JPH0373822A - Instrument for measuring distribution of refractive index - Google Patents

Instrument for measuring distribution of refractive index

Info

Publication number
JPH0373822A
JPH0373822A JP9705689A JP9705689A JPH0373822A JP H0373822 A JPH0373822 A JP H0373822A JP 9705689 A JP9705689 A JP 9705689A JP 9705689 A JP9705689 A JP 9705689A JP H0373822 A JPH0373822 A JP H0373822A
Authority
JP
Japan
Prior art keywords
image
light
refractive index
image pickup
pickup tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9705689A
Other languages
Japanese (ja)
Other versions
JPH07109381B2 (en
Inventor
Ichiro Yamaguchi
一郎 山口
Tadakatsu Shimada
忠克 島田
Kazuo Kamiya
和雄 神屋
Toshiyuki Suzuki
敏之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
RIKEN Institute of Physical and Chemical Research
Shin Etsu Engineering Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
RIKEN Institute of Physical and Chemical Research
Shin Etsu Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, RIKEN Institute of Physical and Chemical Research, Shin Etsu Engineering Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP1097056A priority Critical patent/JPH07109381B2/en
Priority to US07/509,909 priority patent/US5078488A/en
Priority to DE69013963T priority patent/DE69013963T2/en
Priority to EP90107269A priority patent/EP0393591B1/en
Publication of JPH0373822A publication Critical patent/JPH0373822A/en
Publication of JPH07109381B2 publication Critical patent/JPH07109381B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/412Index profiling of optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To make the instrument compact by photodetecting light projected from the direction vertial to the center axis of a cylindrical glass by means of an image pickup tube mounted on a moving means to be moved in the same direction as the optical axis of an incident optical system and finding out the projection angle of the projected light. CONSTITUTION:Light send from a light source 5 through the incident optical system 6 is made incident from the direction vertical to the center axis of a perform 1, refracted by the preform 1 and projected. The projected light is observed by the image pickup tube 7 and the image data of the image are sent and stored to/in a frame memory 12. The data are sent to a CPU 13, which calculates the angle of projection from the coordinate value of the image of the projected light and sends the calculated value to an output means 15. The CPU 13 applies a driving signal to a motor driving means 14 so that the coordinate value of the image of the projected light is maximized without being shifted from the image pickup tube 7 to drive a pulse motor and move a moving table 8 front and back. A moving distance sensor 10 detects the moving distance of the table 8, sends the detected value to the CPU 13, which highly accurately calculates the angle of projection by means of the maximum coordinate value of the image and the moving distance of the table 8.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、例えば光フアイバ用プリフォームやロッドレ
ンズに使用される円柱ガラスの屈折率分布の測定装置に
関するもので、特に異なる屈折率を有するプリフォーム
等の屈折率分布測定の簡易化、高精度化に役立つもので
ある。
The present invention relates to a measuring device for measuring the refractive index distribution of cylindrical glass used, for example, in optical fiber preforms or rod lenses, and in particular, it simplifies and highly accurately measures the refractive index distribution of preforms having different refractive indexes. It is useful for

【従来の技術】[Conventional technology]

光フアイバ用プリフォーム(母材)やロッドレンズに使
用される円柱ガラスは、半径方向の屈折率がほぼ2乗分
布、軸方向の屈折率は均一になっている。これを線引き
して光ファイバが形成される。線引き前のプリフォーム
の屈折率分布を正確に測定することが良好な製品を得る
ために必要である。 屈折率分布の測定法としては、例えば特開昭63−95
336号公報に光フアイバ用のプリフォームの中心軸と
垂直方向から光線を入射させ、その出射角を求めてプリ
フォームの屈折率分布を測定する方法が開示されている
。第7図には同公報に開示された屈折率分布測定装置を
示しである。図に示すように光源5とレンズ6からなる
入射光学系から、セル2内のマツチングオイル3中に設
置されたプリフォームlに入射され、プリフォームlを
通って出射された出射光はレンズ21を有する出射光学
系を通過してTVカメラ22の観察面に投影される。こ
の投影像をTVカメラ22取り出し、投影像の座標Xと
出射光学系の焦点距離fとから出射角φを φ: tan引(X/f) で求めている。そしてパルスモータによりプリフォーム
をi12置した移動テーブル4を移動しながら求めた出
射角φを用いプリフォームlの屈折率分布n (r)を
次式 で算出している。 あるいは出射光学系を通った出射光の像をスクリーン上
に形成し、スクリーン上の投影像をTVカメラ22で観
察して出射角φを求めている。
Cylindrical glass used for optical fiber preforms (base materials) and rod lenses has a refractive index in the radial direction that has a substantially square distribution, and a refractive index in the axial direction that is uniform. An optical fiber is formed by drawing this. Accurately measuring the refractive index distribution of the preform before drawing is necessary to obtain a good product. As a method for measuring refractive index distribution, for example, Japanese Patent Application Laid-Open No. 1983-1995
Japanese Patent Application No. 336 discloses a method in which a light beam is made incident in a direction perpendicular to the central axis of a preform for an optical fiber, and its exit angle is determined to measure the refractive index distribution of the preform. FIG. 7 shows a refractive index distribution measuring device disclosed in the publication. As shown in the figure, an incident optical system consisting of a light source 5 and a lens 6 enters the preform l installed in the matching oil 3 in the cell 2, and the output light that passes through the preform l is emitted from the lens. The light passes through an output optical system having 21 and is projected onto the viewing surface of the TV camera 22. This projected image is taken out by the TV camera 22, and the output angle φ is calculated from the coordinates X of the projected image and the focal length f of the output optical system as follows: φ: tan subtraction (X/f). Then, the refractive index distribution n (r) of the preform l is calculated using the following equation using the exit angle φ obtained while moving the moving table 4 on which the preform is placed i12 by a pulse motor. Alternatively, an image of the output light that has passed through the output optical system is formed on a screen, and the projected image on the screen is observed with the TV camera 22 to determine the output angle φ.

【発明が解決しようとする課題】[Problem to be solved by the invention]

上記のように構成された従来の屈折率分布測定装置にお
いては、入射光学系とともに出射光学系と′rVカメラ
を必要とし、装置が複雑になるという欠点があった。ま
た光学系が複雑になるため、測定に際し各光学系の光軸
を合せるための調整が容易でないという問題もあった。 さらに出射角φが大幅に異なるプリフォームを精度良く
測定する場合には、出射光学系の焦点距離を変えてやる
必要があり、1台の測定装置で出射角φが大幅に異なる
プリフォームの屈折率分布を高精度に測定することがで
きないという欠点もあった。 本発明は、これらの欠点を解消するためになされたもの
にであり、簡単な構成で出射角が大幅に異なる場合であ
っても高精度に屈折率分布を測定することができる屈折
率分布測定装置を得ることを目的とするものである。
The conventional refractive index distribution measuring apparatus configured as described above has the disadvantage that it requires an output optical system and an 'rV camera in addition to an input optical system, making the apparatus complicated. Furthermore, since the optical system is complicated, there is also the problem that adjustment to align the optical axes of each optical system during measurement is not easy. Furthermore, in order to accurately measure preforms with significantly different exit angles φ, it is necessary to change the focal length of the exit optical system, and one measuring device can measure the refraction of preforms with significantly different exit angles φ. Another drawback was that the rate distribution could not be measured with high precision. The present invention has been made to eliminate these drawbacks, and is a refractive index distribution measurement method that can measure refractive index distribution with high precision even when the emission angles are significantly different with a simple configuration. The purpose is to obtain a device.

【課題を解決するための手段】[Means to solve the problem]

上記課題を解決するための本発明を適用する屈折率分布
の測定装置は、軸方向には均一な屈折率、径方向には屈
折率分布が変化する円柱ガラスの中心軸と垂直方向から
光を入射させ、その出射角を測定して同軸円柱ガラスの
径方向に対する屈折率分布を求める屈折率分布測定装置
において、円柱ガラスからの出射光を受光してその受光
像の電気信号を送り出す撮像管と、該撮像管を搭載し入
射光学系の光軸と同一方向に移動できる移動手段と、該
移動手段に取付けられ撮像管の移動距離を検出する距離
検出手段とを有している。
A refractive index distribution measuring device to which the present invention is applied to solve the above problems receives light from a direction perpendicular to the central axis of a cylindrical glass whose refractive index is uniform in the axial direction and whose refractive index distribution changes in the radial direction. In a refractive index distribution measuring device that determines the refractive index distribution in the radial direction of a coaxial cylindrical glass by making the incident light and measuring its exit angle, there is an imaging tube that receives light emitted from the cylindrical glass and sends out an electrical signal of the received light image. , a moving means that mounts the image pickup tube and can move in the same direction as the optical axis of the input optical system, and a distance detection means that is attached to the moving means and detects the moving distance of the image pickup tube.

【作用】[Effect]

上記本発明の装置で、円柱ガラスの中心軸と垂直方向か
ら入射して出た出射光を、入射光学系の光軸と同一方向
に移動できる移動手段に搭載された撮像管で受光して出
射光の出射角を測定できる。また出射光の出射角を測定
するときに移動手段を入射光学系の光軸と同一方向に移
動することにより、撮像管の検知範囲を有効に利用する
ことができる。
In the above-mentioned device of the present invention, the outgoing light that enters the cylindrical glass in a direction perpendicular to the central axis and comes out is received by the image pickup tube mounted on the moving means that can move in the same direction as the optical axis of the incoming optical system, and then outputted. It is possible to measure the emission angle of incident light. Further, by moving the moving means in the same direction as the optical axis of the input optical system when measuring the output angle of the output light, the detection range of the image pickup tube can be effectively utilized.

【実施例】【Example】

以下、本発明の実施例を詳細に説明する。 第1図、第2図は本発明の一実施例の概略構成を示し、
第1図は光フアイバ用のプリフォームlの中心軸2と同
方向であるy軸方向から見た平面図、第2図はy軸と垂
直なX軸方向から見た側面図である。図において、2は
プリフォームlを装着したセルであり、セル2内にはプ
リフォームlの表面における急激な屈折率変化を除くた
めにマツチングオイル3が満たされている。4はセル2
が設置された移動テーブルであり、移動テーブル4はパ
ルスモータ(不図示)により駆動されプリフォームlを
X軸とy軸方向に移動する。5は例えばHe−Neレー
ザ発振器からなる光源、6は入射光学系であり、入射光
学系6は光源5からの入射光をプリフォームlの中心で
最小になるように収斂している。7はプリフォームlか
ら出射した出射光を受光して像の電気信号を送り出す撮
像管、8は撮像管7を搭載した移動テーブルであり、移
動テーブル8はパルスモータ9により入射光学系6の光
軸と同一方向に移動する。10は移動テーブル8の移動
距離を検出する移動距離センサ、11は撮像管7で得た
投影像の電気信号から出射角をもとめて屈折率分布を演
算する制御部である。 第3図は制御部11の構成を示すブロック図である。図
において、12は撮像管7で得た電気信号のデータを蓄
えるフレームメモリ、13は中央処理装置であり、中央
処理装置13はフレームメモリ12に蓄えられたデータ
の直線近似等を行ない出射角φを演算するとともに、フ
レームメモリ12のデータに応じてパルスモータ9を駆
動するモータ駆動手段14に駆動信号を与える。15は
表示部、記録部からなる出力手段である。 上記のように構成された屈折率分布測定装置によりプリ
フォームlの屈折率分布を測定するとき以下のような動
作をする。 光源5から入射光学系6を通って送られた光はプリフォ
ームlの中心軸と垂直方向から入射し、プリフォームl
により屈折されて出射する。この出射光は撮像管7で観
察され、その像の画像データがフレームメモリ12に送
られ蓄えられる。このデータを中央処理袋fi13に送
り、中央処理装置13で出射光の像の座標値から出射角
φを演算して出力手段15に送る。 この出射角φを演算するときに、中央処理装置13は出
射光の像の座標値が撮像管7から外れずに、かつ最も大
きな値となるようにモータ駆動手段14に駆動信号を与
えてパルスモータ9を駆動し、移動テーブル8を前後に
移動する。一方移動距離センサlOは移動テーブル8の
移動距離を検出して中央処理装置13に送る。そこで中
央処理装置13は像の最も大きい座標値と移動距離セン
サ10から送られた移動テーブル8の移動距離を利用し
て高精度に出射角φを演算する。 ここでプリフォームlを搭載した移動テーブル4を入射
光学系6の光軸に対して垂直方向に移動しながら、プリ
フォームlに入射する光の位置を変えて出射角φの変化
を求める。 上記のようにして例えば第4図に示すようなコアの最大
屈折率n1、クラッドの屈折率n2のプリフォームlの
入射位置rと出射角φの関係を測定した結果を第5図に
示す。そしてこの第5図に示す出射角φにより屈折率分
布n (rlを求めると第6図に示す特性を得ることが
できた。この測定を30回繰り返して次式に示す比屈折
率差Δ Δ:(n+−n*)X100/nt を求め、比屈折率差Δの標準偏差0を測定して、比屈折
率差Δで正規化した結果、 CO/Δ) =o、oot を得れことができた。 また屈折率分布が異なる種々のプリフォームlを用い出
射角φを測定して、測定精度を調べた結果も上記精度と
全く同様な測定精度を得ることができた。
Examples of the present invention will be described in detail below. 1 and 2 show a schematic configuration of an embodiment of the present invention,
FIG. 1 is a plan view as seen from the y-axis direction, which is the same direction as the central axis 2 of the preform l for optical fiber, and FIG. 2 is a side view as seen from the x-axis direction, which is perpendicular to the y-axis. In the figure, 2 is a cell in which a preform I is mounted, and the cell 2 is filled with matching oil 3 to eliminate sudden changes in refractive index on the surface of the preform I. 4 is cell 2
The moving table 4 is driven by a pulse motor (not shown) to move the preform 1 in the X-axis and y-axis directions. Reference numeral 5 indicates a light source consisting of, for example, a He--Ne laser oscillator, and 6 indicates an input optical system, which converges the incident light from the light source 5 so as to be minimized at the center of the preform l. Reference numeral 7 designates an image pickup tube that receives the output light emitted from the preform l and sends out an electric signal of an image, and 8 is a moving table on which the image pickup tube 7 is mounted. Move in the same direction as the axis. 10 is a moving distance sensor that detects the moving distance of the moving table 8, and 11 is a control unit that determines the exit angle from the electric signal of the projected image obtained by the image pickup tube 7 and calculates the refractive index distribution. FIG. 3 is a block diagram showing the configuration of the control section 11. In the figure, 12 is a frame memory that stores data of electrical signals obtained by the image pickup tube 7, and 13 is a central processing unit.The central processing unit 13 performs linear approximation of the data stored in the frame memory 12, At the same time, a drive signal is given to the motor drive means 14 that drives the pulse motor 9 according to the data in the frame memory 12. 15 is an output means consisting of a display section and a recording section. When measuring the refractive index distribution of the preform I using the refractive index distribution measuring device configured as described above, the following operations are performed. The light sent from the light source 5 through the input optical system 6 enters the preform l from a direction perpendicular to the central axis of the preform l.
The light is refracted and emitted. This emitted light is observed by the image pickup tube 7, and image data of the image is sent to the frame memory 12 and stored therein. This data is sent to the central processing unit fi13, where the central processing unit 13 calculates the emission angle φ from the coordinate values of the image of the emitted light and sends it to the output means 15. When calculating this emission angle φ, the central processing unit 13 supplies a drive signal to the motor drive means 14 and pulses it so that the coordinate value of the image of the emission light does not deviate from the image pickup tube 7 and becomes the largest value. The motor 9 is driven to move the moving table 8 back and forth. On the other hand, the moving distance sensor lO detects the moving distance of the moving table 8 and sends it to the central processing unit 13. Therefore, the central processing unit 13 uses the largest coordinate value of the image and the moving distance of the moving table 8 sent from the moving distance sensor 10 to calculate the exit angle φ with high precision. Here, while moving the movable table 4 on which the preform l is mounted in a direction perpendicular to the optical axis of the input optical system 6, the position of the light incident on the preform l is changed to find a change in the output angle φ. FIG. 5 shows the results of measuring the relationship between the incident position r and the output angle φ of the preform l having the maximum refractive index n1 of the core and the refractive index n2 of the cladding as shown in FIG. 4 as described above. Then, by calculating the refractive index distribution n (rl) using the output angle φ shown in FIG. 5, the characteristics shown in FIG. 6 could be obtained. This measurement was repeated 30 times and the relative refractive index difference Δ Δ :(n+-n*) was completed. Furthermore, the output angle φ was measured using various preforms l having different refractive index distributions, and the measurement accuracy was examined, and the measurement accuracy was found to be exactly the same as the above-mentioned accuracy.

【発明の効果】【Effect of the invention】

以上説明したように、本発明の装置によれば、円柱ガラ
スの中心軸と垂直方向から入射して出た出射光を、入射
光学系の光軸と同一方向に移動できる移動手段に搭載さ
れた撮像管で受光して出射光の出射角を求めるようにし
たので、出射光系やTVカメラのレンズ等の光学系を必
要とせず測定装置の小型化を図ることができる。また測
定装置の光学系を簡略化することができるから、光学系
の光軸調整を簡単に行なうことができ、屈折率分布を容
易に測定することができる。 さらに出射光の出射角を求めるときに移動手段を入射光
学系の光軸と同一方向に移動することにより、撮像管の
検知範囲を有効に利用することができるから、1台の測
定装置で大幅に屈折率分布が異なる種々の同軸円柱ガラ
スの屈折率分布を高精度に測定することもできる。
As explained above, according to the device of the present invention, the emitted light that enters the cylindrical glass from a direction perpendicular to the central axis and exits is mounted on a moving means that can move the emitted light in the same direction as the optical axis of the incident optical system. Since the emission angle of the emitted light is determined by receiving the light with the image pickup tube, it is possible to downsize the measuring device without requiring an optical system such as an emitting light system or a TV camera lens. Furthermore, since the optical system of the measuring device can be simplified, the optical axis of the optical system can be easily adjusted, and the refractive index distribution can be easily measured. Furthermore, by moving the moving means in the same direction as the optical axis of the input optical system when determining the exit angle of the output light, the detection range of the image pickup tube can be effectively used, so a single measurement device can significantly improve the It is also possible to measure the refractive index distributions of various coaxial cylindrical glasses with different refractive index distributions with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用する装置の実施例の概略平面図、
第2図はその側面図、第3図は上記実施例の制御部を示
すブロック図、第4図はプリフォームの屈折率分布を示
す特性図、第5図は上記装置により測定した出射角特性
図、第6図はその出射角特性から得た屈折率分布特性図
、第7図は従来の装置例を示す構成図である。 1−・・プリフォーム   2・・・セル4・・・移動
テーブル   5・・・光源6・・・入射光学系   
 7・・・撮像管8・・・移動テーブル   9・・・
パルスモータ10・・・移動距離センサ 11・・・制
御部12・・・フレームメモリ 13・・・中央処理装
置第 1 図 第7図 第4図 半径「
FIG. 1 is a schematic plan view of an embodiment of an apparatus to which the present invention is applied;
Fig. 2 is a side view thereof, Fig. 3 is a block diagram showing the control section of the above embodiment, Fig. 4 is a characteristic diagram showing the refractive index distribution of the preform, and Fig. 5 is the output angle characteristic measured by the above device. 6 are refractive index distribution characteristics obtained from the output angle characteristics, and FIG. 7 is a configuration diagram showing an example of a conventional device. 1-...Preform 2...Cell 4...Moving table 5...Light source 6...Incidence optical system
7... Image pickup tube 8... Moving table 9...
Pulse motor 10...Moving distance sensor 11...Control unit 12...Frame memory 13...Central processing unit 1 Fig. 7 Fig. 4 Radius

Claims (1)

【特許請求の範囲】[Claims] 1、軸方向には均一な屈折率、径方向には屈折率分布が
変化する円柱ガラスの中心軸と垂直方向から光を入射さ
せ、その出射角を測定して同軸円柱ガラスの径方向に対
する屈折率分布を求める屈折率分布測定装置において、
円柱ガラスからの出射光を受光してその受光像の電気信
号を送り出す撮像管と、該撮像管を搭載し入射光学系の
光軸と同一方向に移動できる移動手段と、該移動手段に
取付けられ撮像管の移動距離を検出する距離検出手段と
を有することを特徴とする屈折率分布測定装置。
1. Refraction in the radial direction of the coaxial cylindrical glass is determined by entering light from a direction perpendicular to the central axis of the cylindrical glass, which has a uniform refractive index in the axial direction and varying refractive index distribution in the radial direction, and measuring its exit angle. In a refractive index distribution measuring device for determining index distribution,
An image pickup tube that receives the light emitted from the cylindrical glass and sends out an electric signal of the received light image; a moving means on which the image pickup tube is mounted and can move in the same direction as the optical axis of the input optical system; 1. A refractive index distribution measuring device, comprising distance detection means for detecting a moving distance of an image pickup tube.
JP1097056A 1989-04-17 1989-04-17 Refractive index distribution measuring device Expired - Lifetime JPH07109381B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1097056A JPH07109381B2 (en) 1989-04-17 1989-04-17 Refractive index distribution measuring device
US07/509,909 US5078488A (en) 1989-04-17 1990-04-16 Method and apparatus for determining refractive index distribution
DE69013963T DE69013963T2 (en) 1989-04-17 1990-04-17 Method and device for determining the refractive index profile.
EP90107269A EP0393591B1 (en) 1989-04-17 1990-04-17 Method and apparatus for determining refractive index distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1097056A JPH07109381B2 (en) 1989-04-17 1989-04-17 Refractive index distribution measuring device

Publications (2)

Publication Number Publication Date
JPH0373822A true JPH0373822A (en) 1991-03-28
JPH07109381B2 JPH07109381B2 (en) 1995-11-22

Family

ID=14181998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1097056A Expired - Lifetime JPH07109381B2 (en) 1989-04-17 1989-04-17 Refractive index distribution measuring device

Country Status (1)

Country Link
JP (1) JPH07109381B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395336A (en) * 1986-10-10 1988-04-26 Fujikura Ltd Measurement of refractive index distribution
JPH0198949A (en) * 1987-10-12 1989-04-17 Sumitomo Electric Ind Ltd Refraction angle measuring instrument

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395336A (en) * 1986-10-10 1988-04-26 Fujikura Ltd Measurement of refractive index distribution
JPH0198949A (en) * 1987-10-12 1989-04-17 Sumitomo Electric Ind Ltd Refraction angle measuring instrument

Also Published As

Publication number Publication date
JPH07109381B2 (en) 1995-11-22

Similar Documents

Publication Publication Date Title
US4743770A (en) Profile-measuring light probe using a change in reflection factor in the proximity of a critical angle of light
EP1078218A2 (en) Wavelength-dependent surface contour measurement system and method
US5432330A (en) Two-stage detection noncontact positioning apparatus having a first light detector with a central slit
US3619067A (en) Method and apparatus for determining optical focal distance
JP3078133B2 (en) Method for inspecting alignment state of optical waveguide and optical waveguide
CN115839826B (en) Detection device and detection method for optical fiber transmittance and numerical aperture
JPH0466312B2 (en)
JPH0373822A (en) Instrument for measuring distribution of refractive index
JP3162364B2 (en) Optical sensor device
US5078488A (en) Method and apparatus for determining refractive index distribution
JPH02309228A (en) Measuring method and apparatus of distribution of index of refraction
JP2002511575A (en) Method and coordinate measuring instrument for point-scan contour determination of material surfaces by the principle of auto-focusing
US10627346B2 (en) Refractive index measuring device and refractive index measuring method
JP3200927B2 (en) Method and apparatus for measuring coating state
JPS62142206A (en) Measuring instrument for surface position of object
JP2903263B2 (en) Measuring device for refractive index distribution
JPH02309227A (en) Measuring method and apparatus of distribution of index of refraction
JP4629835B2 (en) Abbe number measuring apparatus and Abbe number measuring method
JPH06148029A (en) Measuring method for gradient angle of optical fiber and light connector
JP2746714B2 (en) Measuring device for refractive index distribution
JP2505230B2 (en) Method for calibrating laser beam deflection angle measuring device
JP2661001B2 (en) Method and apparatus for measuring refractive index distribution
JPH09210845A (en) Method and apparatus for measurement of decentering of aspheric lens
SU1721436A1 (en) Device for control of angle of a prism
SU1716360A1 (en) Device for measuring spectral transmittance of objective

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 14