JPH0372954A - Preparation of catalyst carrier - Google Patents

Preparation of catalyst carrier

Info

Publication number
JPH0372954A
JPH0372954A JP1207953A JP20795389A JPH0372954A JP H0372954 A JPH0372954 A JP H0372954A JP 1207953 A JP1207953 A JP 1207953A JP 20795389 A JP20795389 A JP 20795389A JP H0372954 A JPH0372954 A JP H0372954A
Authority
JP
Japan
Prior art keywords
pipe
base material
metal
engine
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1207953A
Other languages
Japanese (ja)
Inventor
Tamio Noda
多美夫 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1207953A priority Critical patent/JPH0372954A/en
Publication of JPH0372954A publication Critical patent/JPH0372954A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To enhance not only reaction efficiency but also engine efficiency and output by forming a catalyst capable of being brought near to the direct close part of an engine by baking a base material coated with a particulate metal to prepare a thin-wall pipe and incorporating said pipe in a frame body. CONSTITUTION:Ceramizol 888(R) or an acrylic resin is used as a base material and molded into a shape supposing a final shape. A metal such as an iron-Cr alloy or an iron-Ni alloy having a particle size of about 20mum or less, pref., about 10mum or less is applied to the molded one to be bonded thereto. Thereafter, this coated molded one is baked to form a pipe having an extremely thin wall thickness. When this catalyst structure is brought near to the direct close part of the engine in exhaust piping, a catalyst can be allowed to act at high exhaustion temp. and calalytic reaction efficiency is enhanced and, therefore, engine efficiency and output can be enhanced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は自動車用排気ガスのNOx、 SOX処理用に
用いられる触媒を乗せるメタル担体の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a metal carrier on which a catalyst used for treating NOx and SOx in automobile exhaust gas is mounted.

[従来の拉術] 自動車の排気ガスの規制が実施されて10年以上経過す
るが、現在の排気ガス対策はエンジンの改良と触媒によ
る排気ガスの浄化によって行われている。排気ガス浄化
用の触媒はコージオライト等のセラミックスハニカムの
一ヒに白金等の貴金属触媒を担持する構造のものが主流
を占めている。しかしこれらのセラミックスハニカムは
排気抵抗が相対的に高く、ハニカムの破壊を防止するた
めに外筒との間に挿入する緩衝用ステンレスメツシュの
耐熱性の1−1約などから、その使用温度を低くせざる
を得ない欠点がある。
[Conventional techniques] It has been more than 10 years since automobile exhaust gas regulations were implemented, and current exhaust gas countermeasures are implemented by improving engines and purifying exhaust gas using catalysts. The mainstream catalysts for exhaust gas purification are those having a structure in which a precious metal catalyst such as platinum is supported on a ceramic honeycomb such as cordiolite. However, these ceramic honeycombs have relatively high exhaust resistance, and the temperature at which they are used must be adjusted due to the heat resistance of the buffer stainless steel mesh inserted between the honeycomb and the outer cylinder to prevent damage. There are drawbacks that force it to be lower.

これらの欠点を改善するものとして、近年ステンレス箔
からなる金属担体が注目されている。これらの金属担体
は当然反応中の高温かつ高速の排気ガスに耐える耐熱性
と激しい加熱、冷却サイクルに耐える耐熱疲労性か要求
される。
In recent years, metal carriers made of stainless steel foil have been attracting attention as a means of improving these drawbacks. These metal supports are naturally required to have heat resistance to withstand the high temperature and high velocity exhaust gas during the reaction, and thermal fatigue resistance to withstand intense heating and cooling cycles.

第2図に示すように、一般にこの種の金属担体1は50
μm前後のステンレス平箔とコルゲート加工したステン
レス波箔とを屯ねて円筒形または楕円桟状に巻き込みハ
ニカム体2を形成し、これを耐熱ステンレス製の外筒管
3に挿入して後、平箔〜波箔〜外筒管を相互にロウ付け
あるいは抵抗溶接等により接合製造される。
As shown in FIG. 2, generally this type of metal carrier 1 has a
The honeycomb body 2 is formed by rolling stainless steel flat foil of around μm and corrugated stainless steel corrugated foil into a cylindrical or elliptical crosspiece shape, and inserting this into an outer tube 3 made of heat-resistant stainless steel. Foil, corrugated foil, and outer tube are bonded together by brazing or resistance welding.

[発明が解決しようとする課題] 従来の方法では、内部の担体部の金属箔が薄いため、空
隙部が真っ直ぐな構造の担体しか製造できなかった。ま
た、製造した直管担体を曲げることは極めて困難で内部
の金属箔が破断し゛〔しまうために技術的には実用化の
〔1処が立っていない。
[Problems to be Solved by the Invention] In the conventional method, since the metal foil of the internal carrier portion is thin, only a carrier having a straight cavity structure can be manufactured. Furthermore, it is extremely difficult to bend the manufactured straight pipe carrier and the metal foil inside would break, so there is no way to put it into practical use technically.

曲げ加工に耐える物にするには、内部の金属箔をJ’X
めの金属板にする必要かあり、空隙率、比表向iI″t
が低下して触媒担体としての機能が大幅に劣化する問題
点がある。
To make it resistant to bending, use the J'X internal metal foil.
Is it necessary to use a metal plate with a porosity and specific surface direction?
There is a problem that the function as a catalyst carrier is significantly deteriorated due to a decrease in

本発明はこの従来技44rの問題点を解消し、良好な機
能を介する触媒担体として大川化可能なものを提供し得
ることを[」的とする。
It is an object of the present invention to solve the problems of the prior art 44r and to provide a catalyst carrier with good functionality that can be used extensively.

[課題を解決するためのf段] この[1的を達成するための本発明の要旨は、基材に微
粉末金属を塗着し、1該3.B材を焼成することにより
薄肉パイプを製造し、該薄肉パイプを枠体に組込むこと
を特徴とする触媒担体の製造方法である。
[Step F for Solving the Problems] The gist of the present invention for achieving object 1 is to apply fine powder metal to a base material, and to apply 1.3. This method of manufacturing a catalyst carrier is characterized by manufacturing a thin-walled pipe by firing material B, and incorporating the thin-walled pipe into a frame.

本発明の方法では、粉末冶金技術を応用して予め最終的
に枠体に組み込んだ時の形状を計算して超薄肉厚のパイ
プを製造しておき、それを枠体を構成する通常肉厚管で
包む方式で製造することにより、軽量で曲管部にも装肴
可能な触媒担体を製造できるようにしたものである。
In the method of the present invention, an ultra-thin-walled pipe is manufactured by applying powder metallurgy technology to calculate in advance the shape of the pipe when it will be finally assembled into the frame, and then the pipe is manufactured using the normal pipes that make up the frame. By manufacturing the catalyst by wrapping it in a thick tube, it is possible to manufacture a catalyst carrier that is lightweight and can be placed in curved tubes.

11体的には、まずウレタンゴムや発泡スチレン等の可
塑性の樹脂を基材として用い、最終形状を想定した形状
に成形する。基材は金属微粉末の整形体形状を維持する
ための材料であり、昇温段階で大きな体積変化を起こさ
ず金属微粉末の接着を破壊しない物で、かつ、焼結反応
か終γするまでに気化する材料であれば採用できる。基
材が液化または気化し初めて形状の支持機能を失っても
金属微粉末が元の形状を保つためには、金属微粉末同士
の焼結がある程度進行する温度まで接着効力を保つ接着
剤が必要である。例えばセラミゾール888、アクリル
樹脂粉末等が使用できる。
11 First, a plastic resin such as urethane rubber or expanded styrene is used as a base material, and is molded into a shape assuming the final shape. The base material is a material that maintains the shape of the fine metal powder, and it is a material that does not cause a large volume change during the heating stage and does not destroy the adhesion of the fine metal powder until the sintering reaction is completed. Any material that vaporizes can be used. In order for fine metal powder to maintain its original shape even when the base material liquefies or vaporizes and loses its ability to support its shape, an adhesive is required that maintains its adhesive effect up to a temperature at which sintering of the fine metal powders progresses to some extent. It is. For example, Ceramisol 888, acrylic resin powder, etc. can be used.

準4Tする金属微粉末の粒度は、塗布表面を滑らかに仕
」二げ、厚みを均一にし、焼結反応速度をあげるために
できるだけ粒度の細かいものが好ましい。15さが50
1JI11程度の超薄肉厚のパイプを製造するには、原
料の金属粉末粒度は平均で20μm以下にする必要があ
り、できれば10μm以下が望ましい。
The particle size of the metal fine powder for quasi-4T is preferably as fine as possible in order to finish the coated surface smoothly, make the thickness uniform, and increase the sintering reaction rate. 15 is 50
In order to manufacture a pipe with an ultra-thin wall thickness of about 1JI11, the average particle size of the raw metal powder must be 20 μm or less, preferably 10 μm or less.

そのようにして、基材に金属微粉末を塗布、接着せしめ
た整形体をN2ガス、COガス、真空等の非酸化性雰囲
気ドて焼成する。鉄とCrの合金の場合テ1300℃×
2時間、鉄とNi)場合テ1200”Cx 2時間の焼
結時間を確保することにより、超薄肉厚のパイプが焼成
できる。
In this manner, the shaped body with fine metal powder applied and bonded to the base material is fired in a non-oxidizing atmosphere such as N2 gas, CO gas, vacuum, or the like. For alloys of iron and Cr, the temperature is 1300℃×
By ensuring a sintering time of 2 hours, in the case of iron and Ni) Te 1200''Cx, a pipe with an ultra-thin wall thickness can be fired.

次に第1図により本発明の触媒担体の製造フローを説明
する。
Next, the manufacturing flow of the catalyst carrier of the present invention will be explained with reference to FIG.

例えば」耳甲性樹脂からなる共材4を微粉末鉄粉と水を
混合したスラリー中に浸消させ微粉末鉄粉5を塗着させ
る(第1図(a)(bl照)。スラリー中にはJ、(材
4に微粉末鉄粉5が接着しゃすいようにバインダーとし
て接着剤、微粉末鉄粉5がスラリー中に沈降しないよう
に活+1:刑、あるいはスラリー中に泡が発生して鉄粉
5が基材4に均一にゆ着しないのを防止する消泡剤等を
添加する。
For example, a co-material 4 made of auricular resin is immersed in a slurry of a mixture of fine powdered iron powder and water, and finely powdered iron powder 5 is applied (Fig. 1(a) (bl)). J, (adhesive as a binder so that the fine powdered iron powder 5 does not adhere to the material 4, active +1 to prevent the fine powdered iron powder 5 from settling in the slurry, or bubbles are generated in the slurry. Then, an antifoaming agent or the like is added to prevent the iron powder 5 from being uniformly deposited on the base material 4.

このようにして基材4に微粉末鉄粉5を塗着したら、次
に基材4を加熱して焼成する(第1図(C))。この時
、基材4は焼失し、基材4に塗着した微粉末鉄粉5のみ
が残り、薄肉パイプロが製造される。
After applying the fine iron powder 5 to the base material 4 in this manner, the base material 4 is then heated and fired (FIG. 1(C)). At this time, the base material 4 is burned away, only the fine powdered iron powder 5 coated on the base material 4 remains, and a thin-walled pipe is manufactured.

この薄肉パイプロを複数個集め(第1図(d))、例え
ば第1図(c)に示すように半割りパイプの枠体7に複
数個の薄肉パイプロを組込み溶接して(第1図(f))
触媒担体8を製造する。本発明は特に曲管タイプの触媒
担体8を製造するに打利であり、そのために第1図に示
す基材4を曲管にしておけばよい。
Collect a plurality of these thin-walled pipes (Fig. 1(d)), and as shown in Fig. 1(c), for example, incorporate and weld the plurality of thin-walled pipes into the frame 7 of the half-split pipe (Fig. 1(c)). f))
A catalyst carrier 8 is manufactured. The present invention is particularly advantageous for producing a curved tube type catalyst carrier 8, and for this purpose, the base material 4 shown in FIG. 1 may be formed into a curved tube.

尚、薄肉パイプロは丸形、角形等、種々の形状が考えら
れ、その形状は特に限定されるものでない。
Note that the thin-walled pipe may have various shapes such as a round shape and a square shape, and the shape is not particularly limited.

[実施例] 次に本発明の実施例について述べる。[Example] Next, examples of the present invention will be described.

(実施例1) 表1に示した成分、粒度の鉄粉粉末を使い、同じく表2
に示した3種類の薬品を水と混合してスラリーを作り、
発泡スチレンに塗布した。それを室温で24時間乾燥し
た後、乾燥機に入れて100℃で1時間乾燥し、窒素雰
囲気下で1200℃×3時間焼成して超薄肉厚の曲管を
製作して、2分割にした通常肉厚のパイプにくるんで一
体構造体を製作した。焼成後の成品寸法を表5に、1f
ill fll11定結果を表6に示す。
(Example 1) Using iron powder powder with the ingredients and particle size shown in Table 1,
Mix the three types of chemicals shown in water with water to make a slurry.
Applied to expanded styrene. After drying it at room temperature for 24 hours, put it in a dryer and dry it at 100℃ for 1 hour, and then bake it in a nitrogen atmosphere at 1200℃ for 3 hours to make an ultra-thin curved tube and divide it into two parts. An integrated structure was fabricated by wrapping it in a normally thick pipe. The dimensions of the finished product after firing are shown in Table 5.
Table 6 shows the ill full11 results.

(実施例2) 表3に示した成分、粒度の合金粉末を使い、同しく表4
に示した1神類の熱硬化樹脂薬品を混合して、接着材を
塗Inシたウレタンゴムに粉体塗装機で吹きつけた。そ
れを乾燥機に入れて150℃×15分放置し、樹脂を硬
化させた後、雰l用気調整炉に入れ窒素雰囲気下で11
50℃×1時間焼成した。
(Example 2) Using alloy powder with the ingredients and particle size shown in Table 3,
The thermosetting resin chemicals shown in Figure 1 were mixed and sprayed on urethane rubber coated with adhesive using a powder coating machine. Put it in a dryer and leave it at 150°C for 15 minutes to harden the resin, then put it in an air conditioning oven and dry it for 11 minutes at 150℃ under a nitrogen atmosphere.
It was baked at 50°C for 1 hour.

El−冷却した後、更に真空釘】で1300℃×3時間
焼成して冷却して製作した。焼成後の成品寸法を表5に
、圧損測定結果を火6に示す。
After cooling with El-1, it was further baked in a vacuum nail at 1300°C for 3 hours and cooled. Table 5 shows the dimensions of the finished product after firing, and Table 6 shows the pressure drop measurement results.

表1 表2 実施例1の焼成前の原料性状と焼成後の成品成分実施例
1の粉体塗着基材とバインター配合比表4 実施例2の粉体塗着基材とバインダー配合比表5 灯り戊^り旬a町未W1−豹牙T17去表6 圧H1沖淀結果例 [発明の効果] 本発明により、従来のメタル担体ては技術的に不可能で
あった距離まで、触媒構造体を排気配管内のエンジン直
近部まで近づけることができる。
Table 1 Table 2 Raw material properties before firing and product components after firing in Example 1 Powder coating base material and binder blending ratio Table 4 Table of powder coating base material and binder blending ratio in Example 2 5 Lighting Shun a Town Mi W1-Leopard Fang T17 Table 6 Pressure H1 Okiyodo Result Example [Effects of the Invention] With the present invention, the catalyst can be transferred to a distance that was technically impossible with conventional metal carriers. The structure can be brought close to the engine in the exhaust pipe.

それにより、排気温度がより高いまま触媒を作用させる
ことができるので、触媒反応効率か上がり、エンジンの
効率、出力の向−Lを図ることができる。
As a result, the catalyst can be operated while the exhaust gas temperature is still higher, so that the catalytic reaction efficiency can be increased, and the efficiency and output of the engine can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の触媒担体の製造フローを示す説明図、
第2図は従来の金属担体の説明図である。 1・・・金属担体、2・・・ハニカム体、3・・・外筒
、4・・・基材、5・・・微粉末鉄粉、6・・・薄肉パ
イプ、7・・・枠体、8・・・触媒担体。 特許出頭上 代理人
FIG. 1 is an explanatory diagram showing the manufacturing flow of the catalyst carrier of the present invention,
FIG. 2 is an explanatory diagram of a conventional metal carrier. DESCRIPTION OF SYMBOLS 1... Metal carrier, 2... Honeycomb body, 3... Outer cylinder, 4... Base material, 5... Fine powder iron powder, 6... Thin wall pipe, 7... Frame body , 8...Catalyst carrier. Patent filing agent

Claims (1)

【特許請求の範囲】[Claims] 1、基材に微粉末金属を塗着し、該基材を焼成すること
により薄肉パイプを製造し、該薄肉パイプを枠体に組込
むことを特徴とする触媒担体の製造方法。
1. A method for producing a catalyst carrier, which comprises applying fine powder metal to a base material, baking the base material to produce a thin-walled pipe, and incorporating the thin-walled pipe into a frame.
JP1207953A 1989-08-14 1989-08-14 Preparation of catalyst carrier Pending JPH0372954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1207953A JPH0372954A (en) 1989-08-14 1989-08-14 Preparation of catalyst carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1207953A JPH0372954A (en) 1989-08-14 1989-08-14 Preparation of catalyst carrier

Publications (1)

Publication Number Publication Date
JPH0372954A true JPH0372954A (en) 1991-03-28

Family

ID=16548275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1207953A Pending JPH0372954A (en) 1989-08-14 1989-08-14 Preparation of catalyst carrier

Country Status (1)

Country Link
JP (1) JPH0372954A (en)

Similar Documents

Publication Publication Date Title
JP2688577B2 (en) Method for producing matrix supporting catalyst substance
US5288975A (en) Resistance adjusting type heater
JPH11503661A (en) Thermal spraying method for bonding catalyst materials to metal substrates
JPH06285337A (en) Honeycomb heater
JPH05144549A (en) Heater unit
EP0450897B1 (en) Heat-resistant metal monolith and manufacturing method therefor
JPH04215853A (en) Heat resisting metal monolith and manufacture thereof
JP3953944B2 (en) Metal foil and honeycomb structure
JPH0372954A (en) Preparation of catalyst carrier
JP3976789B2 (en) Method for manufacturing metal honeycomb body
JP2608599B2 (en) Manufacturing method of ceramic honeycomb structure
JPH03275147A (en) Production of catalyst carrier
JPH0416241A (en) Preparation of catalyst carrier
JPH05168944A (en) Catalyst carrier
EP1342499A1 (en) Multizone catalytic converter
WO1994025206A1 (en) Corrosion resistant porous body and production process
JP4083548B2 (en) Metal honeycomb structure excellent in oxidation resistance and manufacturing method thereof
RU2032463C1 (en) Carrier of catalyst for purification of exhaust gases of internal combustion engines and method for its preparation
JPS6351949A (en) Method for wash-coating of metal monolithic base material
JP2898337B2 (en) Honeycomb heater and catalytic converter
JPH05222921A (en) Resistance regulating type heater
JPH01143645A (en) Catalyst for exhaust gas purification and its manufacture
JP2502201B2 (en) Metal carrier for gas purification catalyst and method for producing the same
JPS60197242A (en) Catalyst body having honeycomb structure
JPS62149886A (en) Manufacture of surface coated steel pipe having superior corrosion resistance