JPH0373825A - Instrument for measuring refractive index of fluid - Google Patents

Instrument for measuring refractive index of fluid

Info

Publication number
JPH0373825A
JPH0373825A JP22489589A JP22489589A JPH0373825A JP H0373825 A JPH0373825 A JP H0373825A JP 22489589 A JP22489589 A JP 22489589A JP 22489589 A JP22489589 A JP 22489589A JP H0373825 A JPH0373825 A JP H0373825A
Authority
JP
Japan
Prior art keywords
refractive index
fluid
interferometer
interval
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22489589A
Other languages
Japanese (ja)
Other versions
JPH0833347B2 (en
Inventor
Yoshihiko Tachikawa
義彦 立川
Eiji Ogita
英治 荻田
Toshitsugu Ueda
敏嗣 植田
Katsuya Ikezawa
克哉 池澤
Bunkan Kin
文煥 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP1224895A priority Critical patent/JPH0833347B2/en
Publication of JPH0373825A publication Critical patent/JPH0373825A/en
Publication of JPH0833347B2 publication Critical patent/JPH0833347B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To attain the highly accurate measurement of a refractive index of fluid by simultane ously measuring the optical path length changes of respective reference intervals due to the refractive index change of the fluid based upon the reference intervals including the intervals of plural different reflecting faces and finding out the absolute value of the refractive index of the fluid from a change in the measured values. CONSTITUTION:The output light of a light source 10 is branched to two beams by a half mirror 11 and one beam is transmitted through the mirror 11 and made incident upon an interferometer 17. The incident light is further branched into two beams by the interferometer 17 and respective beams are reflected by respective reflecting faces 30a, 30b of the reference interval 30, returned to the interferomter 17 again and made incident upon a detector 20. The other beam is reflected by the half mirror 11 and a mirror 14 and made incident upon an interferometer 18 and the incident light is further branched two beams by the interferometer 18, respectively reflected by the reflecting faces 31a, 31b of the reference intervals 31, returned to the interferometer 18 again, made incident upon a detector 21, and then sent to a computing element 23 together with a signal generated from the detector 20. The interval L1 between the reflecting faces of the reference interval 30 is previously measured and the accurate refractive index of the fluid is calculated from the optical path length change between the interval L1 and the interval L2 of reflecting faces of the reference interval 31 based upon a prescribed equation.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は干渉を利用した流体の屈折率を測定する装置に
関し、特に基準間隔を用いた流体の屈折率を測定する装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an apparatus for measuring the refractive index of a fluid using interference, and more particularly to an apparatus for measuring the refractive index of a fluid using a reference interval.

〈従来の技術〉 第8図(イ)は一般的な干渉を利用した気体の屈折率測
定装置の原理例を示す構成図である。
<Prior Art> FIG. 8(a) is a block diagram showing an example of the principle of a gas refractive index measuring device using general interference.

第8図(イ)において、光源10の出力光は干渉計17
で2つに分岐され、これら2つの光は気体の取入れ(取
出し)口25aが設けられた容器25内の基準間隔24
に入射され、基準間隔24の反射面24a、24bで反
射され、再び干渉計17に戻り、演算器23に入射され
る。演算器23では、基準間隔24から反射された光の
光路長変化に伴う干渉信号の出力を測定し、干渉信号の
変化から気体の屈折率を演算している。
In FIG. 8(A), the output light from the light source 10 is transmitted to the interferometer 17.
The light is split into two at
The light is incident on the beam, is reflected by the reflecting surfaces 24a and 24b at the reference interval 24, returns to the interferometer 17, and is incident on the arithmetic unit 23. The arithmetic unit 23 measures the output of the interference signal accompanying the change in the optical path length of the light reflected from the reference interval 24, and calculates the refractive index of the gas from the change in the interference signal.

ここで、気体の屈折率(n)が変化し、光路長変化が(
Δn L )変化したとすると、干渉信号の光路長変化
出力(M>とは次の関係が成り立つ。
Here, the refractive index (n) of the gas changes, and the optical path length changes (
Δn L ) changes, the following relationship holds true with the optical path length change output (M>) of the interference signal.

ΔnL=M(=Δm・λv/2) なお、L;基準間隔24の反射面の間隔である。ΔnL=M (=Δm・λv/2) Note that L is the interval between the reflective surfaces of the reference interval 24.

したがって、基準間隔の反射面の間隔(L)をあらかじ
め求めておくことにより、干渉信号の光路長変化出力(
M>から気体の屈折率変化(Δn)が求められる。
Therefore, by determining the interval (L) between the reflective surfaces of the reference interval in advance, the optical path length change output of the interference signal (
The refractive index change (Δn) of the gas is determined from M>.

しかし上記のm戒では、気体の屈折率の変化は求められ
るが、絶対値は求められない、そのため、第8図(ロ)
に示すように、基準間隔24を真空容器26内に保持し
、被測定気体を導入して、真空から大気圧に開放する操
作を行い、面間の光路長変化を測定することにより、次
式から気体の屈折率の絶対値を求めることができる。
However, in the above m precept, the change in the refractive index of the gas is determined, but the absolute value cannot be determined. Therefore, Figure 8 (b)
As shown in Figure 2, the reference interval 24 is maintained in the vacuum container 26, the gas to be measured is introduced, the vacuum is released to atmospheric pressure, and the optical path length change between the surfaces is measured. The absolute value of the refractive index of the gas can be found from

n=1+(Δrn/L)(λ■/2) なお、Δm;真空から大気圧に変化させた時の干渉次数
変化 λ■;光源の真空中の波長 である。
n=1+(Δrn/L) (λ■/2) Note that Δm: Change in interference order when changing from vacuum to atmospheric pressure λ■: Wavelength of the light source in vacuum.

〈発明が解決しようとする課題〉 しかしながら、上記従来技術に示す気体の屈折率の絶対
値を測定する装置では、基準間隔24を真空容器26内
に保持し、真空から大気圧に開放する操作を連続的に行
う制御装置が必要となるため、装置自体の構成が大掛か
りなものとなるという課題があった。
<Problems to be Solved by the Invention> However, in the apparatus for measuring the absolute value of the refractive index of a gas shown in the above-mentioned prior art, the reference interval 24 is held in the vacuum container 26 and the operation of opening it from the vacuum to atmospheric pressure is performed. Since a continuous control device is required, there is a problem in that the configuration of the device itself becomes large-scale.

本発明は上記従来技術の課題を踏まえて威されたもので
あり、真空から大気圧への開放操作を必要としない構成
で簡単に流体の屈折率の絶対値を精度良く測定できる流
体の屈折率測定装置を提供することを自白りとしたもの
である。
The present invention has been developed based on the above-mentioned problems of the prior art, and provides a refractive index of a fluid that allows the absolute value of the refractive index of the fluid to be easily and accurately measured with a configuration that does not require opening operation from vacuum to atmospheric pressure. It is a confession that the company provides measuring equipment.

く課題を解決するための手段〉 上記課題を解決するための本発明の構成は、光源と、こ
の光源の出力光が入力される干渉計と、異なる反射面の
間隔を有する複数の基準間隔と、この基準間隔から反射
された光の光路長変化に件って前記干渉計により得られ
る干渉信号の出力を測定する検出器と、この出力された
干渉信号の変化から流体の屈折率の絶対値を演算する演
算器とを設けたことを特徴とするものであり、又、前記
基準間隔として真空に保持され周囲温度等の雰囲気の変
化による基準間隔の伸縮を補正する別の基準間隔を設け
たことを特徴とするものであり、又、前記干渉計により
分岐された一方の光を分岐する光学部品と、光を切り換
えるスリブト板等とを設け、このスリット板等の切り換
え動作に同期して検出器から出力された干渉信号の変化
から流体の屈折率の絶対値を演算器にて演算するように
したことを特徴とするものである。
Means for Solving the Problems> The configuration of the present invention for solving the above problems includes a light source, an interferometer into which the output light of the light source is input, and a plurality of reference intervals having different intervals between reflective surfaces. , a detector for measuring the output of the interference signal obtained by the interferometer with respect to the change in the optical path length of the light reflected from this reference interval, and a detector for measuring the output of the interference signal obtained by the interferometer with respect to the change in the optical path length of the light reflected from this reference interval, and the absolute value of the refractive index of the fluid from the change in the output interference signal. Further, as the reference interval, another reference interval is provided which is maintained in a vacuum and corrects expansion and contraction of the reference interval due to changes in the atmosphere such as ambient temperature. The device is characterized by the fact that an optical component that branches one of the lights branched by the interferometer, and a slit plate or the like that switches the light are provided, and the detection is performed in synchronization with the switching operation of the slit plate, etc. The present invention is characterized in that the absolute value of the refractive index of the fluid is calculated by a calculator based on the change in the interference signal output from the device.

く作用〉 このように、複数の異なる反射面の間隔を有する基準間
隔を用いて、流体の屈折率変化に伴う各基準間隔の光路
長変化を同時に測定し、その変化量の違いから流体の屈
折率の絶対値を求めるようにすると、真空から大気圧へ
の開放の操作が必要なくなるため、構成が簡素化される
ことになり、又、周囲温度等の雰囲気の変化による基準
間隔の伸縮も補正できる構成とすると、測定精度がより
高精度となり、更に、光の切り換えを行うスリット板を
設け、流体の屈折率変化に伴う各基準間隔の光路長変化
を時分割で測定し、その変化量の違いから流体の屈折率
の絶対値を求めるようにすると、複数の基準間隔それぞ
れに専用な干渉計や検出器等が必要なくなるため、安価
で小型の装置とすることができる。
In this way, by using a reference interval that has a plurality of different intervals between reflective surfaces, the change in optical path length of each reference interval due to the change in the refractive index of the fluid is measured simultaneously, and the refraction of the fluid is determined from the difference in the amount of change. Determining the absolute value of the ratio simplifies the configuration because there is no need to open from vacuum to atmospheric pressure, and also compensates for expansion and contraction of the reference interval due to changes in the atmosphere such as ambient temperature. If this configuration is adopted, the measurement accuracy will be higher, and a slit plate for switching the light will be provided to time-divisionally measure the optical path length change at each reference interval due to the change in the refractive index of the fluid, and the amount of change will be calculated. If the absolute value of the refractive index of the fluid is determined from the difference, there is no need for a dedicated interferometer, detector, etc. for each of the plurality of reference intervals, and the apparatus can be made inexpensive and compact.

〈実施例〉 以下、本発明を図面に基づいて説明する。<Example> Hereinafter, the present invention will be explained based on the drawings.

第1図は本発明に係わる流体の屈折率測定装置の一実施
例の構成図である。なお、第1図において第8図と同一
要素には同一符号を付して重複する説明は省略する。
FIG. 1 is a block diagram of an embodiment of a fluid refractive index measuring device according to the present invention. In FIG. 1, the same elements as those in FIG. 8 are given the same reference numerals and redundant explanations will be omitted.

第1図において、11は光源10の出力光を2つに分岐
するハーフミラ−14はミラー 17.18は干渉計、
30.31は流体の取入れ(取出し)口25aが設けら
れた容器25内に設置された基準間隔であり、反射面の
間隔がそれぞれI−1、Llで保持され、長さはLl 
<Llとしである。
In FIG. 1, 11 is a half mirror that splits the output light from the light source 10 into two; 14 is a mirror; 17.18 is an interferometer;
30.31 is a reference interval installed in the container 25 provided with the fluid intake (extraction) port 25a, the intervals between the reflecting surfaces are maintained at I-1 and Ll, and the length is Ll.
<Ll and so.

20.21は基準間隔30.31から反射された光の光
路長変化に伴って干渉計17.18により得られる干渉
信号の出力を測定する検出器、23は検出器20.21
から出力された干渉信号の変化から流体の屈折率の絶対
値を演算する演算器である。
20.21 is a detector that measures the output of the interference signal obtained by the interferometer 17.18 as the optical path length of the light reflected from the reference interval 30.31 changes; 23 is the detector 20.21;
This is an arithmetic unit that calculates the absolute value of the refractive index of the fluid from the change in the interference signal output from the refractive index.

このような構成において、光源10の出力光はハーフミ
ラ−11で2つに分岐され、一方の光はハーフミラ−1
1を透過し、干渉計17に入射される。入射された光は
干渉計17にて更に2つに分岐され、基準間隔30の反
射面30a、30bでそれぞれ反射され、再び干渉計1
7に戻り、検出器20に入射される。他方の光はハーフ
ミラ−11、ミラー14で反射され、干渉計18に入射
される。入射された光は干渉計18にて更に2つに分岐
され、基準間隔31の反射面31a、31bでそれぞれ
反射され、再び干渉計18に戻り、検出器21に入射さ
れ、検出器20からの信号と共に演算器23に送られる
In such a configuration, the output light of the light source 10 is split into two by the half mirror 11, and one of the lights is split into two by the half mirror 11.
1 and enters the interferometer 17. The incident light is further split into two by the interferometer 17, reflected by the reflecting surfaces 30a and 30b with a reference interval 30, and then reflected by the interferometer 1 again.
7 and enters the detector 20. The other light is reflected by the half mirror 11 and the mirror 14, and enters the interferometer 18. The incident light is further split into two by the interferometer 18, reflected by the reflecting surfaces 31a and 31b at the reference interval 31, returns to the interferometer 18 again, enters the detector 21, and is reflected from the detector 20. It is sent to the arithmetic unit 23 together with the signal.

ここで、第2図(イ)は周囲の温度や気圧等の変化によ
り雰囲気の屈折率が変化した時の基準間隔30.31か
ら反射された光の光路長変化に伴う干渉信号の出力を示
す図であり、横軸には流体の屈折率の変化量(n−1)
、41軸には光強度(P)をとり表わしたものである。
Here, Figure 2 (A) shows the output of the interference signal due to the change in the optical path length of the light reflected from the reference interval 30.31 when the refractive index of the atmosphere changes due to changes in the surrounding temperature, atmospheric pressure, etc. The horizontal axis represents the amount of change in the refractive index of the fluid (n-1).
, 41 axis represents the light intensity (P).

第2図(ロ)はその時の位相信号の変化量を示す図であ
り、縦軸に位相をとり表わしである。なお、nvは真空
の屈折率(=1)、naはある任意の′f&体の屈折率
を示し、実線は基準間隔30の信号、点線は基準間隔3
1の信号を示すものである。又、第2図では真空中での
初期位相(θOi)を0とした時の例を示しである。
FIG. 2(b) is a diagram showing the amount of change in the phase signal at that time, and the vertical axis represents the phase. Note that nv is the refractive index of vacuum (=1), na is the refractive index of an arbitrary 'f& body, the solid line is the signal of the reference interval 30, and the dotted line is the signal of the reference interval 3.
1 signal. Further, FIG. 2 shows an example when the initial phase (θOi) in vacuum is set to 0.

第2図(イ)に示すように、干渉計17.18から出力
される光路長変化に伴う干渉信号の出力は(1/2)λ
Vの周期で光強度が変化する。その時の検出器20.2
1から出力される位相信号の変化量は第2図(ロ)に示
すように、反射面の間隔(L)が異なる基準間隔では、
同じ流体の屈折率の変化に対しての位相信号変化量は異
なり、反射面の間隔が長ければ位相信号変化量は大きく
なり、短ければ変化量は小さくなる。あらかじめ反射面
の間隔(L)をそれぞれ任意の長さに設定しておくこと
により、反射面の間隔が短い基準間隔30を用いて流体
の屈折率の粗測定を行い、反射面の間隔が長い基準間隔
31を用いて流体の屈折率の精密な測定を行う、その時
の関係は次式で表わされる。
As shown in Figure 2 (a), the output of the interference signal due to the change in optical path length output from the interferometer 17.18 is (1/2)λ
The light intensity changes with a period of V. Detector 20.2 at that time
As shown in Figure 2 (b), the amount of change in the phase signal output from 1 is as follows when the distance (L) between the reflecting surfaces is different:
The amount of change in the phase signal with respect to a change in the refractive index of the same fluid differs; the longer the interval between the reflecting surfaces, the greater the amount of change in the phase signal, and the shorter the interval, the smaller the amount of change. By setting the interval (L) between the reflective surfaces to an arbitrary length in advance, rough measurement of the refractive index of the fluid is performed using the standard interval 30, which has a short interval between reflective surfaces, and when the interval between reflective surfaces is long. The reference interval 31 is used to precisely measure the refractive index of the fluid, and the relationship is expressed by the following equation.

狙測定: (n−1)=(λv /2L1)(1/2π)(θ1−
001)       ・・・■精密測定; (n−1)− なお、θi ; λ■ : L・ ; Δm ; θO1; (λV /2L2 )(1/2π) (2Lmπ十θ2−θ02)  ・・・■位相(0≦θ
≦2π、測定値) 光源の真空中の波長 基準間隔の反射面の間隔 真空から測定雰囲気まで屈折率が変 化した時の干渉信号(位相信号)の 波数変化 真空中での初期位相 ((2L・ ・2π/λV)の小数部)である。
Aim measurement: (n-1) = (λv /2L1) (1/2π) (θ1-
001) ... ■Precision measurement; (n-1) - In addition, θi ; λ■ : L・ ; Δm ; θO1; (λV /2L2 ) (1/2π) (2Lmπ + θ2 - θ02) ...■ Phase (0≦θ
≦2π, measured value) Distance of reflective surface of wavelength reference interval in vacuum of light source Change in wave number of interference signal (phase signal) when refractive index changes from vacuum to measurement atmosphere Initial phase in vacuum ((2L・・2π/λV).

したがって、あらかじめ基準間隔30の反射面の間隔(
Ll)を測定し、真空中での初期位相(θ01)を求め
ておくことにより、0式より流体の屈折率nの粗い範囲
が演算される。同様に基準間隔31の反射面の間隔(L
2)を測定し、真空中での初期位相(θ02〉を求めて
おくことにより、0式で求めた値から■式の基準間隔3
1の干渉信号(位相信号)の波数変化Δmが決定され、
■式より精密な流体の屈折率nを演算することができる
。なお、第2図では干渉信号(位相信号)の波数変化Δ
mが2となる場合を示しである。
Therefore, the interval (
By measuring Ll) and determining the initial phase (θ01) in vacuum, the rough range of the refractive index n of the fluid can be calculated from equation 0. Similarly, the interval (L
By measuring 2) and determining the initial phase (θ02〉) in vacuum, the reference interval 3 of formula ■ can be calculated from the value determined by formula 0.
The wave number change Δm of the interference signal (phase signal) of 1 is determined,
(2) The refractive index n of the fluid can be calculated more precisely using the formula. In addition, in Figure 2, the wave number change Δ of the interference signal (phase signal)
The figure shows the case where m is 2.

第3図は本発明に係わる流体の屈折率測定装置の請求項
2に関する一実施例を示す構成図である。
FIG. 3 is a block diagram showing an embodiment of the fluid refractive index measuring device according to the present invention.

なお、第3図において第1図と同一要素には同一符号を
付して重複する説明は省略する。
In FIG. 3, the same elements as those in FIG. 1 are given the same reference numerals and redundant explanations will be omitted.

第3図は周囲温度等の雰囲気の変化による基準間隔30
.31の伸縮も補正できるような構成としたものであり
、12はハーフミラ−19は干渉計、22は検出器、3
2は真空に保持された基準間隔である。
Figure 3 shows the reference interval 30 due to changes in the atmosphere such as ambient temperature.
.. The configuration is such that the expansion and contraction of 31 can also be corrected, 12 is a half mirror, 19 is an interferometer, 22 is a detector, 3
2 is a reference interval maintained in a vacuum.

このような構成において、光源10からの出力光はハー
フミラ−11,12にて各々2つに分岐され、ハーフミ
ラ−12にて分岐された一方の光はミラー14で反射さ
れ、干渉計19に入射される。入射された光は干渉計1
9にて更に2つに分岐され、真空に保持された基準間隔
32の反射面でそれぞれ反射され再び干渉計19に戻り
、検出器22に入射され、他の検出器20及び21から
の信号と共に演算器23に入力される。ここで、周囲温
度等の雰囲気が変化して基準間隔30.31が伸縮する
ことによっても、第2図(イ)及び(ロ)に示す信号の
特性が変化し、この結果、測定精度を悪くすることにな
る。したがって、周囲温度等の雰囲気の変化による基準
間隔30.31の伸縮量を真空に保持した基準間隔32
の長さ変化を測定し、演算器23にて次式により補正す
るようにしたものである。
In such a configuration, the output light from the light source 10 is split into two by the half mirrors 11 and 12, and one of the lights branched by the half mirror 12 is reflected by the mirror 14 and enters the interferometer 19. be done. The incident light passes through interferometer 1
9, the signal is further branched into two, each reflected by a reflecting surface at a reference interval 32 maintained in a vacuum, returned to the interferometer 19, and incident on the detector 22, together with the signals from the other detectors 20 and 21. It is input to the computing unit 23. Here, if the reference interval 30.31 expands or contracts due to changes in the atmosphere such as the ambient temperature, the characteristics of the signals shown in Figure 2 (a) and (b) will change, and as a result, the measurement accuracy will deteriorate. I will do it. Therefore, the reference interval 32 maintains the amount of expansion and contraction of the reference interval 30.31 in a vacuum due to changes in the atmosphere such as ambient temperature.
The change in length is measured and corrected by the calculator 23 using the following equation.

長さLiの補正係数に1は K  =(l、3+ΔL3)/L3 1+Δθ3・λV/4πL3    ・・・■なお、Δ
θ3;基準間隔32の位相変化量である。
1 is the correction coefficient for the length Li: K = (l, 3+ΔL3)/L3 1+Δθ3・λV/4πL3...
θ3: Amount of phase change in the reference interval 32.

第4図から第6図に更に他の実施例を示す、この実施例
においても第1図及び第3図と同一要素には同一符号を
付して重複する説明は省略する。
Still another embodiment is shown in FIGS. 4 to 6. In this embodiment as well, the same elements as those in FIGS. 1 and 3 are given the same reference numerals, and redundant explanations will be omitted.

第4図は基準間隔33.34の形状をそれぞれ反射面が
向き合う対向形としたものであり、又、容器25内の流
体の屈折率に等しくするための連通する孔40.41を
形成したものである。この実施例では、干渉計17.1
8により分岐された一方の光(実線)は、それぞれ反射
面33a、34aで反射されて干渉計17.18に戻る
が、他方の光(点線)は、それぞれ反射面33aと33
b、34aと34bの間で数回反射を繰り返されて干渉
計17.18に戻る。したがって、光路長を第1図及び
第3図の基準間隔の光路長に比べて長くとることができ
るため、基準間隔の構成を小さくすることができるとい
う特徴がある。
In FIG. 4, the shape of the reference intervals 33 and 34 is set so that the reflective surfaces face each other, and communicating holes 40 and 41 are formed to make the refractive index equal to the refractive index of the fluid in the container 25. It is. In this example, the interferometer 17.1
One of the lights (solid line) branched by 8 is reflected by reflection surfaces 33a and 34a and returns to the interferometer 17.18, while the other light (dotted line) is reflected by reflection surfaces 33a and 34a, respectively.
b, it is reflected several times between 34a and 34b and returns to the interferometer 17.18. Therefore, since the optical path length can be made longer than the optical path length of the reference interval shown in FIGS. 1 and 3, the structure of the reference interval can be made smaller.

第5図は基準間隔35.36を透過形としたちのであり
、この透過形の基準間隔35.36には真空に保持され
た部分42.43が設けられている。なお、12.13
はハーフミラ−115,16はミラーである。この実施
例では、ハーフミラ12.13によりそれぞれ分岐され
た一方の光(点線〉は、基準間隔35.36を透過して
干渉計17.18に入射し、又、他方の光(実4りは基
準間隔35.36の真空に保持された部分42.43を
透過して干渉計17.18に入射する。同一長さり、で
光路長差が得られるため、周囲温度等の雰囲気の変化に
よる基準間隔の伸縮の影響を小さくする構成とすること
ができる。
In FIG. 5, the reference interval 35.36 is of the transmission type, and the reference interval 35.36 of the transmission type is provided with a portion 42.43 held in vacuum. In addition, 12.13
115 and 16 are half mirrors. In this embodiment, one of the lights (dotted line) branched by the half mirror 12.13 passes through the reference interval 35.36 and enters the interferometer 17.18, and the other light (dotted line) It passes through a part 42.43 held in vacuum with a reference interval of 35.36 and enters the interferometer 17.18.Since the optical path length difference is obtained with the same length, the reference value due to changes in the atmosphere such as ambient temperature etc. It is possible to adopt a configuration that reduces the influence of expansion and contraction of the interval.

第6図は基準間隔を一体形としたものであり、(イ)図
は装置の構成を示す立体図、(ロ)図は一体形とした基
準間隔の構成図である0図において、14−はミラー、
37.38は一体形とされた基準間隔、44は基準間隔
37.38を連通する孔である。この実施例では、ミラ
ー14−により基準間隔37へ入射される光は、基準間
隔38へ入射される光に対して901で入射されるよう
に形成したものである。このようにすると、干渉計によ
り分岐された2つの光は同一のM″ii体で反射される
ため、基準間隔間の温度差による長さLl、Llの変化
が小さく、より高精度に測定することができる。
Figure 6 shows the standard interval in an integrated form, (a) is a three-dimensional view showing the configuration of the device, and (b) is a configuration diagram of the standard interval in an integrated form. is a mirror,
Reference numerals 37 and 38 are integral reference intervals, and 44 is a hole communicating the reference intervals 37 and 38. In this embodiment, the light incident on the reference interval 37 by the mirror 14- is formed to be incident at 901 with respect to the light incident on the reference interval 38. In this way, the two lights split by the interferometer are reflected by the same M″ii body, so changes in the lengths Ll and Ll due to temperature differences between the reference intervals are small, and measurements can be made with higher precision. be able to.

第7図は本発明に係わる流体の屈折率測定v2置の請求
項3に関する一実施例を示す構成図である。
FIG. 7 is a block diagram showing an embodiment of the third aspect of the present invention for measuring the refractive index of a fluid at a v2 position.

なお、第7図において第1図と同一要素には同一符号を
付して重複する説明は省略する。
In FIG. 7, the same elements as those in FIG. 1 are given the same reference numerals and redundant explanations will be omitted.

第7図において、39は反射面の間隔がLl、Llで保
持されている基準間隔、50は干渉計17により分岐さ
れた一方の光を分岐する光学部品、51は光学部品50
により分岐された光を切り換えるスリット板である。
In FIG. 7, reference numeral 39 indicates a reference interval in which the interval between reflective surfaces is maintained at Ll, Ll, 50 an optical component that branches one of the lights branched by the interferometer 17, and 51 an optical component 50.
This is a slit plate that switches the light branched by.

このような構成において、光源10の出力光は干渉計1
7に入射され、入射された光は干渉計17にて2つに分
岐される。実線で示す一方の光は基準間隔39の反射面
39aで反射され、再び干渉計17に戻る0点線で示す
他方の光は光学部品50で更に2つに分岐され、スリッ
ト板51を経て基準間隔39の反射面39b、又は39
cで反射され、再びスリット板51、光学部品50を経
て干渉計17に戻る。干渉計17では基準間隔39の反
射面39aと反射面39b、又は39cからの反射光が
台底され、干渉信号として検出器20に入射され、演算
器23に入力される。
In such a configuration, the output light of the light source 10 is transmitted to the interferometer 1.
7, and the incident light is split into two by an interferometer 17. One light indicated by the solid line is reflected by the reflecting surface 39a at the reference interval 39, and the other light indicated by the zero-dot line returns to the interferometer 17. 39 reflective surface 39b, or 39
c and returns to the interferometer 17 via the slit plate 51 and the optical component 50. In the interferometer 17, the reflected light from the reflecting surface 39a and the reflecting surface 39b or 39c at the reference interval 39 is collimated, inputted to the detector 20 as an interference signal, and inputted to the calculator 23.

しかしながら、上記状態では、2つの干渉信号が混ざっ
た状態を示しているため、スリット板51により基準間
隔39の反射面39b、39cで反射される光の切り換
えを行う、このスリット板51の切り換え動作に同期し
て演算器23で基準間隔L  、L2による干渉信号か
ら流体の屈折率の絶対値を演算する。
However, in the above state, two interference signals are mixed, so the switching operation of the slit plate 51 is performed to switch the light reflected by the reflecting surfaces 39b and 39c at the reference interval 39 by the slit plate 51. In synchronization with , the computing unit 23 computes the absolute value of the refractive index of the fluid from the interference signals generated by the reference intervals L and L2.

通常の動作としては、最初にスリット板51により光■
を遮断し、短い基準間隔Llから流体の屈折率の粗い範
囲を求め、次に光■を遮断し、長い基準間隔L2から精
密な流体の屈折率を求めるものであり、第1図の構成図
の装置に比べて、複数の基準間隔それぞれに専用な高価
な干渉計とそれに伴う検出器が必要なくなるため、安価
で小型の装置とすることができる。なお、光学部品50
は干渉計17中に構成されていてもよく、装置の構成を
より小型化できることになり、又、スリット板51によ
る光の切り換え動作は、機械的な方法、又は電気−光学
効果を使用した光スィッチ等を用いた電気的な方法のど
ちらであってもよい。
In normal operation, the slit plate 51 first lights the
The method is to block the light 2 and find the rough range of the refractive index of the fluid from the short reference interval Ll, then block the light 2 and find the precise refractive index of the fluid from the long reference interval L2. Compared to the device described above, this method eliminates the need for expensive interferometers and associated detectors for each of the plurality of reference intervals, resulting in an inexpensive and compact device. In addition, the optical component 50
may be configured in the interferometer 17, which allows the configuration of the device to be further miniaturized, and the light switching operation by the slit plate 51 may be performed by a mechanical method or by using an electro-optical effect. Either electrical method using a switch or the like may be used.

又、前記いずれの構成においても、基準間隔の形状及び
配置は必ずしも上記に示した構成である必要はなく、反
射面の間隔が測定できる構成であればよく、例えば2つ
の干渉計の構成や干渉計と基準間隔の構成や容器と基準
間隔の構成が一体であってもよく、干渉計として差動型
の干渉計を用い光路長を長くするようにしてもよい、又
、基準間隔の数は3個以上であってもよく、その場合は
高分解能となり、より高精度に流体の屈折率を求めるこ
とができる。更に干渉信号の測定手段としては光源に2
周波数光源を使用して、ヘテロダイン干渉により位相を
求めるような方法でもよい。
In addition, in any of the above configurations, the shape and arrangement of the reference interval do not necessarily have to be the configuration shown above, but may be any configuration that can measure the interval between reflective surfaces, such as the configuration of two interferometers or the configuration of two interferometers. The configuration of the meter and the reference interval or the configuration of the container and the reference interval may be integrated, or a differential interferometer may be used as the interferometer to lengthen the optical path length, or the number of reference intervals may be The number may be three or more, in which case the resolution is high and the refractive index of the fluid can be determined with higher accuracy. Furthermore, as a means of measuring interference signals, two light sources are used.
A method of determining the phase by heterodyne interference using a frequency light source may also be used.

〈発明の効果〉 以上、実施例と共に具体的に説明したように、本発明に
よれば、複数の異なる反射面の間隔を有する基準間隔を
用いて、流体の屈折率変化に伴う各基準間隔の光路長変
化を同時に測定し、その変化量の違いから流体の屈折率
の絶対値を求めるようにした構成とすることにより一真
空から大気への気体導入時の制御装置を必要としない為
、装置の構成を簡素化でき、又、周囲温度等の雰囲気の
変化による基準間隔の伸縮も補正できる構成とすること
により、測定精度をより高精度にすることができる。更
に、干渉計により分岐された一方の光を光学部品により
更に分岐し、この分岐された光をスリット板を通すこと
により、複数の基準間隔それぞれに専用な高価な干渉計
を必要としなくなり、それに伴う検出器も必要なくなる
ことになり、安価で小型の流体の屈折率の絶対値を測定
することのできる流体の屈折率測定装置を実現すること
ができる。
<Effects of the Invention> As described above in detail with the embodiments, according to the present invention, each reference interval is adjusted as the refractive index of the fluid changes by using a reference interval having a plurality of different intervals between reflective surfaces. By simultaneously measuring the change in optical path length and determining the absolute value of the refractive index of the fluid from the difference in the amount of change, there is no need for a control device when introducing gas from a vacuum to the atmosphere, making the device The measurement accuracy can be made even higher by simplifying the configuration and by making the configuration capable of correcting expansion and contraction of the reference interval due to changes in the atmosphere such as the ambient temperature. Furthermore, by further splitting one of the lights split by the interferometer using an optical component and passing this split light through a slit plate, there is no need for expensive interferometers dedicated to each of the multiple reference intervals. This also eliminates the need for an accompanying detector, making it possible to realize an inexpensive and small-sized fluid refractive index measuring device that can measure the absolute value of the refractive index of a fluid.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わる流体の屈折率測定装置の一実施
例を示す構成図、第2図は流体の屈折率の変化に伴う干
渉信号の出力及び位相信号の変化量を示す図、第3図〜
第7図は本発明の他の実施例を示す構成図、第8図は従
来例を示す図である。 10・・・光源、11.12・・・ハーフミラ−14・
・・ミラー 17〜19・・・干渉計、20〜22・・
・検出器、23・・・演算器、25・・・容器、30.
31.39・・・基準間隔、32・・・真空に保持され
た基準間隔、50・・・光学部品、51・・・スリット
板、25a・・・流体の取入れ(取出し)口、30a、
30b、31a、31b、39 a 〜39 c−反射
面、L1〜L3・・・反射面の間隔。 S 2− 第 図 第 図
FIG. 1 is a configuration diagram showing an embodiment of a fluid refractive index measuring device according to the present invention, FIG. Figure 3~
FIG. 7 is a block diagram showing another embodiment of the present invention, and FIG. 8 is a diagram showing a conventional example. 10...Light source, 11.12...Half mirror-14.
...Mirror 17-19...Interferometer, 20-22...
- Detector, 23... Arithmetic unit, 25... Container, 30.
31.39... Reference interval, 32... Reference interval maintained in vacuum, 50... Optical component, 51... Slit plate, 25a... Fluid intake (output) port, 30a,
30b, 31a, 31b, 39a to 39c-reflecting surface, L1 to L3... spacing between reflective surfaces. S2- Figure Figure

Claims (1)

【特許請求の範囲】 1、光源と、この光源の出力光が入力される干渉計と、
異なる反射面の間隔を有する複数の基準間隔と、この基
準間隔から反射された光の光路長変化に伴って前記干渉
計により得られる干渉信号の出力を測定する検出器と、
この出力された干渉信号の変化から流体の屈折率の絶対
値を演算する演算器とを設けたことを特徴とする流体の
屈折率測定装置。 2、前記基準間隔として真空に保持され周囲温度等の雰
囲気の変化による基準間隔の伸縮を補正する別の基準間
隔を設けたことを特徴とする請求項1記載の流体の屈折
率測定装置。 3、前記干渉計により分岐された一方の光を分岐する光
学部品と、光を切り換えるスリット板等とを設け、この
スリット板等の切り換え動作に同期して検出器から出力
された干渉信号の変化から流体の屈折率の絶対値を演算
器にて演算するようにしたことを特徴とする請求項1記
載の流体の屈折率測定装置。
[Claims] 1. A light source and an interferometer into which the output light of the light source is input;
a plurality of reference intervals having different intervals between reflective surfaces, and a detector that measures the output of an interference signal obtained by the interferometer as the optical path length of light reflected from the reference intervals changes;
A refractive index measuring device for a fluid, comprising: a calculator for calculating the absolute value of the refractive index of the fluid from a change in the output interference signal. 2. The fluid refractive index measuring device according to claim 1, wherein another reference interval is provided as the reference interval to correct expansion and contraction of the reference interval due to changes in the atmosphere such as ambient temperature, which is maintained in a vacuum. 3. An optical component that branches one of the lights branched by the interferometer, and a slit plate, etc. that switches the light are provided, and the interference signal output from the detector changes in synchronization with the switching operation of the slit plate, etc. 2. The fluid refractive index measuring device according to claim 1, wherein the absolute value of the refractive index of the fluid is calculated by a calculator.
JP1224895A 1989-03-30 1989-08-31 Fluid refractive index measuring device Expired - Lifetime JPH0833347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1224895A JPH0833347B2 (en) 1989-03-30 1989-08-31 Fluid refractive index measuring device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP8007089 1989-03-30
JP1-120123 1989-05-13
JP12012389 1989-05-13
JP1-80070 1989-05-13
JP1224895A JPH0833347B2 (en) 1989-03-30 1989-08-31 Fluid refractive index measuring device

Publications (2)

Publication Number Publication Date
JPH0373825A true JPH0373825A (en) 1991-03-28
JPH0833347B2 JPH0833347B2 (en) 1996-03-29

Family

ID=27303194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1224895A Expired - Lifetime JPH0833347B2 (en) 1989-03-30 1989-08-31 Fluid refractive index measuring device

Country Status (1)

Country Link
JP (1) JPH0833347B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2212983T3 (en) 2007-10-15 2021-10-25 Ampt, Llc Systems for highly efficient solar power
SG175717A1 (en) 2009-04-17 2011-12-29 Ampt Llc Methods and apparatus for adaptive operation of solar power systems

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524257A (en) * 1975-06-28 1977-01-13 Canon Inc Physical factor measuring system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524257A (en) * 1975-06-28 1977-01-13 Canon Inc Physical factor measuring system

Also Published As

Publication number Publication date
JPH0833347B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
EP0281385B1 (en) Plane mirror interferometer
US5541730A (en) Interferometric measuring apparatus for making absolute measurements of distance or refractive index
US6064472A (en) Method for speed measurement according to the laser-doppler-principle
EP0244275B1 (en) Angle measuring interferometer
JP2755757B2 (en) Measuring method of displacement and angle
EP0512450B1 (en) Wavelength variation measuring apparatus
US6563593B2 (en) Dynamic angle measuring interferometer
JPH07239208A (en) Device for measuring application of interference
US7414730B2 (en) High precision interferometer apparatus employing a grating beamsplitter
EP0508583B1 (en) Absolute gas refractometer
JPS58169004A (en) Highly accurate interference length measuring method in atmosphere
JPH0373825A (en) Instrument for measuring refractive index of fluid
US5233176A (en) Precision laser surveying instrument using atmospheric turbulence compensation by determining the absolute displacement between two laser beam components
US5946096A (en) Heterodyne interferometry method for measuring physical parameters of medium
EP0490957A1 (en) Apparatus for measuring the refractive index of gaseous media
US5493394A (en) Method and apparatus for use in measuring frequency difference between light signals
RU2113697C1 (en) Optical pressure gauge
JPH0484739A (en) Refractive-index measuring apparatus
JP2712509B2 (en) Reflection film characteristic measuring device
JPH03118447A (en) Refractive-index measuring apparatus
JPH03131704A (en) Length measuring instrument
JPH06502254A (en) Lateral displacement measurement device for objects
RU2008653C1 (en) Interference refractometer
JP2923859B2 (en) Refractive index measuring device
JPH0454407A (en) Optical displacement gauge