JPH0373209A - Hard multiedge soldered tool and manufacture thereof - Google Patents

Hard multiedge soldered tool and manufacture thereof

Info

Publication number
JPH0373209A
JPH0373209A JP20784189A JP20784189A JPH0373209A JP H0373209 A JPH0373209 A JP H0373209A JP 20784189 A JP20784189 A JP 20784189A JP 20784189 A JP20784189 A JP 20784189A JP H0373209 A JPH0373209 A JP H0373209A
Authority
JP
Japan
Prior art keywords
tool
brazing
soldering
diamond
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20784189A
Other languages
Japanese (ja)
Other versions
JP2751443B2 (en
Inventor
Hiroyasu Kawasaki
川崎 裕康
Tsutomu Nakamura
勉 中村
Tetsuo Nakai
哲男 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP20784189A priority Critical patent/JP2751443B2/en
Publication of JPH0373209A publication Critical patent/JPH0373209A/en
Application granted granted Critical
Publication of JP2751443B2 publication Critical patent/JP2751443B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Milling Processes (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PURPOSE:To perform soldring without causing looseness and disolocation by soldering at least two tool materials of polycrystalline substance whose principal constituent is diamond or the like on a cemented carbide base metal with soldering materials having a melting point of 500 to 1200 deg.C while providing a difference in the melting point of 30 to 700 deg.C. CONSTITUTION:As a tool base metal 1, materials such as JIS standards K01, K10, K20, K30, P10, M10, or the like are used, and to solder tool materials 2 thereto, spot facing is carried out with a diamond grinding stone. As the tool materials 2, polycrystalline substances whose principal constituent is diamond or cubic system boron nitride are used, and when they are soldered to the tool base metal, soldering materials 3, 4, 5, 6 whose melting points are within the range of 500 to 1200 deg.C and whose differences in the respective melting points are 30 to 700 deg.C are selected. And soldering is carried out in the order from a higher melting point soldering material to a lower one, so that the part previously soldered can be prevented from being loosened by the heat due to subsequent soldering, and also the increase in the thickness of soldering layer caused therewith can be prevented, and after soldering, cutting edges are formed with a diamond grinding stone.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、鉄系金属、非鉄金属等の各種金属の加工に用
いることのできる硬質多刃ろう付工具及びその製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hard multi-blade brazing tool that can be used for processing various metals such as ferrous metals and non-ferrous metals, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

近年、金属加工の分野においては難削材の加工や精度の
高い加工の要求が増大してきている。このような加工に
使用する工具として、N合金、C。
In recent years, in the field of metal processing, there has been an increasing demand for processing difficult-to-cut materials and processing with high precision. Tools used for such machining include N alloy, C.

合金及びFRP等の非金属にはダイヤモンド工具が、鉄
系金属には立方晶型窒化硼素工具が適しているので、現
在それぞれ多用されている。また、工具分類からは、ド
リル、エンドミル、リーマ、カッター等の回転工具の需
要が増大している。
Diamond tools are suitable for nonmetals such as alloys and FRP, and cubic boron nitride tools are suitable for ferrous metals, so they are currently widely used. Furthermore, in terms of tool classification, demand for rotary tools such as drills, end mills, reamers, and cutters is increasing.

特に最近では、精密機械部品等の精密加工が多くなって
おり、この場合、工具には、直径511j1以下の小径
で、なお且つ高い加工精度を維持するために、2枚刃以
上の多刃であることが要求されている。
Particularly recently, there has been an increase in precision machining of precision machine parts, etc. In this case, tools have a small diameter of 511J1 or less, and in order to maintain high machining accuracy, tools with two or more blades are required. something is required.

本発明者らは、これらの用途に適した工具として切削用
多結晶ダイヤモンド工具が有効であることを見出し、既
に特願平1−93223号として出願した。このものは
、厚さ0.2 mm以下0.05以上の多結晶ダイヤモ
ンドが超硬合金又は鋼に接合されたことを特徴とするも
のであり、好ましくは多結晶ダイヤモンドとしては超高
圧、高温下で製造された焼結ダイヤモンド或いは気相合
成法で製造さた多結晶ダイヤモンドを用いて、超硬合金
又は鋼と接合するダイヤモンド面にTi又はTi化合物
と鉄族金属の薄膜を付着させ、この付着面と超硬合金又
は鋼とをロー付は等により接合するものである。
The present inventors have found that a polycrystalline diamond cutting tool is effective as a tool suitable for these uses, and have already filed an application for the same in Japanese Patent Application No. 1-93223. This product is characterized by polycrystalline diamond with a thickness of 0.2 mm or less and 0.05 or more bonded to cemented carbide or steel. A thin film of Ti or a Ti compound and an iron group metal is deposited on the diamond surface that will be bonded to the cemented carbide or steel using sintered diamond manufactured by sintered diamond or polycrystalline diamond manufactured by vapor phase synthesis. The surface and cemented carbide or steel are joined by brazing or the like.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、多刃工具では、上記の多結晶ダイヤモンド等
の工具素材を工具母材上に隣接してろう付しなければな
らない。その・際、従来は隣接するろう打部から他の刃
のろう何時に発生する熱の影響を受け、ゆるみが起こり
、工具素材の位置ずれを起こすという問題があった。
By the way, in a multi-edged tool, a tool material such as the above-mentioned polycrystalline diamond must be brazed adjacent to the tool base material. In this case, conventionally, there has been a problem that the tool material is affected by the heat generated from the adjacent soldering part when another blade is soldered, causing loosening and misalignment of the tool material.

特に小径を要する工具の製作においてこの現象が顕著で
あり、製造歩留りを低下させる大きな原因であった。
This phenomenon is particularly noticeable in the manufacture of tools that require small diameters, and has been a major cause of lower manufacturing yields.

本発明はこのような現状に鑑みなされたものであって、
特に従来品の欠点を解消し、複数の工具素材を順次ろう
付する際にゆるみや位置ずれを起こすことなく、歩留り
良く高品質な工具を得るための硬質多刃ろう付工具の新
規な構造及びその製造方法を提供することを目的とする
ものである。
The present invention was made in view of the current situation, and
In particular, we have developed a new structure for a hard multi-blade brazing tool that eliminates the drawbacks of conventional products and allows for obtaining high-quality tools with a high yield without causing loosening or misalignment when multiple tool materials are sequentially brazed. The purpose of this invention is to provide a manufacturing method thereof.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らはよ記課題を解決すべく鋭意研究の結果、従
来法では多刃つまり2ヶ以上の工具素材について同一(
融点)のろう材を使用していたため、隣接するろう付は
部のろう付けの時に熱的影響を受けていると考えつき、
融点が各々異なるろう材を刃数に対応して選択し、高い
融点のろう材から順に用いてろう付けする本発明の工具
及び方法に到達できた。
As a result of intensive research to solve the above problem, the present inventors found that in the conventional method, two or more tools with the same material (
Since I was using a brazing filler metal with a melting point of
We have achieved the tool and method of the present invention, in which brazing materials with different melting points are selected in accordance with the number of blades, and brazing materials are used in order from the one with the highest melting point.

すなわち、本発明はダイヤモンド又は立方晶型窒化硼素
を主成分とする多結晶体の2ヶ以上を工具素材とし、該
工具素材を超硬合金製の母材にろう材を用いてろう付し
た多刃工具であって、各ろう材の融点が500〜120
0℃の範囲内にあり、且つ該各ろう材の融点が30〜7
00℃の範囲内の差で互いに異なることを特徴とする硬
質多刃ろう付工具に関する。
That is, the present invention is a polycrystalline material made of two or more polycrystals whose main components are diamond or cubic boron nitride, and which is brazed to a cemented carbide base material using a brazing filler metal. A blade tool in which each filler metal has a melting point of 500 to 120.
within the range of 0°C, and the melting point of each brazing filler metal is 30 to 7
The present invention relates to a hard multi-blade brazing tool that is different from each other by a difference within a range of 00°C.

また、本発明は上記本発明の硬質多刃ろう付工具を実現
する方法として、ダイヤモンド又は立方晶型窒化硼素を
主成分とする多結晶体の2ヶ以上を工具素材とし、該工
具素材を超硬合金製の母材にろう付するに際し、ろう材
として各ろう材の融点が500〜1200°Cの範囲内
であり、且つ該各ろう材の融点が30〜700℃の範囲
内の差で互いに異なったろう材を使用し、融点の高いろ
う材より順に用いてろう付けすることを特徴とする硬質
多刃ろう付工具の製造方法を提供するものである。
Furthermore, the present invention provides a method for realizing the hard multi-blade brazed tool of the present invention, in which two or more polycrystals whose main components are diamond or cubic boron nitride are used as a tool material, and the tool material is When brazing to a hard metal base material, the melting point of each brazing filler metal is within the range of 500 to 1200°C, and the difference in melting point of each brazing filler metal is within the range of 30 to 700°C. The present invention provides a method for manufacturing a hard multi-blade brazing tool, which is characterized in that different brazing materials are used, and brazing is performed using brazing materials in order of melting point.

〔作用〕[Effect]

本発明における工具母材としては超硬合金を用い、例え
ばJIS規格KOI、KIO1K20、K2O、PIO
lM、10等を挙げることができるが、これらに限定さ
れるものではない。
Cemented carbide is used as the tool base material in the present invention, such as JIS standard KOI, KIO1K20, K2O, PIO.
Examples include, but are not limited to, 1M, 10, etc.

この工具母材に刃の数だけ工具素材をろう付する為に、
ダイヤモンド砥石を使用し、座ぐり加工を行なう。
In order to braze as many tool materials as the number of blades to this tool base material,
Perform counterboring using a diamond grindstone.

本発明に係る工具素材としては、ダイヤモンド又は立方
晶型窒化硼素を主成分とした多結晶体を用いる。前者の
ダイヤモンド多結晶体としては気相合成法による多結晶
体または超高温・高圧下で焼結した焼結ダイヤモンドを
挙げることができる。
As the tool material according to the present invention, a polycrystalline body mainly composed of diamond or cubic boron nitride is used. Examples of the former diamond polycrystalline body include a polycrystalline body produced by a vapor phase synthesis method or a sintered diamond sintered at ultra-high temperature and high pressure.

このようなダイヤモンドを主成分とする多結晶体をより
具体的に示すと、例えば特願平1−51485号として
出願した、厚さが507a以上、平均結晶粒径が50−
以下であって、純度の指標としてラマン分光分析による
ダイヤモンド炭素(X)と非ダイヤモンド炭素(Y)の
ピーク比(Y/X)が0.2以下であることを特徴とす
る、気相合成によるダイヤモンド多結晶体がある。
More specifically, such a polycrystalline body whose main component is diamond is, for example, a polycrystalline body having a thickness of 507a or more and an average crystal grain size of 50mm, filed as Japanese Patent Application No. 1-51485.
by gas phase synthesis, characterized in that the peak ratio (Y/X) of diamond carbon (X) to non-diamond carbon (Y) is 0.2 or less as determined by Raman spectroscopy as an indicator of purity. There are polycrystalline diamonds.

また例えば、特公昭52−12126号公報に提案され
るような、ダイヤモンド結晶材の塊が70容量%を越え
る濃度のダイヤモンド結晶からなり且つ実質的に全ての
ダイヤモンド結晶が隣接ダイヤモンド結晶と直接に結合
しており、そしてダイヤモンド結晶材の塊が焼結炭化物
支持材の塊と直接結合していることを特徴とするCoを
結合材とした焼結ダイヤモンド、これからCoを抜いた
耐熱性の多結晶ダイヤモンド(例えば特開昭53114
589号公報に提案されている、ダイヤモンド及び立方
晶窒化硼素から成る群れより選ばれ部品の約70〜95
%容量%を占める自己結合粒子と、前記の選ばれた研磨
剤粒子集合体に対する焼結助剤物質からなる金属相約0
.05〜3容量%及び前記粒子によって区画されて部品
全体に分散され部品の約5〜30容量%を占める相互に
連結されて網状をなした空の孔とより構成される工具構
成部品)がある。
For example, as proposed in Japanese Patent Publication No. 52-12126, a block of diamond crystal material is composed of diamond crystals with a concentration exceeding 70% by volume, and substantially all the diamond crystals are directly bonded to adjacent diamond crystals. A sintered diamond using Co as a binder, characterized in that a lump of diamond crystal material is directly bonded to a lump of a sintered carbide support material, and a heat-resistant polycrystalline diamond obtained by removing Co from this diamond. (For example, Japanese Patent Application Laid-Open No. 53114
Approximately 70 to 95 of the parts selected from the group consisting of diamond and cubic boron nitride proposed in Japanese Patent No. 589
% volume % of the metal phase consisting of self-bonded particles and a sintering aid material for said selected abrasive particle aggregate.
.. 05-3% by volume and a network of interconnected empty pores delimited by said particles and distributed throughout the part and occupying about 5-30% by volume of the part). .

またさらに、特開昭61−33865号公報に提案され
る、80〜90容量%のダイヤモンド粒子の塊と、イン
サートとしてlO〜20容量%存在する第2相(結合材
)を含み、該第2相がSiである焼結ダイヤモンド等を
挙げることができる。
Furthermore, the second phase (binder) proposed in Japanese Patent Application Laid-Open No. 61-33865 includes an agglomerate of diamond particles of 80 to 90% by volume and a second phase (binder) present as an insert of 10 to 20% by volume. Examples include sintered diamond whose phase is Si.

後者の立方晶型窒化硼素を主成分とする多結晶体として
は、例えば特公昭57−49621号公報に提案されて
いる、立方晶型窒化硼素を80〜20体積%含有し残部
が周期律表4a、5a、6a族遷移金属の炭化物、窒化
物、硼化物、珪化物もしくはこれ等の混合物または相互
固溶体化合物を第1の結合相とし、M、SI、Nl、C
o、Feまたは、これらを含む合金、化合物を第2の結
合相として、該第1、第2の結合相が焼結体組織中で連
続した結合相をなし、前記4a、5a、6a族金属の化
合物が結合相中の体積で50%以上99.9%以下であ
ることを特徴とするものを挙げることができる。
The latter polycrystalline material mainly composed of cubic boron nitride is proposed in Japanese Patent Publication No. 57-49621, for example, containing 80 to 20% by volume of cubic boron nitride, with the remainder appearing in the periodic table. A carbide, nitride, boride, silicide or a mixture thereof or a mutual solid solution compound of a group 4a, 5a or 6a transition metal is used as the first binder phase, and M, SI, Nl, C
o, Fe, or an alloy or compound containing these as the second binder phase, the first and second binder phases form a continuous binder phase in the structure of the sintered body, and the group 4a, 5a, 6a metal Examples include those characterized in that the volume of the compound in the binder phase is 50% or more and 99.9% or less.

ただし、以上のものはあくまで例示であって本発明はこ
れに限定されるものではない。
However, the above is just an example, and the present invention is not limited thereto.

これらの硬質材料を工具母材にろう付する際に、各ろう
材の融点が500〜1200℃の範囲内で、且つ各々の
融点の差が30〜700℃の範囲内、好ましくは50〜
200℃の範囲内であるように、ろう材を選定して使用
する。
When brazing these hard materials to the tool base material, the melting point of each brazing filler metal is within the range of 500 to 1200°C, and the difference between the melting points of each is within the range of 30 to 700°C, preferably 50 to 700°C.
The brazing material is selected and used so that the temperature is within the range of 200°C.

融点の範囲を上記のように限定する理由は、融点が50
0℃未満のろう材では、ろう材自身の剪断強度が低く、
実用上問題があり、また1200℃を越えるとろう付の
際の熱で、工具材料そのものが熱劣化するからである。
The reason for limiting the melting point range as above is that the melting point is 50
If the temperature of the brazing filler metal is below 0℃, the shear strength of the brazing filler metal itself is low;
This is because there is a practical problem, and if the temperature exceeds 1200°C, the tool material itself will be thermally deteriorated by the heat during brazing.

尚、使用できるろう材の例としては、銀ろう、金ろう、
Niろう、銅ろう等を挙げることができる。
Examples of brazing materials that can be used include silver solder, gold solder,
Examples include Ni solder and copper solder.

更に、融点の差を上記の範囲内に限定する理由は、通常
のろう付強度において、温度制御の最小幅が30℃であ
ること、及びろう材の低温側の最小値が実用上500℃
である為、700 ”C以上の温度差を設けた場合、前
述の工具素材の熱劣化温度に達してしまうためである。
Furthermore, the reason for limiting the difference in melting point within the above range is that the minimum width of temperature control is 30°C for normal brazing strength, and the minimum value on the low temperature side of the brazing material is practically 500°C.
Therefore, if a temperature difference of 700"C or more is provided, the above-mentioned temperature for thermal deterioration of the tool material will be reached.

そして、本発明においては、ろう付を融点の高いろう材
より順にろう付する。l具体例を第1図で説明すると、
本4枚刃エンドミルにおいて、A。
In the present invention, brazing is performed in order of brazing materials having higher melting points. A concrete example is explained in Fig. 1.
In this 4-flute end mill, A.

B、C,Dの4種類のろう材を使用する。各々の融点は
順に940℃゛、860℃、780℃17゜0℃であり
、ろう付の手順として、まず最初に融点の高い黄銅ろう
材Aを用いて、その次に銀ろう材B、C,Dのろう材の
順で工具素材をろう付する。
Four types of brazing filler metals, B, C, and D, are used. The melting points of each are 940°C, 860°C, 780°C, 17°0°C, and in the brazing procedure, brass brazing filler metal A with a high melting point is first used, followed by silver brazing filler metals B and C. , D are brazed in this order.

このようにする理由は、先にろう付した部分が後のろう
付の際に発生する熱の影響を受け、ろう材のゆるみ及び
それに伴うろう層の厚み増加がでることを防ぐ為である
。なお、ろう層の厚みは0、05 m以下が好ましく、
それを越える厚みになると、ろう付強度の低下をまねく
The reason for doing this is to prevent the previously brazed portion from being affected by the heat generated during subsequent brazing, resulting in loosening of the brazing material and an accompanying increase in the thickness of the brazing layer. The thickness of the brazing layer is preferably 0.05 m or less,
If the thickness exceeds this, the brazing strength will decrease.

ろう付部は、ダイヤモンド砥石を用いて工具刃先を加工
し、切れ刃を形成する。
In the brazed portion, the cutting edge of the tool is processed using a diamond grindstone to form a cutting edge.

このような方法によって製造された本発明の硬質多刃ろ
う付工具は、従来の同一融点のろう材(1種類のろう材
)を使用した方法に比較して、隣接したろう付部のゆる
みが起こらず、安定したろう付強度が保証できる。
The hard multi-blade brazing tool of the present invention manufactured by such a method has less loosening of adjacent brazed parts compared to the conventional method using a brazing filler metal with the same melting point (one type of brazing filler metal). This will not occur and stable brazing strength can be guaranteed.

更に本発明の工具の製造方法は、ろう付部のゆるみによ
る工具素材の位置ずれが起こらず、加工取代が均一にで
きるため、従来の製造方法に比較し、刃先加工時間も短
縮できる。
Furthermore, the tool manufacturing method of the present invention does not cause misalignment of the tool material due to loosening of the brazed portion, and the machining allowance can be made uniform, so that the cutting edge machining time can be shortened compared to conventional manufacturing methods.

〔実施例〕〔Example〕

実施例1及び比較例1 直径3I!IIIの超硬工具母材(JIS規格KIO)
の先端に工具素材をろう付する為に、2ケ所の座ぐり加
工を行った。その部分の各々に、工具素材として、気相
合成法によって得られた、厚さ0、■閣で且つ表面にス
パッタリング法によりTiを1μ、旧を2μ厚さに付着
した多結晶ダイヤモンドを、大気中でろう付した。ろう
材としてJIS規格BAg−4(融点780℃)及びB
Ag−1(融点620℃)を使用し、融点の高いBAg
−4を用いたろう付の方から行って、本発明によるエン
ドミル工具を得た(実施例1)。
Example 1 and Comparative Example 1 Diameter 3I! III carbide tool base material (JIS standard KIO)
In order to braze the tool material to the tip of the tool, two counterbore holes were made. As a tool material, polycrystalline diamond with a thickness of 0.5 mm obtained by vapor phase synthesis and with 1 μm of Ti and 2 μm of Ti deposited on the surface by sputtering was used as a tool material. Brazed inside. JIS standard BAg-4 (melting point 780℃) and B as brazing filler metals
Using Ag-1 (melting point 620°C), BAg with a high melting point
An end mill tool according to the present invention was obtained by brazing using -4 (Example 1).

また、比較として、従来の方法に従い、BAglのみで
2ケの工具素材のろう付をして工具を作製した(比較例
1)。
For comparison, a tool was manufactured by brazing two tool materials using only BAgl according to a conventional method (Comparative Example 1).

表1に実施例1及び比較例1の工具の、ろう付部のゆる
みを測定、評価した結果をまとめた。なお、ろう付部の
ゆるみ量は、ろう材によって槽底されるろう層の厚みの
最大及び最小部の差を測定して表した。この理由は、ろ
う付部を再加熱した場合、ろう層内側でろう材の流動が
起こり、最終的に不均一な厚みになることからである。
Table 1 summarizes the results of measuring and evaluating the loosening of the brazed parts of the tools of Example 1 and Comparative Example 1. The amount of loosening of the brazed portion was expressed by measuring the difference between the maximum and minimum thickness of the brazing layer formed at the bottom of the tank by the brazing material. The reason for this is that when the brazed portion is reheated, flow of the brazing material occurs inside the brazing layer, ultimately resulting in an uneven thickness.

表1 表1の結果から、本発明の方法によれば、先にろう付し
た部分が、後でろう付される時に発生する熱の影響を受
けないため、ろう付部にゆるみが起こらず、均一なろう
付が可能であることが判る。
Table 1 From the results in Table 1, according to the method of the present invention, the parts brazed first are not affected by the heat generated when they are brazed later, so the brazed parts do not loosen. It can be seen that uniform brazing is possible.

以上のようにろう付した本発明品及び比較品の刃先部を
各々ダイヤモンド砥石にて加工して、直径3ausの2
枚方多結晶ダイヤモンドエンドミルを作製した。これら
の工具を用いて、M −S!金合金AC4C)を周速1
50 m/min 、半径方向の切り込み1. O1u
11.軸方向の切り込み1.0 +wで湿式加工した。
The cutting edge parts of the inventive product and the comparative product brazed as described above were processed using a diamond grindstone, and
A Hirakata polycrystalline diamond end mill was manufactured. Using these tools, M-S! Gold alloy AC4C) at peripheral speed 1
50 m/min, radial cut 1. O1u
11. Wet processing was performed with an axial depth of cut of 1.0 +w.

各送りによる切削時間は20分とした。The cutting time for each feed was 20 minutes.

結果を表2に示す。The results are shown in Table 2.

表2の結果から、本発明により安定したろう付強度を有
するろう打身刃工具の製造が可能であることが判る。
From the results in Table 2, it can be seen that the present invention makes it possible to manufacture brazing blade tools having stable brazing strength.

実施例2.比較例2 直径60の超硬母材(JIS規格KOI)の先端に工具
素材をろう付する為、4ケ所の座ぐり加工を行い、その
各々の部分に、Ti Nを結合材として40容量%含有
する立方晶型窒化硼素の多結晶体をろう付した。この際
に、融点の異なる4種のろう材、JIS規格でBAg−
1(融点620℃)、BAg−2(融点700℃) B
Ag−4(融点780°C)及びBAg−20A(融点
860℃)を使用し、融点の高いろう材よりろう付を行
った。
Example 2. Comparative Example 2 In order to braze a tool material to the tip of a carbide base material (JIS standard KOI) with a diameter of 60 mm, counterboring was performed at 4 locations, and 40% by volume of TiN was applied to each of the locations as a bonding material. The polycrystalline cubic boron nitride contained therein was brazed. At this time, four types of brazing filler metals with different melting points, BAg-
1 (melting point 620°C), BAg-2 (melting point 700°C) B
Brazing was performed using Ag-4 (melting point 780°C) and BAg-20A (melting point 860°C), which were brazing materials with higher melting points.

このろう付の際の工具素材の位置ずれ量を測定して、B
Ag−1のみでろう付した場合の位置ずれ量と比較した
結果を、表3にまとめて示す。工具素材位置ずれ量は、
第2図に示すように工具素材8の設定飛び出し量Aより
のずれ量を測定した。
Measure the amount of positional deviation of the tool material during brazing, and
Table 3 summarizes the results of comparison with the amount of positional deviation when brazing with Ag-1 alone. The amount of tool material position deviation is
As shown in FIG. 2, the amount of deviation of the tool material 8 from the set protrusion amount A was measured.

表3 表3の結果から明らかなように、本発明によれば、先に
ろう付した部分が後でろう付した時に発生する熱の影響
を受けない為、工具素材を位置ずれを起こさず、精度の
高いろう付ができることが判る。
Table 3 As is clear from the results in Table 3, according to the present invention, the parts that are brazed first are not affected by the heat generated when they are brazed later, so the tool material does not shift its position. It can be seen that highly accurate brazing is possible.

次に、実施例2及び比較例2の工具刃先をダイヤモンド
砥石にて加工し、4枚刃のエンドミルを作製した。この
際本発明によれば、従来のろう付方法に比較し、精度の
高いろう付が可能である為、加工取代が減少でき、工具
作製時間を従来品では2時間であったのに対して、本発
明品エンドミルにおいては、1時間にて加工可能であっ
た。
Next, the cutting edges of the tools of Example 2 and Comparative Example 2 were processed using a diamond grindstone to produce a four-blade end mill. In this case, according to the present invention, since it is possible to perform brazing with higher precision compared to conventional brazing methods, machining allowance can be reduced, and the tool manufacturing time is 2 hours compared to 2 hours with conventional products. With the end mill of the present invention, processing was possible in 1 hour.

実施例3 直径8闘の超硬合金(J I S規格MI O)からな
る円板の5ケ所に工具素材をろう付する為に、座ぐり加
工を行った。その各々の部分に、超高圧焼結法によって
得られた多結晶ダイヤモンドより結合材であるCoを抜
いた多結晶ダイヤモンドで且つその表面にイオンブレー
ティング法によりTiを1μ、旧を37ffi付着され
たものを大気中でろう付した。
Example 3 A circular plate made of cemented carbide (JIS standard MIO) with a diameter of 8 mm was counterboreed in order to braze tool materials at 5 locations. Each part was made of polycrystalline diamond obtained by removing the binding material Co from polycrystalline diamond obtained by ultra-high pressure sintering, and 1μ of Ti and 37ffi of titanium were attached to the surface by ion blating. Things were brazed in the atmosphere.

その結果、従来のBAg−1(融点620℃)のみで行
なうろう付方法では、各々のろう付部が、他のろう付の
際の温度の影響を受け、ろう材にゆるみが起こり、最初
にろう付した工具素材が他の部分の工具素材ろう付部に
外れ、工具を製造することはできなかった。
As a result, in the conventional brazing method using only BAg-1 (melting point 620°C), each brazing part is affected by the temperature of other brazing processes, causing the brazing material to loosen and The brazed tool material came off from the brazed parts of other parts of the tool material, making it impossible to manufacture the tool.

しかしながら、本発明により、JIS規格のBAg−1
(融点620℃)、BAg−2(融点700℃)、BA
g−4(融点780℃)、’BAg−20A(融点86
0℃)及びCuZn −6(融点940℃)の5種類の
ろう材を使用し、融点の高いろう材よりろう付を行った
ところ、各々のろう付部が互いに他のろう付部の熱によ
る影響を受けず、全ての工具素材のろう付が可能であり
、第3図に示すような5楔力ダイヤモンドカッターを寸
法精度よく製造できた。第3図中9は工具素材、IOは
工具母材を表す。
However, according to the present invention, BAg-1 of JIS standard
(melting point 620°C), BAg-2 (melting point 700°C), BA
g-4 (melting point 780°C), 'BAg-20A (melting point 86
When brazing was performed using five types of brazing fillers: 0°C) and CuZn-6 (melting point 940°C), each brazing part was affected by the heat of the other brazing part. All tool materials could be brazed without being affected, and a 5-wedge force diamond cutter as shown in Figure 3 could be manufactured with good dimensional accuracy. In FIG. 3, 9 represents the tool material, and IO represents the tool base material.

〔発明の効果〕〔Effect of the invention〕

以上の説明のごとく、本発明の硬質多刃工具はろう何部
強度及び位置精度の安定性の高い優れた工具であり、ま
た、本発明の製造方法は上記本発明工具を実現できるに
加え、加工取代を減少し、しかも作製時間も短縮して製
造できるという経済性の面でも優れた方法である。
As explained above, the hard multi-edged tool of the present invention is an excellent tool with high stability in solder part strength and positional accuracy, and the manufacturing method of the present invention can realize the above-mentioned tool of the present invention, as well as This method is also excellent in terms of economy as it can be manufactured by reducing machining allowance and shortening the manufacturing time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の硬質多刃ろう付工具及びその製造工程
を説明するための部分斜視図であり、第2図は設定飛び
出し量へを説明する断面図、第3図は実施例3で製造し
た本発明の5楔力ダイヤモンドカッターの断面図を表す
。 図中、lは工具母材、2は工具素材、3はろう材A、4
はろう材B:5はろう材C,6はろう材D、7は工具母
材、8は工具素材、9は工具素材、10は工具母材を示
す。 第1図
FIG. 1 is a partial perspective view for explaining the hard multi-blade brazing tool of the present invention and its manufacturing process, FIG. FIG. 3 represents a cross-sectional view of a manufactured five-wedge force diamond cutter of the present invention. In the figure, l is the tool base material, 2 is the tool material, 3 is the brazing material A, 4
Filler metal B: 5 shows the filler metal C, 6 shows the filler metal D, 7 shows the tool base material, 8 shows the tool material, 9 shows the tool material, and 10 shows the tool material. Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)ダイヤモンド又は立方晶型窒化硼素を主成分とす
る多結晶体の2ケ以上を工具素材とし、該工具素材を超
硬合金製の母材にろう材を用いてろう付した多刃工具で
あって、各ろう材の融点が500〜1200℃の範囲内
にあり、且つ該各ろう材の融点が30〜700℃の範囲
内の差で互いに異なることを特徴とする硬質多刃ろう付
工具。
(1) A multi-edged tool in which the tool material is two or more polycrystals whose main component is diamond or cubic boron nitride, and the tool material is brazed to a cemented carbide base material using a brazing filler metal. Hard multi-blade brazing, characterized in that each brazing filler metal has a melting point within a range of 500 to 1200°C, and the melting points of each brazing filler metal differ from each other within a range of 30 to 700°C. tool.
(2)ダイヤモンド又は立方晶型窒化硼素を主成分とす
る多結晶体の2ケ以上を工具素材とし、該工具素材を超
硬合金製の母材にろう付するに際し、ろう材として各ろ
う材の融点が500〜1200℃の範囲内であり、且つ
該各ろう材の融点が30〜700℃の範囲内の差で互い
に異なったろう材を使用し、融点の高いろう材より順に
用いてろう付けすることを特徴とする硬質多刃ろう付工
具の製造方法。
(2) When using two or more polycrystals whose main component is diamond or cubic boron nitride as a tool material, and brazing the tool material to a cemented carbide base material, each brazing material is used as a brazing material. The melting point of each brazing filler metal is within the range of 500 to 1200°C, and the melting point of each brazing filler metal is within the range of 30 to 700°C. A method for manufacturing a hard multi-blade brazing tool.
JP20784189A 1989-08-14 1989-08-14 Hard multi-blade brazing tool and method of manufacturing the same Expired - Fee Related JP2751443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20784189A JP2751443B2 (en) 1989-08-14 1989-08-14 Hard multi-blade brazing tool and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20784189A JP2751443B2 (en) 1989-08-14 1989-08-14 Hard multi-blade brazing tool and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0373209A true JPH0373209A (en) 1991-03-28
JP2751443B2 JP2751443B2 (en) 1998-05-18

Family

ID=16546413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20784189A Expired - Fee Related JP2751443B2 (en) 1989-08-14 1989-08-14 Hard multi-blade brazing tool and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2751443B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090136305A1 (en) * 2005-10-03 2009-05-28 Mitsubishi Materials Corporation Boring tool and method of boring pilot hole
CN102231084A (en) * 2011-05-18 2011-11-02 佛山市顺德区美的电热电器制造有限公司 Cooking control method of electric rice cooker
US20150093204A1 (en) * 2012-04-26 2015-04-02 Exactaform Cutting Tools Limited Rotary cutting tool

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090136305A1 (en) * 2005-10-03 2009-05-28 Mitsubishi Materials Corporation Boring tool and method of boring pilot hole
US8272815B2 (en) * 2005-10-03 2012-09-25 Mitsubishi Materials Corporation Boring tool and method of boring pilot hole
CN102231084A (en) * 2011-05-18 2011-11-02 佛山市顺德区美的电热电器制造有限公司 Cooking control method of electric rice cooker
US20150093204A1 (en) * 2012-04-26 2015-04-02 Exactaform Cutting Tools Limited Rotary cutting tool
US10046402B2 (en) * 2012-04-26 2018-08-14 Exactaform Cutting Tools Limited Rotary cutting tool

Also Published As

Publication number Publication date
JP2751443B2 (en) 1998-05-18

Similar Documents

Publication Publication Date Title
RU2104826C1 (en) Cemented metal tip and method of its manufacture
EP0541071B1 (en) Polycrystalline diamond cutting tool and method of manufacturing the same
JP4045014B2 (en) Polycrystalline diamond tools
US5020394A (en) Polycrystal diamond fluted tool and a process for the production of the same
EP0157625B1 (en) Composite tool
US5580196A (en) Wear resistant tools
EP0458434B1 (en) Rotary cutter with Diamond-like cutting edges
EP0079243A1 (en) A composite compact component comprising a diamond or boron nitride compact
JP5603954B2 (en) Carbide element, method of using the same and method of manufacturing the same
US5395700A (en) Hard sintered compact for tools
JPH0373209A (en) Hard multiedge soldered tool and manufacture thereof
JPH0628805B2 (en) Insertion tool
JP2722649B2 (en) Polycrystalline diamond tools for cutting
JP2020507012A (en) Solid diamond material coating method
EP0220964B1 (en) Cubic boron nitride abrasive bodies
EP0706850B1 (en) Brazable cobalt-containing CBN compacts
KR20030051700A (en) Abrasive and wear resistant material
JP5266587B2 (en) CBN sintered body for cutting tools containing coarse cBN particles
JP2720951B2 (en) Cutting tool with high hardness composite sintered body as cutting edge
JPH10193206A (en) Cutting tool whose cutting edge piece has excellent brazing joining strength
JP2001191212A (en) Rotary cutting multi-edged tool
JPH10193210A (en) Cemented carbide-made cutting tool having excellent brazing connection strength in cutting edge piece
JPS6154858B2 (en)
JPH0516004A (en) Cutting tool and manufacture thereof
JP2004291126A (en) Throw-away tip and cutting tool

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees