JPH0374012A - Handling method for oxide superconducting wire and product using it - Google Patents

Handling method for oxide superconducting wire and product using it

Info

Publication number
JPH0374012A
JPH0374012A JP1179423A JP17942389A JPH0374012A JP H0374012 A JPH0374012 A JP H0374012A JP 1179423 A JP1179423 A JP 1179423A JP 17942389 A JP17942389 A JP 17942389A JP H0374012 A JPH0374012 A JP H0374012A
Authority
JP
Japan
Prior art keywords
oxide superconducting
superconducting wire
base material
elongated base
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1179423A
Other languages
Japanese (ja)
Other versions
JP2986107B2 (en
Inventor
Norikata Hayashi
憲器 林
Satoru Takano
悟 高野
Shigeru Okuda
奥田 繁
Hajime Ichiyanagi
一柳 肇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to PCT/JP1990/000421 priority Critical patent/WO1990012409A1/en
Priority to CA002030559A priority patent/CA2030559C/en
Priority to EP90905662A priority patent/EP0417329B1/en
Priority to DE69015524T priority patent/DE69015524T2/en
Publication of JPH0374012A publication Critical patent/JPH0374012A/en
Application granted granted Critical
Publication of JP2986107B2 publication Critical patent/JP2986107B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To prevent deterioration of the superconducting characteristics of an oxide superconducting layer by bending the oxides superconducting layer such that it is positioned at the inner side referring to the flexural center and a length base material at the outer side referring thereto. CONSTITUTION:An oxide superconducting wire whose thermal expansion coefficient of a lengthy base material 1 is smaller than that of the material of an oxides superconducting layer 2 is handled. Then, the oxides superconducting layer 2 is bent such that it is positioned at the inner side referring to the flexural center, and the lengthy base material 1 is positioned at the outer side referring thereto. A tape-like one is preferably used as the lengthy base material 1, and its material are, for example, zirconia, alumina, glass, titanium, zirconium, tungsten, platinum, chromium, nickel, niobium, molybdenum, iron, stainless steel and nickel alloy. It is thereby possible to prevent deterioration of the superconducting characteristics of the oxides superconducting layer 2.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] この発明は、酸化物超電導線の取扱い方法および酸化物
超電導線を用いたコイルのような製品に関するものであ
る。 [従来の技術] 酸化物超電導材料を、たとえばコイルやケーブルなどの
用途に向けようとする場合、これを長尺化するための技
術が必要である。また、長尺されたものは、ある程度の
可撓性を有していなければならない。 上述した要件を満たし得る、酸化物超電導材料を長尺化
する方法、すなわちある程度の可撓性を有する酸化物超
電導線を獅る方法としては、たとえば、可撓性を有する
長尺基材上に酸化物超電導層を形成する方法が知られて
いる。このとき、酸化物超電導層を形成する方法として
は、蒸着、スパッタリング、CVD等の気相薄膜形成方
法を適用することができる。
[Industrial Field of Application] The present invention relates to a method for handling oxide superconducting wire and a product such as a coil using the oxide superconducting wire. [Prior Art] When using oxide superconducting materials for applications such as coils and cables, a technology is required to make them long. Furthermore, the elongated material must have a certain degree of flexibility. As a method of lengthening an oxide superconducting material that can satisfy the above-mentioned requirements, that is, a method of making an oxide superconducting wire having a certain degree of flexibility, for example, Methods of forming oxide superconducting layers are known. At this time, as a method for forming the oxide superconducting layer, a vapor phase thin film forming method such as vapor deposition, sputtering, CVD, etc. can be applied.

【発明が解決1−ようとする課題】 酸化物超電導材料は、一般に、歪、特に引張り歪に対し
て弱く、たとえば引張り歪が与えられると、臨界温度、
電流密度といった超電導特性が著しく劣化するという欠
点があった。 また、たとえば引張り歪に関して、これが所定の大きさ
を越えると、たとえそのような引張り歪が除去されたと
しても、引張り歪を与える前に得られていた超電導特性
をもはや得ることはできなかった。これに対して、引張
り歪が所定の大きさを越えない場合には、その引張り歪
を除去すれば、引張り歪を与える前に褥られていた超電
導特性を再現することが可能であった。 ところで、前述したように、酸化物超電導線を得るため
、可撓性を有する長尺基材上に酸化物超電導層を形成す
るとき、酸化物超電導層は、少なくとも加熱工程を通る
ことによって形成される。 したがって、酸化物超電導層をその上に形成するために
用いられる長尺基材としては、このような加熱工程に耐
えるとともに、この加熱工程において酸化物超電導層と
の間で不所望な反応または拡散等が生じない材料で構成
されなければならない。 そのため、長尺基材としては、たとえば、YSZ(イツ
トリア安定化ジルコニア)が有利に用いられている。Y
SZ以外にも、酸化物超電導層をその上に形成するため
の長尺基材の材料として適したものが、いくつかある。 上述のような長尺基材上に酸化物超電導層が形成された
酸化物超電導線は、たとえば、これをエナメル塗布のよ
うな次の工程に付すための準備段階において、あるいは
これを出荷する段階において、ボビンに巻取るという工
程が必要であり、また、酸化物超電導線を用いた製品を
得ようとするとき、たとえばコイルの場合には、これを
コイル状に巻いたり、ケーブルの場合には、これをたと
えばパイプ状の長尺体の表面に螺旋状に巻付けたりする
工程が必要である。このような酸化物超電導線の取扱い
にあたっては、そのどれをとってみても、酸化物超電導
線を曲げることが必ず行なわれる。しかしながら、この
ように酸化物超電導線を曲げたとき、必然的に、酸化物
超電導層には、歪が生じることが理解されよう。この歪
は、前述したように、酸化物超電導層を構成する酸化物
超電導材料の超電導特性を劣化させる原因になることが
ある。 そこで、この発明の目的は、酸化物超電導線を曲げると
いった工程を含む酸化物超電導線の取扱いにおいて、上
述したような酸化物超電導層の超電導特性の劣化をでき
るだけ防止し得る、酸化物超電導線の取扱い方法を提供
しようとすることである。 また、この発明は、酸化物超電導線が、そこに含まれる
酸化物超電導層の超電導特性の劣化をできるだけ防止し
得る状態で用いられた製品を提供しようとするものであ
る。 [課題を解決するための手段] この発明は、可撓性を有する長尺基材上に酸化物超電導
層が少なくとも加熱工程を通って形成された酸化物超電
導線の取扱い方法に向けられるものであるが、次のよう
な知見に基づき成されたものである。 本発明者は、前述したように、酸化物超電導材料は、一
般に、歪に対して弱いという欠点があることを認識して
いた。ところが、可撓性を有する成る種の長尺基材上に
酸化物超電導層が少なくとも加熱工程を通って形成され
た酸化物超電導線を得てから、成る方向にこれを曲げた
とき、酸化物超電導層に必然的に歪が生じているにもか
かわらず、超電導特性がほとんど劣化しなかったり、む
しろ超電導特性が向上する場合があることを発見した。 この原因について、追及した結果、これは、長尺基材の
熱膨張係数と酸化物超電導層材料の熱膨張係数の差に起
因していることがわかった。すなわち、現在、酸化物超
電導線を得るために、酸化物超電導層を形成するのに適
した可撓性を有する長尺基材は、そのほとんどが、酸化
物超電導層の熱膨張係数よりも小さい熱膨張係数を有し
ている。 第1図を参照して、長尺基材1上に、酸化物超電導層2
が形成されるとき、たとえば400〜1000℃の温度
の加熱工程に付される。所望の酸化物超電導層2が形成
された後、酸化物超電導層2は、長尺基材1とともに冷
却される。この冷却中において、長尺基材1には、矢印
記号3で示すような収縮が生じ、他方、酸化物超電導層
2には、矢印記号4で示すような収縮が生じる。このと
き、長尺基材1の熱膨張係数が酸化物超電導層2の熱膨
張係数よりも小さいことを示すため、矢印記号3は矢印
記号4よりも短く図示されている。したがって、冷却後
においては、このような熱膨張係数の差に基づき、矢印
5で示すように、酸化物超電導層2には、引張り歪が与
えられる。 この発明は、第1図に示すように、長尺基材1の熱膨張
係数が酸化物超電導層2の材料の熱膨張係数よりも小さ
い、酸化物超電導線に向けられるものである。 この発明において、前述した技術的課題を解決するため
、酸化物超電導線の取扱いにあたっては、曲げ中心に対
して、酸化物超電導層が内側に、かつ長尺基材が外側に
位置するように、酸化物超電導線が曲げられる。再び第
1図を参照して説明すれば、上述したような特徴的な取
扱い方法によれば、酸化物超電導層2に予め与えられて
いる矢印記号5で示した引張り歪は、緩和されるように
なる。 この発明において、長尺基材としては、好ましくは、テ
ープ状のものが用いられる。 また、上述したような熱膨張係数の条件を満たし得る長
尺基材の材料とじて−は、たとえば、ジルコニア、アル
ミナ、ガラス、チタン、ジルコニウム、タングステン、
白金、クロム、ニッケル、ニオブ、モリブデン、鉄、ス
テンレス鋼およびニッケル合金などがある。 この発明では、また、上述したような酸化物超電導線を
用いた製品が提供される。この製品において、酸化物超
電導線は、曲げ中心に対して、酸化物超電導層が内側に
、かつ長尺基材が外側に位置するように、曲げられた状
態とされている。 上述した製品としては、たとえば、酸化物超電導線を用
いたコイル、酸化物超電導線を巻取ったボビン、長尺体
の表面に酸化物超電導線を螺旋状に巻いてなるケーブル
、などがある。 L発明の効果] この発明によれば、酸化物超電導線は、そこに含まれる
酸化物超電導層において不可避的に残存している引張り
歪が解放されるように取扱われるので、酸化物超電導層
の超電導特性を劣化させることが防止される。なお、こ
の発明によれば、超電導特性の劣化を単に防止するだけ
ではなく、むしろ、超電導特性の向上が期待できる場合
もある。 また、前述したように、酸化物超電導線を曲げるとき、
酸化物超電導層に予め与えられている引張り歪は、緩和
されるだけでなく、逆に圧縮歪を生じる場合もあるが、
このような圧縮歪は、引張り歪はど、超電導特性に悪影
響を及ぼさず、また、超電導特性をより向上させる場合
もあり得ることがわかっている。 この発明において、長尺基材として、テープ状のものを
用いると、酸化物超電導線を所望の方向に曲げることが
より容易になる。 また、この発明にかかる取扱い方法を用いて得られたコ
イル、ケーブルのような製品、またはボビンのような中
間製品によれば、酸化物超電導線が有する超電導特性を
最大限に利用することができる。 [実施例] 実施例1 レーザ蒸着法を用いて、Y−Ba−Cu−0系超電導物
質を、安定化ジルコニアからなるテープ状の長尺基材(
IKA5mm、厚み0.1mm)上に、1μmの厚みを
もって成膜した。成膜条件は、次のとおりである。 ターゲット組成: Y、Ba2 Cu、OX成膜温度:
750℃ ガス圧:0.ITorr ガス:02 レーザ波長:193nm エネルギ密度:IJ/cm2 第2図に示すように、成膜室6において、上述したよう
な成膜を行なった後、長尺基材の移動速度を4 c (
n 7時としながら、熱処理室7において、得られた酸
化物超電導線の熱処理を、900℃で10分間の条件で
行なった。続いて、巻取り室8において、第3図および
第4図に示すように、ボビン9の巻芯10上に、酸化物
超電導線11を5ターンだけ巻取った。このとき、第4
図に示されるように、酸化物超電導層12が内側に、か
つ長尺基材13が外側に位置するように巻取られた。 また、巻芯10の直径は30mmであった。 このようにボビン9に巻取られた酸化物超電導!111
1を、液体窒素中に浸漬し、臨界電流を測定したところ
、5Aであった。 比較例1 上述した実施例1において、ボビン9の巻芯10に酸化
物超電導線11を巻取るとき、酸化物超電導層12が外
側に位置するようにした以外は実施例1と同じ条件で、
ボビン9に巻取った酸化物超電導線11の臨界電流を同
じ条件で測定したところ、2ALかなかった。 火縄例2 実施ff1J1と同じ長尺基材および同じ成膜条件を用
いて、酸化物超電導線を得た。この酸化物超電導線を用
いて、次のように、超電導コイルを作製した。 第5図に示すように、酸化物超電導線14を、コイル1
8の中心15から半径30mmの距離となる円周上から
巻き始め、5層まで巻いて、コイル18を作製した。こ
のとき、第6図に示すように、酸化物超電導fi14は
、酸化物超電導層16が内側に、かつ長尺基材17が外
側に位置するように巻かれた。 このようにして得られたコイル18を、液体窒素中に浸
漬し、臨界電流を測定したところ、23Aの値が得られ
た。 比較例2 実施例2において、酸化物超電導層16が外側になるよ
うに巻いたことを除いて実施例2と同じ条件で、コイル
を作製し、同じ条件で臨界電流を測定したところ、8A
の値しか得られなかった。 比較例3 実施fllによって得られた酸化物超電導線を、巻取る
ことなく、適当な長さで切断して、直線状態で、液体窒
素中での臨界電流を測定したところ、5.2Aの値が得
られた。 実施例3 厚さ50μmのYSZ(9%Y20.添加)からなるテ
ープ状の長尺基材上に、レーザ蒸着法により、厚さ2層
mのY t B a 2 Cu s Or−δからなる
酸化物超電導層を形成した。成膜条件は、次のとおりで
ある。 ターゲット組成: Y IB a 2 Cu a 07
−δ基材温度:720℃ レーザピーク出カニ21 レーザパルス幅:15ns レーザ周波数:10Hz O2圧カニ0.0ITorr 次に、02中で、950℃で1時間の熱処理を施した。 得られた酸化物超電導線において、酸化物超電導層が内
側に、かつ長尺基材が外側に位置するように、直径40
mmまで曲げた場合、臨界電流密度の低下は、8%であ
った。 比較f14 実施例3と同様の条件で得られた酸化物超電導線におい
て、長尺基材が内側に位置するように、同じく直径40
mmまで曲げた場合、臨界電流密度は、90%以上の低
下を示した。
Problem to be solved by the invention 1 Oxide superconducting materials are generally weak against strain, especially tensile strain. For example, when tensile strain is applied, the critical temperature,
The drawback was that superconducting properties such as current density deteriorated significantly. Furthermore, for example, when tensile strain exceeds a predetermined value, even if such tensile strain is removed, it is no longer possible to obtain the superconducting properties that were obtained before the tensile strain was applied. On the other hand, if the tensile strain does not exceed a predetermined magnitude, by removing the tensile strain, it was possible to reproduce the superconducting properties that were present before the tensile strain was applied. By the way, as described above, when forming an oxide superconducting layer on a flexible elongated base material in order to obtain an oxide superconducting wire, the oxide superconducting layer is formed by at least passing through a heating process. Ru. Therefore, the elongated base material used to form the oxide superconducting layer thereon must withstand such a heating process and avoid undesirable reactions or diffusion with the oxide superconducting layer during this heating process. It shall be constructed of materials that do not cause Therefore, for example, YSZ (yttoria stabilized zirconia) is advantageously used as the elongated base material. Y
In addition to SZ, there are several materials suitable as materials for the elongated base material on which the oxide superconducting layer is formed. The oxide superconducting wire in which the oxide superconducting layer is formed on the elongated base material as described above is prepared, for example, in the preparation stage for subjecting it to the next process such as enamel coating, or in the stage of shipping it. In addition, when trying to obtain a product using oxide superconducting wire, for example, in the case of a coil, it is necessary to wind it into a coil shape, and in the case of a cable, a process of winding it onto a bobbin is necessary. , a step of winding it spirally around the surface of, for example, a pipe-like elongated body is required. When handling such oxide superconducting wires, the oxide superconducting wires are always bent. However, it will be understood that when the oxide superconducting wire is bent in this way, strain will inevitably occur in the oxide superconducting layer. As described above, this strain may cause deterioration of the superconducting properties of the oxide superconducting material constituting the oxide superconducting layer. Therefore, an object of the present invention is to develop an oxide superconducting wire that can prevent as much as possible the deterioration of the superconducting properties of the oxide superconducting layer as described above in handling the oxide superconducting wire, including the process of bending the oxide superconducting wire. It is an attempt to provide a handling method. Another object of the present invention is to provide a product in which an oxide superconducting wire is used in a state where deterioration of the superconducting properties of the oxide superconducting layer contained therein can be prevented as much as possible. [Means for Solving the Problems] The present invention is directed to a method for handling an oxide superconducting wire in which an oxide superconducting layer is formed on a flexible elongated base material through at least a heating process. However, this was done based on the following knowledge. The present inventor recognized that, as mentioned above, oxide superconducting materials generally have the disadvantage of being weak against strain. However, when an oxide superconducting wire in which an oxide superconducting layer is formed on a flexible elongated substrate through at least a heating process is bent in the direction in which the oxide superconducting layer is formed, It has been discovered that even though the superconducting layer is inevitably strained, its superconducting properties hardly deteriorate or even improve in some cases. As a result of investigating the cause of this, it was found that this was caused by a difference between the coefficient of thermal expansion of the elongated base material and the coefficient of thermal expansion of the oxide superconducting layer material. That is, currently, in order to obtain an oxide superconducting wire, most of the long base materials having flexibility suitable for forming an oxide superconducting layer have a coefficient of thermal expansion smaller than that of the oxide superconducting layer. It has a coefficient of thermal expansion. Referring to FIG. 1, an oxide superconducting layer 2 is placed on a long base material 1.
When it is formed, it is subjected to a heating step at a temperature of, for example, 400 to 1000°C. After the desired oxide superconducting layer 2 is formed, the oxide superconducting layer 2 is cooled together with the elongated base material 1. During this cooling, the long base material 1 contracts as shown by arrow symbol 3, while the oxide superconducting layer 2 contracts as shown by arrow symbol 4. At this time, the arrow symbol 3 is shown shorter than the arrow symbol 4 to indicate that the thermal expansion coefficient of the elongated base material 1 is smaller than that of the oxide superconducting layer 2. Therefore, after cooling, tensile strain is applied to the oxide superconducting layer 2, as indicated by arrow 5, based on such a difference in thermal expansion coefficients. The present invention is directed to an oxide superconducting wire in which the coefficient of thermal expansion of a long base material 1 is smaller than the coefficient of thermal expansion of the material of the oxide superconducting layer 2, as shown in FIG. In this invention, in order to solve the above-mentioned technical problem, the oxide superconducting wire is handled so that the oxide superconducting layer is located on the inside and the elongated base material is located on the outside with respect to the center of bending. Oxide superconducting wire is bent. Referring again to FIG. 1, according to the above-mentioned characteristic handling method, the tensile strain indicated by the arrow symbol 5 given in advance to the oxide superconducting layer 2 is relaxed. become. In this invention, a tape-like material is preferably used as the elongated base material. Further, materials for the elongated base material that can satisfy the above-mentioned thermal expansion coefficient conditions include, for example, zirconia, alumina, glass, titanium, zirconium, tungsten,
These include platinum, chromium, nickel, niobium, molybdenum, iron, stainless steel and nickel alloys. The present invention also provides a product using the oxide superconducting wire as described above. In this product, the oxide superconducting wire is bent such that the oxide superconducting layer is located on the inside and the elongated base material is located on the outside with respect to the bending center. Examples of the above-mentioned products include coils using oxide superconducting wire, bobbins wound with oxide superconducting wire, and cables formed by winding oxide superconducting wire in a spiral shape around the surface of a long body. [Effects of the Invention] According to the present invention, the oxide superconducting wire is handled in such a way that the tensile strain that inevitably remains in the oxide superconducting layer contained therein is released. Deterioration of superconducting properties is prevented. Note that according to the present invention, it is not only possible to simply prevent deterioration of superconducting properties, but also to improve the superconducting properties in some cases. Also, as mentioned above, when bending an oxide superconducting wire,
The tensile strain previously applied to the oxide superconducting layer is not only relaxed, but may also cause compressive strain.
It has been found that such compressive strain, such as tensile strain, does not adversely affect the superconducting properties, and may even further improve the superconducting properties. In this invention, if a tape-shaped material is used as the elongated base material, it becomes easier to bend the oxide superconducting wire in a desired direction. Further, according to products such as coils and cables, or intermediate products such as bobbins obtained using the handling method according to the present invention, the superconducting properties of oxide superconducting wire can be utilized to the maximum. . [Example] Example 1 Using a laser vapor deposition method, a Y-Ba-Cu-0 based superconducting material was deposited on a tape-shaped elongated base material (
A film with a thickness of 1 μm was formed on IKA (5 mm, thickness 0.1 mm). The film forming conditions are as follows. Target composition: Y, Ba2 Cu, OX Film forming temperature:
750℃ Gas pressure: 0. ITorr gas: 02 Laser wavelength: 193 nm Energy density: IJ/cm2 As shown in FIG.
The obtained oxide superconducting wire was heat treated in the heat treatment chamber 7 at 900° C. for 10 minutes at 7:00 p.m. Subsequently, in the winding chamber 8, as shown in FIGS. 3 and 4, the oxide superconducting wire 11 was wound five turns onto the winding core 10 of the bobbin 9. At this time, the fourth
As shown in the figure, it was wound up so that the oxide superconducting layer 12 was located on the inside and the elongated base material 13 was located on the outside. Further, the diameter of the winding core 10 was 30 mm. Oxide superconductor wound on bobbin 9 like this! 111
1 was immersed in liquid nitrogen and the critical current was measured to be 5A. Comparative Example 1 In Example 1 described above, the oxide superconducting wire 11 was wound around the winding core 10 of the bobbin 9 under the same conditions as in Example 1 except that the oxide superconducting layer 12 was positioned on the outside.
When the critical current of the oxide superconducting wire 11 wound around the bobbin 9 was measured under the same conditions, 2AL was found. Matchlock Example 2 An oxide superconducting wire was obtained using the same elongated base material and the same film-forming conditions as in Example ff1J1. Using this oxide superconducting wire, a superconducting coil was fabricated as follows. As shown in FIG. 5, the oxide superconducting wire 14 is connected to the coil 1
The coil 18 was manufactured by starting winding from the circumference at a distance of 30 mm from the center 15 of the coil 8 and winding up to 5 layers. At this time, as shown in FIG. 6, the oxide superconducting fi 14 was wound so that the oxide superconducting layer 16 was located on the inside and the elongated base material 17 was located on the outside. When the coil 18 thus obtained was immersed in liquid nitrogen and the critical current was measured, a value of 23 A was obtained. Comparative Example 2 In Example 2, a coil was produced under the same conditions as in Example 2 except that the oxide superconducting layer 16 was wound on the outside, and the critical current was measured under the same conditions.
I could only get the value of Comparative Example 3 The oxide superconducting wire obtained by the full implementation was cut to an appropriate length without being wound up, and the critical current in liquid nitrogen was measured in a straight line, and the value was 5.2 A. was gotten. Example 3 Two layers m of Y t B a 2 Cu s Or-δ were deposited on a tape-like elongated base material of 50 μm thick YSZ (added with 9% Y20) by laser vapor deposition. An oxide superconducting layer was formed. The film forming conditions are as follows. Target composition: Y IB a 2 Cu a 07
-δ Base material temperature: 720°C Laser peak output crab 21 Laser pulse width: 15ns Laser frequency: 10Hz O2 pressure crab 0.0ITorr Next, heat treatment was performed at 950°C for 1 hour in 02. The obtained oxide superconducting wire has a diameter of 40 mm so that the oxide superconducting layer is located on the inside and the elongated base material is located on the outside.
When bent to mm, the reduction in critical current density was 8%. Comparison f14 In the oxide superconducting wire obtained under the same conditions as Example 3, the diameter was 40 mm so that the long base material was located on the inside.
When bent to mm, the critical current density showed a decrease of more than 90%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明が生まれる契機となった酸化物超電
導線の製造工程における熱膨張係数の影響を示す説明図
である。 第2図は、この発明の実施f!41において用いられる
装置を概略的に示す説明図である。第3図は、第2図に
示した巻取室8に配置されるボビン9を示す正面図であ
る。第4図は、第3図に示したボビン9の巻芯10に酸
化物超電導線11が巻かれる状態を示す拡大断面図であ
る。 第5図は、この発明の実施例2により得られたコイル1
8の一部を示す正面図である。第6図は、第5図に示し
たコイル18に含まれる酸化物超電導線14の一部を拡
大して示す断面図である。 図において、1.13.17は長尺基材、2゜12.1
6は酸化物超電導層、6は成膜室、7は熱処理室、8は
巻取室、9はボビン、11.14は酸化物超電導線、1
8はコイルである。 第2図
FIG. 1 is an explanatory diagram showing the influence of the coefficient of thermal expansion in the manufacturing process of oxide superconducting wire, which gave rise to the present invention. FIG. 2 shows the implementation f! of this invention. 41 is an explanatory diagram schematically showing a device used in FIG. FIG. 3 is a front view showing the bobbin 9 arranged in the winding chamber 8 shown in FIG. FIG. 4 is an enlarged sectional view showing a state in which the oxide superconducting wire 11 is wound around the winding core 10 of the bobbin 9 shown in FIG. FIG. 5 shows a coil 1 obtained according to Example 2 of the present invention.
FIG. 8 is a front view showing a part of FIG. FIG. 6 is an enlarged cross-sectional view of a part of the oxide superconducting wire 14 included in the coil 18 shown in FIG. In the figure, 1.13.17 is a long base material, 2°12.1
6 is an oxide superconducting layer, 6 is a film forming chamber, 7 is a heat treatment chamber, 8 is a winding chamber, 9 is a bobbin, 11.14 is an oxide superconducting wire, 1
8 is a coil. Figure 2

Claims (9)

【特許請求の範囲】[Claims] (1) 可撓性を有する長尺基材上に酸化物超電導層が
少なくとも加熱工程を通って形成されたものであり、前
記長尺基材の熱膨張係数が前記酸化物超電導層の熱膨張
係数よりも小さい、酸化物超電導線の取扱い方法であっ
て、 曲げ中心に対して、前記酸化物超電導層が内側に、かつ
前記長尺基材が外側に位置するように、前記酸化物超電
導層を曲げることを特徴とする、酸化物超電導線の取扱
い方法。
(1) An oxide superconducting layer is formed on a flexible elongated base material through at least a heating process, and the thermal expansion coefficient of the elongated base material is equal to the thermal expansion of the oxide superconducting layer. A method for handling an oxide superconducting wire, the method comprising: handling the oxide superconducting wire such that the oxide superconducting layer is located on the inside and the elongated base material is located on the outside with respect to the center of bending. A method of handling oxide superconducting wire characterized by bending it.
(2) 前記長尺基材がテープ状である、請求項1記載
の酸化物超電導線の取扱い方法。
(2) The method for handling an oxide superconducting wire according to claim 1, wherein the elongated base material is tape-shaped.
(3) 前記長尺基材が、ジルコニア、アルミナ、ガラ
ス、チタン、ジルコニウム、タングステン、白金、クロ
ム、ニッケル、ニオブ、モリブデン、鉄、ステンレス鋼
およびニッケル合金からなる群から選ばれた材料によっ
て構成される、請求項1または2記載の酸化物超電導線
の取扱い方法。
(3) The elongated base material is made of a material selected from the group consisting of zirconia, alumina, glass, titanium, zirconium, tungsten, platinum, chromium, nickel, niobium, molybdenum, iron, stainless steel, and nickel alloy. A method for handling an oxide superconducting wire according to claim 1 or 2.
(4) 可撓性を有する長尺基材上に酸化物超電導層が
少なくとも加熱工程を通って形成されたものであり、前
記長尺基材の熱膨張係数が前記酸化物超電導層の熱膨張
係数よりも小さい、酸化物超電導線を用いた製品におい
て、 曲げ中心に対して、前記酸化物超電導層が内側に、かつ
前記長尺基材が外側に位置するように、前記酸化物超電
導層が曲げられた状態とされていることを特徴とする、
酸化物超電導線を用いた製品。
(4) An oxide superconducting layer is formed on a flexible elongated base material through at least a heating process, and the thermal expansion coefficient of the elongated base material is equal to the thermal expansion of the oxide superconducting layer. In a product using an oxide superconducting wire having a coefficient smaller than the bending coefficient, the oxide superconducting layer is arranged so that the oxide superconducting layer is located on the inside and the elongated base material is located on the outside with respect to the bending center. characterized by being in a bent state,
Products using oxide superconducting wire.
(5) 前記長尺基材がテープ状である、請求項4記載
の酸化物超電導線を用いた製品。
(5) A product using the oxide superconducting wire according to claim 4, wherein the elongated base material is tape-shaped.
(6) 前記長尺基材が、ジルコニア、アルミナ、ガラ
ス、チタン、ジルコニウム、タングステン、白金、クロ
ム、ニッケル、ニオブ、モリブデン、鉄、ステンレス鋼
およびニッケル合金からなる群から選ばれた材料によっ
て構成される、請求項4または5記載の酸化物超電導線
を用いた製品。
(6) The elongated base material is made of a material selected from the group consisting of zirconia, alumina, glass, titanium, zirconium, tungsten, platinum, chromium, nickel, niobium, molybdenum, iron, stainless steel, and nickel alloy. A product using the oxide superconducting wire according to claim 4 or 5.
(7) 前記製品は、前記酸化物超電導線を用いたコイ
ルである、請求項4ないし6のいずれかに記載の酸化物
超電導線を用いた製品。
(7) The product using the oxide superconducting wire according to any one of claims 4 to 6, wherein the product is a coil using the oxide superconducting wire.
(8) 前記製品は、前記酸化物超電導線を巻取ったボ
ビンである、請求項4ないし6のいずれかに記載の酸化
物超電導線を用いた製品。
(8) The product using the oxide superconducting wire according to any one of claims 4 to 6, wherein the product is a bobbin wound with the oxide superconducting wire.
(9) 前記製品は、長尺体の表面に前記酸化物超電導
線を螺旋状に巻いてなるケーブルである、請求項4ない
し6のいずれかに記載の酸化物超電導線を用いた製品。
(9) The product using the oxide superconducting wire according to any one of claims 4 to 6, wherein the product is a cable formed by winding the oxide superconducting wire in a spiral shape on the surface of a long body.
JP1179423A 1989-03-31 1989-07-12 Method of manufacturing oxide superconducting wire and method of manufacturing product using oxide superconducting wire Expired - Lifetime JP2986107B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP1990/000421 WO1990012409A1 (en) 1989-03-31 1990-03-29 Method of handling oxide superconductor wire and article produced therefrom
CA002030559A CA2030559C (en) 1989-03-31 1990-03-29 Method of treating oxide superconductive wires and products using the same
EP90905662A EP0417329B1 (en) 1989-03-31 1990-03-29 Method of producing an oxide superconducting wire
DE69015524T DE69015524T2 (en) 1989-03-31 1990-03-29 METHOD FOR PRODUCING A SUPER-CONDUCTIVE WIRE BASED ON OXIDE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-82556 1989-03-31
JP8255689 1989-03-31

Publications (2)

Publication Number Publication Date
JPH0374012A true JPH0374012A (en) 1991-03-28
JP2986107B2 JP2986107B2 (en) 1999-12-06

Family

ID=13777770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1179423A Expired - Lifetime JP2986107B2 (en) 1989-03-31 1989-07-12 Method of manufacturing oxide superconducting wire and method of manufacturing product using oxide superconducting wire

Country Status (1)

Country Link
JP (1) JP2986107B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302464A (en) * 1991-03-04 1994-04-12 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Method of plating a bonded magnet and a bonded magnet carrying a metal coating
JP2013539338A (en) * 2010-09-06 2013-10-17 シーメンス アクチエンゲゼルシヤフト High temperature superconductor (HTS) coil

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302464A (en) * 1991-03-04 1994-04-12 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Method of plating a bonded magnet and a bonded magnet carrying a metal coating
JP2013539338A (en) * 2010-09-06 2013-10-17 シーメンス アクチエンゲゼルシヤフト High temperature superconductor (HTS) coil
KR20130138231A (en) * 2010-09-06 2013-12-18 지멘스 악티엔게젤샤프트 High-temperature superconductor (hts) coil
US9048015B2 (en) 2010-09-06 2015-06-02 Siemens Aktiengesellschaft High-temperature superconductor (HTS) coil

Also Published As

Publication number Publication date
JP2986107B2 (en) 1999-12-06

Similar Documents

Publication Publication Date Title
EP0423354B2 (en) Oxide superconductor wire, method of producing the same and article produced therefrom
US6603379B1 (en) Superconducing wind-and-react-coils and methods of manufacture
JP2008124014A (en) Method for producing superconductor
JPH04106906A (en) High temperature superconducting coil
US5364709A (en) Insulation for superconductors
JPH0374012A (en) Handling method for oxide superconducting wire and product using it
US5434129A (en) Method for manufacturing high tc superconductor coils
CA2030559C (en) Method of treating oxide superconductive wires and products using the same
US4983228A (en) Contraction pre-annealing superconducting wire for length stabilization followed by reaction annealing
US5104746A (en) Length stabilized Nb-Sn wire and annealing method
JP3635210B2 (en) Oxide superconducting compression molded conductor and manufacturing method thereof
JP3032771B2 (en) Superconducting coil manufacturing method
JP3674415B2 (en) Compound superconducting wire, method for producing the same, and apparatus for producing the same
JPH04329217A (en) Oxide superconductive wire material and manufacture thereof
SK118299A3 (en) Coating of a superconductor
JPS62106607A (en) Compound superconductive coil
JPS63241826A (en) Manufacture of superconducting wire
KR20020035885A (en) A method of manufacturing and using a superconducting tape, especially when said tape is to be wound on a coil
JPS6221246B2 (en)
JP3248190B2 (en) Oxide superconducting wire, its manufacturing method and its handling method
JPH04181704A (en) Manufacture of oxide superconductor coil
JPH03158203A (en) Manufacture of ceramic superconductor
JPH01276511A (en) Oxide superconductive wire rod
JPH065138A (en) Manufacture of compound superconductive wire
JPS63318012A (en) Superconductive wire and its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 10