grooves
JPH0374323B2 (en)
JP2635892B2 (en) Method and apparatus for detecting welding groove shape
JPH06307845A (en) Roll alignment measuring method
US4287402A (en) Controlling upsetting during welding of a split tube
JPS59114405A (en) Automatic measurement of shape of steel member
JP2003014431A (en) Correction method of inclined surface error for laser probe type shape measuring instrument
JPH03226313A (en) Correcting method for pipe
JPH01232203A (en) Shape measuring instrument for tube body
JP3025577B2 (en) Shape processing method
JPH073323B2 (en) Interfering device
JPH06277843A (en) Method and device for multilayer welding
JPH0419502A (en) Weld line detector of welding machine
JPS59116011A (en) Measuring method of size and shape by robot
JPS63286276A (en) Position detecting system for arc welding
JPH03195915A (en) Optical scanning type displacement sensor