JPH0372682B2 - - Google Patents

Info

Publication number
JPH0372682B2
JPH0372682B2 JP16659183A JP16659183A JPH0372682B2 JP H0372682 B2 JPH0372682 B2 JP H0372682B2 JP 16659183 A JP16659183 A JP 16659183A JP 16659183 A JP16659183 A JP 16659183A JP H0372682 B2 JPH0372682 B2 JP H0372682B2
Authority
JP
Japan
Prior art keywords
metal
solid lubricant
sliding
sintered
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16659183A
Other languages
Japanese (ja)
Other versions
JPS6058841A (en
Inventor
Masaaki Nemoto
Shigeharu Ono
Yukio Akizuki
Masatoshi Fukutomi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP16659183A priority Critical patent/JPS6058841A/en
Publication of JPS6058841A publication Critical patent/JPS6058841A/en
Publication of JPH0372682B2 publication Critical patent/JPH0372682B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、摺動用複合材料に関する。より詳し
くは、金属と固体潤滑剤とを焼結させた摺動用複
合材料の摩擦・摩耗特性の改良に関する。 潤滑油による汚染を嫌う食品、薬品、繊維機械
や作動媒体の汚染による性能劣化を回避する必要
のある密閉サイクル機関等では、軸受やシール等
の摺動部材に固体潤滑剤と金属からなる複合材料
が用いられる。これ等の複合材料の用途は、油が
使用できないような高温や極低温雰囲気で使用さ
れる機器をはじめ、放射能雰囲気下における原子
力用あるいは真空中で使われる宇宙及び核融合機
器等の広い分野に及んでいる。一般機器において
も、油軸受を無給油軸受化することにより、メン
テナンスフリー、省資源に繋がる利点のみでな
く、潤滑油系統(ポンプ、フイルタ、配管等)の
除去および機構の簡素化がもたらされる。 摺動用複合材料は次の3種類に大別される。 (1) カーボングラフアイトマトリツクスに金属を
含浸させた材料。 (2) 金属と固体潤滑剤とを焼結させた材料。 (3) 固体潤滑剤ペレツトを金属ブロツクに埋め込
んだ材料。 これ等の材料に関し、摩擦係数は(1)の材料が最
も低く、(2)、(3)の順となる。一方、耐摩耗性はそ
の逆で、(3)が最も良好で(2)、(1)の順となる。 第1図に、従来より用いられている摺動用の焼
結材料についての組織拡大図を示す。図中、01
は金属マトリツクスを、02は固体潤滑剤をそれ
ぞれ示す。材料強度メンバとして、鉛青銅、青
銅、鉄及びニツケル等の金属がマトリツクス01
として用いられ、二硫化モリブデン、カーボング
ラフアイト及び窒化硼素等の層状結晶を有する無
機質材料が固体潤滑剤02として組み合わされ
る。そして、複合材料は、粒状の金属01と粉状
の固体潤滑剤02を焼き固めて形成される。この
際、固体潤滑剤02が多いと材料強度が低下し、
一方、少ないと潤滑性が損なわれるので、両者の
性能を満す条件として、固体潤滑剤02の割合
は、5〜15%(vol)の範囲に設定される。また、
金属の粒径は10〜50μm程度である。このような
焼結材料の相手材としては、焼入れ硬化した炭素
鋼等の表面硬化した金属材料が使用される。 第2図に、前記従来の複合材料の摩耗機構を模
式的に示す。図中、01は複合材料中の金属マト
リツクス、02は複合材料中の固体潤滑剤、01
0は相手材、0100は空孔をそれぞれ示す。第
2図1は、相手材と複合材料との初期接触状態を
示す。すなわち、相手材010を複合材料に対し
摺動させると、固体潤滑剤02が相手面に付着す
る。第2図2は、一定時間摺動後の固体潤滑剤の
脱落状態を示す。すなわち、時間とともに固体潤
滑剤02が消費される個所に空孔0100が生ず
る。第2図3は、更に一定時間摺動後の相手材と
複合材料の接触状態を示す。すなわち、一定時間
摺動後、金属マトリツクス01との接触割合が増
加し、金属/金属の接触状態となる。この際、相
手材010は硬度が高いので、金属側が摩耗(h)
し、再び相手材010は、金属のみでなく、新た
な固体潤滑材02とも接触することになる。 このような固体潤滑剤を金属マトリツクスで焼
結した従来の摺動用複合材料は、次のような欠点
を有する。 (1) 金属/金属の凝着摩耗を伴なうため、摩耗率
が増加する。 (2) 金属/金属の凝着摩耗を伴なうため、すべり
面が荒れる。 (3) 金属/金属の凝着摩耗を伴なうため、摩擦係
数が上昇する。 (4) 固体潤滑剤を介した金属粒子の焼結体である
ため、結合力が弱く、摩擦時に表面より金属粒
子が脱落し易い。 本発明は、固体潤滑剤を金属マトリツクスで焼
結した従来の摺動用複合材料の摩擦摩耗特性を改
良すべく完成されたものである。すなわち、本発
明は、他の部材と摺動する面に微小な空〓を有す
る摺動用複合材料において、固体潤滑剤粉末と金
属粒子との焼結材料表面の空〓を、微小なセラミ
ツク粒子を埋没した上記と同種の固体潤滑剤で満
たして平滑面を形成したことを特徴とする摺動用
複合材料である。 本発明の摺動用複合材料は、すべり軸受、スラ
イドメタル、ピストンリング、メカニカルシー
ル、ロータジヤーナル部、ピストンスカート部、
シリンダライナ部等に広く適用できる。 本発明の摺動用複合材料には、シール材に代表
される当接部材も包含される。 次に、本発明を図面により説明する。 第1図に示した従来の摺動用複合材料である固
体潤滑材と金属粒子マトリツクスからなる焼結材
料を表面仕上げすると、第3図に示す組織拡大図
のように粒子径に相当する凹凸(10〜50μm)が
生じる。図中、1は金属マトリツクス、2は固体
潤滑剤をそれぞれ示す。このような表面状態を有
する焼結材の表面に、マトリツクス金属粒子径以
下の粒径を有するセラミツク微粒子を供給し、表
面硬化した金属(例えば、高周波焼入れした炭素
鋼)を相手材として、微速度で摺動させると、セ
ラミツク微粒子は軟質材料である焼結金属側に埋
め込まれ、その断面組成は第4図に示す組織拡大
図のようになる。図中、1および2は第3図のも
のと同じであり、3はセラミツク微粒子、4は相
手材料を示す。この際使用する金属マトリツク
ス、固体潤滑剤ならびに相手材としては、上述の
従来の摺動用複合材料に用いられるものがそのま
ま使用できる。 このように本発明に於ては、セラミツク微粒子
を用いることにより、焼結材の表面の凹凸が埋め
られることになる。また、セラミツク微粒子の押
し付け面圧と粒子の埋込み量は、ほヾ次式で決定
する。 P=n×(π/4d2)×√1+2Pn こゝで、P:負荷々重 n:セラミツク粒子個数 d:セラミツク粒子直径 μ:セラミツクと金属間の摩擦係数 Pn:焼結金属の降伏応力 こうしてセラミツク微粒子の埋め込みにより、
相手材面粗度に応じた焼結金属側の表面が形成さ
れることになり、又セラミツク微粒子が埋め込ま
れると、相手材面に付着した焼結材中の固体潤滑
剤粉末により再度覆われることになる。 このような本発明の効果を列挙すると、次の通
りである。 (1) 高硬度を有するセラミツク粒子を表面に象嵌
したことにより、耐摩耗性が向上する。 (2) 金属マトリツクスはセラミツク粒子だけでな
く、固体潤滑剤に対しても結合材の役目をする
ので、この固体潤滑剤によつて相手材との潤滑
効果も保持され、低摩擦が得られる。 (3) セラミツク微粒子が焼結剤表面の凹凸を埋
め、且つ、相手材料を鏡面にしておけば、それ
に倣つた表面が形成されるので、表面粗度の小
さい焼結材料が得られる。 以下に、本発明を実施例により説明する。 実施例 固体潤滑剤として黒鉛粉末を含有するニツケル
銅焼結材料(大同メタル社製デバメタル、Ni:
90%、Cu:10%)と、高周波焼入れを行い研磨
仕上げをした相手材料(S45C、Hv=530、HRc
=55、粗度>1s)の間に、粒径50μm以下のフオ
ルステライト(2MgO・SiO2)を約1mmの厚さで
塗布し、面圧50Kgf/cm2を加え、周速1.8m/
minで10分間摺込みを行い、軸受材を得た。この
軸受材を乾燥雰囲気で摩擦・摩耗試験を行い、そ
の結果を第1表に示す。
The present invention relates to a sliding composite material. More specifically, the present invention relates to improving the friction and wear characteristics of a sliding composite material made by sintering a metal and a solid lubricant. Composite materials made of solid lubricants and metals are used for sliding parts such as bearings and seals in food, pharmaceutical, and textile machinery that do not like contamination with lubricating oil, as well as in closed cycle engines that need to avoid performance deterioration due to contamination of the working medium. is used. These composite materials can be used in a wide range of fields, including equipment used in high-temperature or cryogenic environments where oil cannot be used, nuclear power equipment in radioactive atmospheres, and space and nuclear fusion equipment used in vacuum. It extends to Even in general equipment, replacing oil bearings with oil-free bearings not only provides maintenance-free and resource-saving benefits, but also eliminates lubricating oil systems (pumps, filters, piping, etc.) and simplifies mechanisms. Composite materials for sliding are broadly classified into the following three types. (1) A material made of carbon graphite matrix impregnated with metal. (2) A material made by sintering metal and solid lubricant. (3) A material in which solid lubricant pellets are embedded in a metal block. Regarding these materials, material (1) has the lowest coefficient of friction, followed by (2) and (3). On the other hand, the wear resistance is the opposite, with (3) being the best, followed by (2) and then (1). FIG. 1 shows an enlarged view of the structure of a conventionally used sintered material for sliding. In the figure, 01
02 indicates a metal matrix, and 02 indicates a solid lubricant. As material strength members, metals such as lead bronze, bronze, iron, and nickel are matrix 01.
Inorganic materials having layered crystals such as molybdenum disulfide, carbon graphite, and boron nitride are combined as the solid lubricant 02. The composite material is formed by baking and solidifying the granular metal 01 and the powdery solid lubricant 02. At this time, if there is a large amount of solid lubricant 02, the material strength will decrease,
On the other hand, if the amount is too small, the lubricity will be impaired, so the proportion of solid lubricant 02 is set in the range of 5 to 15% (vol) as a condition that satisfies both performances. Also,
The particle size of the metal is about 10 to 50 μm. As a mating material for such a sintered material, a surface-hardened metal material such as quench-hardened carbon steel is used. FIG. 2 schematically shows the wear mechanism of the conventional composite material. In the figure, 01 is the metal matrix in the composite material, 02 is the solid lubricant in the composite material, 01
0 indicates a mating material, and 0100 indicates a hole. FIG. 2 1 shows the initial contact state between the mating material and the composite material. That is, when the mating material 010 is slid against the composite material, the solid lubricant 02 adheres to the mating surface. FIG. 2 shows how the solid lubricant falls off after sliding for a certain period of time. That is, pores 0100 are created at locations where the solid lubricant 02 is consumed over time. FIG. 2 and 3 show the state of contact between the mating material and the composite material after further sliding for a certain period of time. That is, after sliding for a certain period of time, the contact ratio with the metal matrix 01 increases, resulting in a metal/metal contact state. At this time, since the mating material 010 has high hardness, the metal side will wear out (h).
However, the mating material 010 comes into contact with not only the metal but also the new solid lubricant 02 again. Conventional sliding composite materials in which such solid lubricants are sintered with a metal matrix have the following drawbacks. (1) Increased wear rate due to metal/metal adhesive wear. (2) Sliding surfaces become rough due to metal/metal adhesive wear. (3) The coefficient of friction increases due to metal/metal adhesive wear. (4) Since it is a sintered body of metal particles interposed with a solid lubricant, the bonding force is weak, and the metal particles tend to fall off from the surface during friction. The present invention was completed in order to improve the friction and wear characteristics of conventional sliding composite materials in which a solid lubricant is sintered with a metal matrix. That is, the present invention provides a sliding composite material having minute voids on the surface that slides with other members, by replacing the voids on the surface of the sintered material of solid lubricant powder and metal particles with minute ceramic particles. This is a sliding composite material characterized by forming a smooth surface by filling with the same type of buried solid lubricant as above. The sliding composite material of the present invention can be used for sliding bearings, slide metals, piston rings, mechanical seals, rotary journal parts, piston skirt parts,
Can be widely applied to cylinder liner parts, etc. The sliding composite material of the present invention also includes a contact member typified by a sealing material. Next, the present invention will be explained with reference to the drawings. When the surface of the sintered material consisting of a solid lubricant and a metal particle matrix, which is a conventional sliding composite material shown in Fig. 1, is surface-finished, it has irregularities (10 ~50 μm). In the figure, 1 represents a metal matrix and 2 represents a solid lubricant. Ceramic fine particles having a particle size smaller than the matrix metal particle size are supplied to the surface of the sintered material having such a surface condition, and a surface-hardened metal (for example, induction hardened carbon steel) is used as a partner material, and the material is heated at a very low speed. When the ceramic particles are slid, the ceramic fine particles are embedded in the sintered metal side, which is a soft material, and the cross-sectional composition becomes as shown in the enlarged view of the structure shown in FIG. In the figure, 1 and 2 are the same as those in FIG. 3, 3 is a ceramic fine particle, and 4 is a mating material. As the metal matrix, solid lubricant, and mating material used in this case, those used in the above-mentioned conventional sliding composite materials can be used as they are. In this way, in the present invention, by using ceramic fine particles, the unevenness on the surface of the sintered material is filled. Further, the pressing surface pressure of the ceramic fine particles and the amount of embedding of the particles are determined by the following equation. P=n×(π/4d 2 )×√1+ 2 P n where P: Load weight n: Number of ceramic particles d: Ceramic particle diameter μ: Coefficient of friction between ceramic and metal P n : Sintered metal By embedding the ceramic particles, the yield stress of
The surface of the sintered metal side will be formed according to the surface roughness of the mating material, and once the ceramic fine particles are embedded, it will be covered again with the solid lubricant powder in the sintered material that has adhered to the surface of the mating material. become. The effects of the present invention are listed below. (1) Abrasion resistance is improved by inlaying ceramic particles with high hardness on the surface. (2) Since the metal matrix acts as a binder not only for the ceramic particles but also for the solid lubricant, the solid lubricant maintains the lubricating effect with the mating material, resulting in low friction. (3) If the ceramic fine particles fill in the irregularities on the surface of the sintering agent and the mating material is made to have a mirror surface, a surface that mirrors it will be formed, so a sintered material with low surface roughness can be obtained. The present invention will be explained below using examples. Example Nickel-copper sintered material containing graphite powder as a solid lubricant (Devametal, Ni manufactured by Daido Metal Co., Ltd.)
90%, Cu: 10%) and the counterpart material (S45C, Hv=530, HRc) that has been induction hardened and polished.
= 55, roughness > 1 s), apply forsterite (2MgO SiO 2 ) with a particle size of 50 μm or less to a thickness of about 1 mm, apply a surface pressure of 50 Kgf/cm 2 , and apply a peripheral speed of 1.8 m/cm 2 .
The bearing material was obtained by rubbing at min for 10 minutes. This bearing material was subjected to friction and wear tests in a dry atmosphere, and the results are shown in Table 1.

【表】 上記表から、セラミツク微粒子を摺り込んだ焼
結材料が次のような点で改良されることが判か
る。 (1) 摩擦係数はμ=0.43からμ=0.10と低下す
る。この値は、黒鉛潤滑で達成し得る理想状態
に近い。 (2) 摩耗率は545μm/hrから1μm/hrへと驚異
的な減少を示す。これは、摺り込まれたセラミ
ツク微粒子の効果が顕著に現われたものであ
る。即ち、摩耗率が500分の1にも低下したの
は、ニツケルからセラミツク微粒子へ変更した
ことの硬度による影響の他に、金属的な凝着回
避効果によるものである。 (3) 軸受側の摺動面粗さも28μmから2μmへと低
下し、その結果、本発明材料が、低摩擦材や耐
摩耗材の範疇に留まらず、シール材にも適用可
能であることが判る。
[Table] From the above table, it can be seen that the sintered material into which ceramic fine particles are rubbed is improved in the following points. (1) The friction coefficient decreases from μ=0.43 to μ=0.10. This value is close to the ideal state achievable with graphite lubrication. (2) The wear rate shows a remarkable decrease from 545 μm/hr to 1 μm/hr. This is due to the remarkable effect of the rubbed ceramic fine particles. That is, the reason why the wear rate was reduced to 1/500 was due to the hardness effect of changing from nickel to ceramic fine particles, as well as the effect of avoiding metallic adhesion. (3) The roughness of the sliding surface on the bearing side also decreased from 28 μm to 2 μm, and as a result, it can be seen that the material of the present invention can be applied not only to low-friction materials and wear-resistant materials but also to seal materials. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の摺動用の焼結材料についての
組織拡大図を示し、第2図1〜3は、その摩耗機
構の模式図を示す。第3図は、表面仕上げを施し
た焼結材の組織拡大図を示し、第4図は、本発明
のセラミツク微粒子を埋め込んだ焼結材の組織拡
大図を示す。
FIG. 1 shows an enlarged view of the structure of a conventional sintered material for sliding, and FIGS. 2 1 to 3 show schematic diagrams of its wear mechanism. FIG. 3 shows an enlarged view of the structure of the sintered material that has been surface-finished, and FIG. 4 shows an enlarged view of the structure of the sintered material in which the ceramic fine particles of the present invention are embedded.

Claims (1)

【特許請求の範囲】[Claims] 1 他の部材と摺動する面に微小な空〓を有する
摺動用複合材料において、固体潤滑剤粉末と金属
粒子との焼結材料表面の空〓を、微小なセラミツ
ク粒子を埋没した上記と同種の固体潤滑剤で満た
して平滑面を形成したことを特徴とする摺動用複
合材料。
1. In a sliding composite material that has minute voids on the surface that slides on other members, the voids on the surface of the sintered material of solid lubricant powder and metal particles are filled with the same type of material as above in which minute ceramic particles are embedded. A sliding composite material characterized by being filled with a solid lubricant to form a smooth surface.
JP16659183A 1983-09-12 1983-09-12 Composite material for sliding Granted JPS6058841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16659183A JPS6058841A (en) 1983-09-12 1983-09-12 Composite material for sliding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16659183A JPS6058841A (en) 1983-09-12 1983-09-12 Composite material for sliding

Publications (2)

Publication Number Publication Date
JPS6058841A JPS6058841A (en) 1985-04-05
JPH0372682B2 true JPH0372682B2 (en) 1991-11-19

Family

ID=15834116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16659183A Granted JPS6058841A (en) 1983-09-12 1983-09-12 Composite material for sliding

Country Status (1)

Country Link
JP (1) JPS6058841A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373901A (en) * 1986-09-16 1988-04-04 株式会社 パテイネ商会 Shoes
AU747820B2 (en) * 1998-01-22 2002-05-23 Yasuhiro Hayakawa Grinder pressing device
CN102223005A (en) * 2010-04-13 2011-10-19 德昌电机(深圳)有限公司 Rotor bearing arrangement
DE102017105602B3 (en) 2017-03-16 2018-05-17 Ks Gleitlager Gmbh Sliding bearing composite material with a metallic support layer and a metallic bearing metal layer

Also Published As

Publication number Publication date
JPS6058841A (en) 1985-04-05

Similar Documents

Publication Publication Date Title
KR100434770B1 (en) Self-lubricating sintered friction material and its manufacturing method
JP4675563B2 (en) Bearing and manufacturing method thereof
US4312772A (en) Bearing material
US5464486A (en) Solid lubricant and hardenable steel coating system
US2788324A (en) Plain bearings or anti-friction elements
EP0703382B1 (en) Sintered contact component
JPH0351777B2 (en)
GB2045806A (en) Sintered bearing material
JPH11217637A (en) Sliding material, sliding member and its production
GB2345095A (en) Sliding bearing including a resin layer consisting of soft metal particles dispersed in a thermosetting resin
US3419363A (en) Self-lubricating fluoride-metal composite materials
Sliney Self-lubricating composites of porous nickel and nickel-chromium alloy impregnated with barium fluoride-calcium fluoride eutectic
GB2137660A (en) Composite material for a sliding member
CN108220666A (en) A kind of more resistant novel copper-based self-lubricating composite
US3127224A (en) Bearing
Lancaster Composite self-lubricating bearing materials
JPH0372682B2 (en)
US3081196A (en) Rubbing contact material
US4954058A (en) Method for making composite sintered apex seal material
US4233071A (en) Bearing having iron sulfur matrix
JPH11293305A (en) Slide material and double layered sintered slide member
JPS6331005B2 (en)
US3985408A (en) Bearing having iron sulfur matrix
CA2007683A1 (en) Composite and self-lubricating bushing and method for making same
CA1334488C (en) Sintered apex seal material