JPH0372344B2 - - Google Patents

Info

Publication number
JPH0372344B2
JPH0372344B2 JP57180864A JP18086482A JPH0372344B2 JP H0372344 B2 JPH0372344 B2 JP H0372344B2 JP 57180864 A JP57180864 A JP 57180864A JP 18086482 A JP18086482 A JP 18086482A JP H0372344 B2 JPH0372344 B2 JP H0372344B2
Authority
JP
Japan
Prior art keywords
group
metal
citric acid
impregnating
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57180864A
Other languages
Japanese (ja)
Other versions
JPS5969147A (en
Inventor
Masao Sekido
Akira Inoe
Masao Mori
Tatsuteru Kubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP18086482A priority Critical patent/JPS5969147A/en
Priority to US06/540,781 priority patent/US4483942A/en
Priority to NLAANVRAGE8303538,A priority patent/NL190289C/en
Priority to GB08327752A priority patent/GB2131714B/en
Publication of JPS5969147A publication Critical patent/JPS5969147A/en
Publication of JPH0372344B2 publication Critical patent/JPH0372344B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は水素化触媒を製造する方法に関し、さ
らに詳しくは、第6族金属塩の少くとも1種と第
8族鉄族金属塩のうち硫酸塩、炭酸塩、有機酸
塩、塩化物及び水酸化物からなる群から選ばれた
少くとも1種を含む溶液にクエン酸を少量添加
し、ついでアンモニアガスを吹込んでPHを調整し
た溶液にアルミナまたはシリカ・アルミナ単体を
含浸し、焼成することにより水素化触媒を製造す
る方法に関する。 従来、水素化触媒としては、アルミナまたはシ
リカ・アルミナ担体に活性成分として第8族鉄族
金属および第6族金属を担持させたものが多く用
いられているが、これらの第6族金属および第8
族鉄族金属の各1種以上の活性成分を含有する場
合、それらの塩を溶解した水溶液またはアンモニ
ア水溶液は不安定であり、短時間の放置、または
担体に含浸した段階で沈澱が析出する。含浸がで
きた場合でも触媒の色斑が生じたり、また活性金
属が均一に担持できない欠点がある。 これらの欠点を改善するためにクエン酸、
EDTAおよびその他のキレート剤を含浸液の安
定剤として加え含浸液を調整する方法が提案され
ているが、第8族鉄族金属および第6族金属が高
濃度の場合、多量のクエン酸等をもちいるため、
調整の過程で含浸液が高粘度になり、時には撹拌
が不能になる。 また、錯体の安定化のために、PH7〜11が必要
で多量のアンモニアガスが必要になるし、発熱反
応のため多量の冷却水で冷却しないとPH9.0以上
に調整することができない。 また、できた含浸液も高粘度であるため含浸時
間が非常に長く、次の工程で含浸液の水切り作業
を充分に行なわないと触媒の表面に高濃度の活性
金属が付着し活性上好ましくない等、工程上また
活性の見地から見ても不利である。これらのこと
は、全て触媒のコストアツプになり、不経済であ
ることは明らかである。 本発明の目的は、水素化触媒を製造するにあた
つて、活性金属が高濃度であつても充分に安定な
含浸液を得ることにある。 本発明のもうひとつの目的は、水素化触媒を製
造するにあたつて、活性金属が高濃度であつても
錯体を安定させるアンモニアガスの量、反応熱冷
却水の量を少なくし、含浸時間を短縮し、さらに
含浸後の水切り工程も容易に行なうことにある。 本発明者等は、上記のような目的を達成するた
めに鋭意研究した結果、第6族金族塩と第8族鉄
族金属塩のうち硫酸塩、炭酸塩、有機酸塩、塩化
物および水酸化物からなる群から選ばれた1種を
含む溶液に少量のクエン酸を添加することにより
活性金属が高濃度であつても充分に安定な含浸液
を得る方法を見い出した。 すなわち、本発明は、第6族金属のアンモニウ
ム塩の少なくとも1種に水を加えて溶解させ、こ
れにクエン酸を0.1〜0.28モル(第6族金属酸化
物1モル当り)の範囲で添加し、次いでアンモニ
アガスを吹き込み、PHを約8.5になるように調整
し、次に第8族鉄族金属塩のうち硫酸塩、炭酸
塩、有機酸塩、塩化物及び水酸化物からなる群か
ら選ばれた少なくとも1種を添加し、再びアンモ
ニアガスを吹き込みPHを71〜11に調整した含浸液
にアルミナまたはシリカ・アルミナ担体を含浸
し、焼成し、最終触媒組成における第6族金属が
酸化物として10〜20wt%および第8族鉄族金属
は酸化物として3〜7wt%であることを特徴とす
る水素化触媒の製造方法を提供する。 本発明による水素化触媒の製造方法は、まず第
6族金属塩に水を加え、50〜95℃の温度で加熱溶
解させ、これにクエン酸を添加するか、あるいは
第6族金属塩、水及びクエン酸を同時に加えて加
熱溶解し、次に加熱溶解した溶液にアンモニアガ
スを吹き込みPHを約8.5になるように調整し、次
に第8族鉄族金属塩を徐々に添加し、再びアンモ
ニアガスを吹き込みPHを7〜11、好ましくは8〜
10に調整し含浸液を得、さらにこの含浸液にアル
ミナあるいはシリカ・アルミナ担体を含浸しその
後水切りし、100〜120℃で乾燥し、500〜600℃、
2〜5時間焼成することにより行なうことができ
る。 前記クエン酸の添加量は第6族金属塩と第8族
鉄属塩を安定化するに必要な量を添加する、すな
わち第6族金属酸化物1モルに対して0.1〜0.28
モル、好ましくは、0.15〜0.25モルである。ここ
で第6族金属酸化物は、たとえばM0O3、CrO3
WO3と表わす。 このクエン酸の添加量が第6族金属酸化物1モ
ルに対して0.1モル未満では塩類を十分溶解でき
ず、第6族金属を安定化することができない。他
方0.28モルよりも多い場合、安定な含浸液を作る
ために1.2モル以上必要になり、含浸液が高粘度
になることは明らかである。 本発明で用いる第6族金属塩は第6族金属、た
とえばクロム、モリブデンあるいはタングステン
等のアンモニウム塩、たとえばクロム酸アンモニ
ウム、モリブデン酸アンモニウムあるいはタング
ステン酸アンモニウム等である。 本発明で用いる第8族鉄族金属塩は第8族鉄族
金属、たとえば鉄、コバルトあるいはニツケル等
の硫酸塩、炭酸塩、有機酸塩、塩化物及び水酸化
物であり、この中で特に炭酸塩、有機酸塩及び水
酸化物が好ましい。ここで有機酸塩は炭素数が1
〜5のものであり、たとえば酢酸塩、蟻酸塩ある
いは酒石酸塩がある。 たとえば、炭酸塩の炭酸根は含浸液中で加熱す
ることにより簡単に炭酸ガスになるので含浸液中
に不必要なイオンは残らないために第8族金属と
アンモニアで十分に錯化するため含浸液のPHが上
げられ安定な含浸液を作ることができる。しかし
安定剤として少量のクエン酸が必要である。この
理由として第6族金属塩が高濃度の場合、第6族
金属塩とクエン酸の水溶液ではPHが9付近で安定
な溶液は得られない。しかし、第8族鉄族金属塩
を添加すると溶解することから第8族金属のアン
モニア錯体及びクエン酸錯体と第6族金属のクエ
ン酸錯体及び第8族金属の酸素酸イオンがなんら
かの形で結合し、水溶液中で溶解度のある安定な
物質になるためと考えられる。 これに対して、硝酸塩を用い、活性金属の高濃
度の場合、モリブデン酸イオン、硝酸イオン、ア
ンモニアイオン、ニツケルイオンの共存する状態
で錯体の安定化をはかるために、NH3ガスを吹
き込み、PHを調整する過程でPH8.5以上になると
NO3、NH4、Niを含有する沈澱が多量に析出す
る。この現象は活性成分の低濃度では問題はない
が高濃度になると著しい。この現象を防止するた
めに、安定剤として多量のクエン酸を添加し、ク
エン酸等とNiの安定なキレート物質を作り、含
浸液の安定化をはかるのであるが、その結果とし
て溶液中に多量の種々のイオンが共存することは
物質の溶解度または溶液が高粘度になることを考
えれば不利なことは明らかである。 本発明における含浸液のPHが7より小さい場
合、含浸中に沈澱が析出する。またPHが11より大
きい場合、担体が若干溶解し、溶液が過剰のアン
モニアによつて不安定となる。したがつてPHは7
〜11、好ましくは8〜10に調整する必要がある。 本発明において第6族および第8族鉄族金属塩
の添加量は最終触媒組成における第6族金属が酸
化物として5〜30wt%、好ましくは10〜20wt%
および第8族鉄族金属は酸化物として1〜8wt%
好ましくは3〜7wt%である。 本発明に用いる担体は数社の押出形成品で、無
定形に近いγ−アルミナから結晶化の進んだγ−
アルミナおよびシリカを最高85wt%含むシリ
カ・アルミナである。いずれの場合も支障なく含
浸することができた。 本発明の水素化触媒は炭化水素類の水素化脱
硫、水素化脱窒素、水素化分解および水素化精製
に用いることができる。 本発明の方法は活性金属の濃度が高くても充分
安定な含浸液が得られ、さらにクエン酸(安定
剤)の添加量が少ないので、錯体を安定化させる
アンモニアガスの量、冷却するための冷却水の量
が少なく、また、活性成分を高濃度にしても含浸
する時間が短く、含浸後の水切り工程も容易に行
なえるようになつた。 次に本発明を実施例によつて説明する。 実施例 1 表1に示すようにモリブデン酸アンモニウム
((NH46M07O24・4H2O)150gに水330mlを加
え、加熱溶解し、さらにクエン酸(C6H8O7
H2O)50g(クエン酸/MoO3=0.25モル)を添
加し、続いてアンモニアガスでPH約8.5に調整す
る。その塩基性水溶液に水酸化ニツケル(Ni
(OH)2・H2O)60gを徐々に投入し、再びアン
モニアガスでPH9.5〜10.0に調整し、含浸液とし
て500mlを得た。得られた含浸液は青色透明で、
1ケ月放置により沈澱はなかつた。 次に、含浸液に300gのアルミナ担体を投入し、
含浸後水切りし、乾燥(110℃)後、550℃で3時
間焼成した。得られた触媒はNiO=5.1wt%、
MoO3=14.8wt%で予定の担持量であつた。 なお、この場合約1時間で含浸でき、その後の
水切り作業が容易であつた。 実施例 2 表1に示すようにモリブデン酸アンモニウム
((NH46M07O24・4H2O)150gに水330mlを加え、
加熱溶解し、さらにクエン酸(C6H8O7・H2O)
17.8g(クエン酸/M0O3=0.1モル)を添加し、続
いてアンモニアガスでPH約8.5に調整する。その
塩基性水溶液に水酸化ニツケル(Ni(OH)2
H2O)60gを徐々に投入し、再びアンモニアでPH
9.5〜10.0に調整し、含浸液として500mlを得た。
得られた含浸液は青色透明で、1週間放置により
沈澱は無かつた。 含浸液に所定量のアルミナ担体を投入し、含浸
後水切りし、乾燥(110℃)後、550℃で3時間焼
成した。得られた触媒はNiO=5.1wt%、M0O3
14.8wt%で予定の担持量であつた。 比較例 1〜4 表1に示すように実施例1に従い、クエン酸の
量を変化させ、含浸液を作つた。表1から明らか
になるようにクエン酸の添加量が多いと安定な含
浸液を作ることはできない。しかしクエン酸/
M0O3のモル比が1.2以上では含浸液は安定である
が含浸液の粘度が高く、担体に十分に含浸するた
めに1昼夜も必要であつた。
The present invention relates to a method for producing a hydrogenation catalyst, and more particularly, at least one group 6 metal salt and a group 8 iron group metal salt including sulfate, carbonate, organic acid salt, chloride and water. By adding a small amount of citric acid to a solution containing at least one kind selected from the group consisting of oxides, then blowing in ammonia gas to adjust the pH, impregnating alumina or silica/alumina alone into the solution, and firing. The present invention relates to a method for producing a hydrogenation catalyst. Conventionally, hydrogenation catalysts in which Group 8 iron group metals and Group 6 metals are supported as active components on alumina or silica-alumina carriers have been used in many cases. 8
When containing one or more active ingredients of each of the iron group metals, an aqueous solution or ammonia aqueous solution in which these salts are dissolved is unstable, and a precipitate is deposited when left for a short time or when impregnated into a carrier. Even if impregnation is possible, there are drawbacks such as color spots on the catalyst and the inability to support the active metal uniformly. Citric acid to improve these shortcomings,
A method has been proposed to adjust the impregnating solution by adding EDTA and other chelating agents as stabilizers to the impregnating solution. Because it is useful,
During the conditioning process, the impregnating liquid becomes highly viscous, sometimes making stirring impossible. In addition, in order to stabilize the complex, a pH of 7 to 11 is required, which requires a large amount of ammonia gas, and due to the exothermic reaction, the pH cannot be adjusted to 9.0 or higher unless it is cooled with a large amount of cooling water. In addition, the resulting impregnating liquid also has a high viscosity, so the impregnation time is very long, and if the impregnating liquid is not drained sufficiently in the next step, a high concentration of active metal will adhere to the surface of the catalyst, which is undesirable in terms of activity. etc., which are disadvantageous from the standpoint of process and activity. It is clear that all of these things increase the cost of the catalyst and are uneconomical. An object of the present invention is to obtain an impregnating solution that is sufficiently stable even at a high concentration of active metal when producing a hydrogenation catalyst. Another object of the present invention is to reduce the amount of ammonia gas that stabilizes the complex even when the active metal concentration is high, the amount of reaction heat cooling water, and the impregnation time. The objective is to shorten the process and also facilitate the draining process after impregnation. As a result of intensive research to achieve the above objectives, the present inventors have discovered that among Group 6 metal salts and Group 8 iron group metal salts, sulfates, carbonates, organic acid salts, chlorides and We have discovered a method of obtaining a sufficiently stable impregnating solution even at a high concentration of active metal by adding a small amount of citric acid to a solution containing one selected from the group consisting of hydroxides. That is, in the present invention, at least one ammonium salt of Group 6 metal is dissolved in water, and citric acid is added thereto in a range of 0.1 to 0.28 mol (per 1 mol of Group 6 metal oxide). Then, ammonia gas is blown in to adjust the pH to about 8.5, and then a group 8 iron group metal salt selected from the group consisting of sulfate, carbonate, organic acid salt, chloride and hydroxide is added. Alumina or a silica-alumina carrier is impregnated into the impregnating solution, which has been adjusted to a pH of 71 to 11 by blowing in ammonia gas again, and is calcined. Provided is a method for producing a hydrogenation catalyst, characterized in that the content of the iron group metal is 10 to 20 wt% and the Group 8 iron group metal is 3 to 7 wt% as an oxide. The method for producing a hydrogenation catalyst according to the present invention involves first adding water to a Group 6 metal salt, dissolving it by heating at a temperature of 50 to 95°C, and adding citric acid to this, or adding a Group 6 metal salt to water. and citric acid were added at the same time and dissolved by heating, then ammonia gas was blown into the heated and dissolved solution to adjust the pH to approximately 8.5, then the Group 8 iron group metal salt was gradually added, and ammonia was added again. Blow in the gas and adjust the pH to 7-11, preferably 8-11.
10 to obtain an impregnating solution, further impregnating alumina or silica/alumina carrier with this impregnating solution, draining water, drying at 100 to 120℃, drying at 500 to 600℃,
This can be done by baking for 2 to 5 hours. The amount of citric acid added is the amount necessary to stabilize the Group 6 metal salt and the Group 8 iron metal salt, that is, 0.1 to 0.28 per mole of the Group 6 metal oxide.
mol, preferably 0.15 to 0.25 mol. Here, Group 6 metal oxides include, for example, M 0 O 3 , CrO 3 ,
It is expressed as WO 3 . If the amount of citric acid added is less than 0.1 mole per mole of the Group 6 metal oxide, the salts cannot be sufficiently dissolved and the Group 6 metal cannot be stabilized. On the other hand, if the amount is more than 0.28 mol, 1.2 mol or more will be required to make a stable impregnating liquid, and it is clear that the impregnating liquid will have a high viscosity. The Group 6 metal salt used in the present invention is an ammonium salt of a Group 6 metal, such as chromium, molybdenum or tungsten, such as ammonium chromate, ammonium molybdate or ammonium tungstate. The group 8 iron group metal salts used in the present invention include sulfates, carbonates, organic acid salts, chlorides and hydroxides of group 8 iron group metals such as iron, cobalt or nickel. Carbonates, organic acid salts and hydroxides are preferred. Here, the organic acid salt has a carbon number of 1
-5, such as acetate, formate or tartrate. For example, the carbonate radical of carbonate easily turns into carbon dioxide gas by heating in the impregnating liquid, so unnecessary ions do not remain in the impregnating liquid, and the group 8 metal and ammonia are sufficiently complexed. The pH of the liquid is increased and a stable impregnating liquid can be made. However, a small amount of citric acid is required as a stabilizer. The reason for this is that when the concentration of the Group 6 metal salt is high, an aqueous solution of the Group 6 metal salt and citric acid cannot provide a stable solution with a pH of around 9. However, when a group 8 iron group metal salt is added, it dissolves, so the ammonia complex and citric acid complex of the group 8 metal and the citric acid complex of the group 6 metal and the oxyacid ion of the group 8 metal combine in some way. This is thought to be due to the fact that it becomes a stable substance with solubility in aqueous solution. On the other hand, when nitrate is used and the active metal concentration is high, NH 3 gas is blown in to stabilize the complex in the coexistence of molybdate ions, nitrate ions, ammonia ions, and nickel ions. If the pH becomes 8.5 or higher during the adjustment process,
A large amount of precipitate containing NO 3 , NH 4 and Ni is deposited. This phenomenon is not a problem at low concentrations of the active ingredient, but becomes noticeable at high concentrations. In order to prevent this phenomenon, a large amount of citric acid is added as a stabilizer to create a stable chelate substance of citric acid and Ni and to stabilize the impregnating solution. It is obvious that the coexistence of various ions is disadvantageous in view of the solubility of the substance or the high viscosity of the solution. If the pH of the impregnating solution in the present invention is lower than 7, a precipitate will separate out during impregnation. If the pH is higher than 11, the carrier will be slightly dissolved and the solution will become unstable due to excess ammonia. Therefore the PH is 7
-11, preferably 8-10. In the present invention, the amount of the Group 6 and Group 8 iron group metal salts added is 5 to 30 wt%, preferably 10 to 20 wt% of the Group 6 metal as an oxide in the final catalyst composition.
and Group 8 iron group metals from 1 to 8 wt% as oxides.
Preferably it is 3 to 7 wt%. The carrier used in the present invention is an extrusion product manufactured by several companies, ranging from nearly amorphous γ-alumina to highly crystallized γ-alumina.
It is a silica-alumina containing up to 85wt% alumina and silica. In either case, impregnation was possible without any problem. The hydrogenation catalyst of the present invention can be used for hydrodesulfurization, hydrodenitrogenation, hydrocracking, and hydrorefining of hydrocarbons. In the method of the present invention, a sufficiently stable impregnating solution can be obtained even with a high concentration of active metal, and since the amount of citric acid (stabilizer) added is small, the amount of ammonia gas to stabilize the complex, The amount of cooling water is small, and even if the concentration of active ingredients is high, the impregnation time is short, and the draining process after impregnation can be easily performed. Next, the present invention will be explained with reference to examples. Example 1 As shown in Table 1, 330 ml of water was added to 150 g of ammonium molybdate ((NH 4 ) 6 M 07 O 24・4H 2 O), dissolved by heating, and then citric acid (C 6 H 8 O 7
50 g of H 2 O) (citric acid/MoO 3 =0.25 mol) are added, followed by adjusting the pH to about 8.5 with ammonia gas. Nickel hydroxide (Ni) is added to the basic aqueous solution.
60 g of (OH) 2 .H 2 O) was gradually added, and the pH was again adjusted to 9.5 to 10.0 with ammonia gas to obtain 500 ml of impregnating liquid. The obtained impregnating liquid is blue and transparent.
There was no precipitate after leaving it for one month. Next, add 300g of alumina carrier to the impregnating solution,
After impregnation, water was drained, dried (110°C), and then baked at 550°C for 3 hours. The obtained catalyst contained NiO=5.1wt%,
MoO 3 =14.8wt%, which was the expected loading amount. In this case, the impregnation was completed in about 1 hour, and the subsequent draining operation was easy. Example 2 As shown in Table 1, 330 ml of water was added to 150 g of ammonium molybdate ((NH 4 ) 6 M 07 O 24・4H 2 O),
Heat and dissolve, then add citric acid (C 6 H 8 O 7・H 2 O)
Add 17.8 g (citric acid/M 0 O 3 = 0.1 mol) and then adjust the pH to about 8.5 with ammonia gas. Add nickel hydroxide (Ni(OH) 2 .
Gradually add 60g of H2O and PH again with ammonia.
It was adjusted to 9.5 to 10.0, and 500 ml of impregnating liquid was obtained.
The resulting impregnating solution was blue and transparent, and no precipitate was present after it was left to stand for one week. A predetermined amount of alumina carrier was added to the impregnation solution, and after impregnation, water was drained, dried (110°C), and then fired at 550°C for 3 hours. The obtained catalyst had NiO=5.1wt%, M 0 O 3 =
The loading amount was 14.8wt%, which was the expected loading amount. Comparative Examples 1 to 4 As shown in Table 1, impregnation solutions were prepared according to Example 1 by varying the amount of citric acid. As is clear from Table 1, if the amount of citric acid added is too large, a stable impregnating solution cannot be produced. However, citric acid/
When the molar ratio of M 0 O 3 is 1.2 or more, the impregnating liquid is stable, but the viscosity of the impregnating liquid is high, and it takes a whole day and night to sufficiently impregnate the carrier.

【表】 実施例 3 モリブデン酸アンモニウム217gに水250mlおよ
びクエン酸65gを添加し加熱溶解する。続いてア
ンモニアガスでPH約8.5に調整し、その水溶液に
塩基性炭酸ニツケル(NiCO3・2Ni(OH)2
4H2O)89gを投入し、再びアンモニアガスでPH
9.5〜10.0に調整し、含浸液として500mlを得た。 実施例1と同様にアルミナ担体に含浸し、乾燥
および焼成を行ない、得られた触媒はNiO=
6.0wt%、M0O3=19.5wt%で予定の担持量であつ
た。 実施例 4〜5 表2に示すようにクエン酸/M0O3のモル比を
0.25と一定にして、NiOおよびM0O3の量を増加
させた場合で、NiO=0.14g/c.c.、M0O3=0.48
g/c.c.と驚異的な濃度の含浸液を作ることができ
た。これは今後、高活性触媒を志向したとき、一
つの方法として活性金属の高濃度触媒が考えられ
るので、非常に有効な含浸液の調整方法と思われ
る。
[Table] Example 3 Add 250 ml of water and 65 g of citric acid to 217 g of ammonium molybdate and dissolve by heating. Next, the pH was adjusted to approximately 8.5 with ammonia gas, and basic nickel carbonate (NiCO 3 2Ni(OH) 2 2
4H 2 O) and PH again with ammonia gas.
It was adjusted to 9.5 to 10.0, and 500 ml of impregnating liquid was obtained. The catalyst obtained by impregnating an alumina carrier, drying and calcining in the same manner as in Example 1 was NiO=
The supported amount was 6.0wt% and M 0 O 3 =19.5wt%, which was the expected loading amount. Examples 4-5 As shown in Table 2, the molar ratio of citric acid/M 0 O 3 was
When the amount of NiO and M 0 O 3 is increased while keeping it constant at 0.25, NiO = 0.14 g/cc, M 0 O 3 = 0.48
We were able to create an impregnating solution with an amazing concentration of g/cc. This is considered to be a very effective method for preparing the impregnating liquid, as one way to create highly active catalysts in the future is to use catalysts with high concentrations of active metals.

【表】 実施例 6〜13 モリブデン酸アンモニウム((NH46M07O24
4H2O)を一定として表3に示すように第8族鉄
族塩を変えて実施例1と同様に含浸液をつくつ
た。いずれも安定な水溶液を作ることができた。
[Table] Examples 6 to 13 Ammonium molybdate ((NH 4 ) 6 M 07 O 24
An impregnating solution was prepared in the same manner as in Example 1, with 4H 2 O) kept constant and the Group 8 iron group salts changed as shown in Table 3. In both cases, stable aqueous solutions could be made.

【表】【table】

【表】 比較例 5〜9 表4に硝酸ニツケルを用いる他は実施例1と同
様に高濃度含浸液を作つた例を示す。表4から、
クエン酸/M0O3の比が0.88以上で含浸液ができ
るが、安定なPHの範囲が非常に狭く、実用には無
理と思われるが、クエン酸の量が増加させると安
定な含浸液がつくられるPHの範囲が広がると思わ
れる。
[Table] Comparative Examples 5 to 9 Table 4 shows examples in which high-concentration impregnation solutions were prepared in the same manner as in Example 1, except that nickel nitrate was used. From Table 4,
An impregnating solution is produced when the ratio of citric acid/M 0 O 3 is 0.88 or more, but the stable PH range is very narrow and it seems impossible for practical use, but as the amount of citric acid increases, a stable impregnating solution It is thought that the range of pH at which is created will expand.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 第6族金属のアンモニウム塩の少なくとも1
種に水を加えて溶解させ、これにクエン酸を0.1
〜0.28モル(第6族金属酸化物1モル当り)の範
囲で添加し、次いでアンモニアガスを吹き込み、
PHを約8.5になるように調整し、次に第8族鉄族
金属塩のうち硫酸塩、炭酸塩、有機酸塩、塩化物
及び水酸化物からなる群から選ばれた少なくとも
1種を添加し、再びアンモニアガスを吹き込みPH
を7〜11に調整した含浸液にアルミナまたはシリ
カ・アルミナ担体を含浸し、焼成し、最終触媒組
成における第6族金属が酸化物として10〜20wt
%および第8族鉄族金属は酸化物として3〜7wt
%であることを特徴とする水素化触媒の製造方
法。
1 At least one ammonium salt of Group 6 metal
Add water to the seeds to dissolve them, and add 0.1 citric acid to this.
~0.28 mol (per 1 mol of Group 6 metal oxide) is added, then ammonia gas is blown in,
Adjust the pH to about 8.5, and then add at least one selected from the group consisting of sulfates, carbonates, organic acid salts, chlorides, and hydroxides among Group 8 iron group metal salts. Then, blow in ammonia gas again to adjust the pH.
Alumina or silica/alumina carrier is impregnated with an impregnating solution adjusted to 7 to 11, and calcined to reduce the Group 6 metal in the final catalyst composition to 10 to 20 wt as oxide.
% and Group 8 iron group metals as oxides 3-7wt
%.
JP18086482A 1982-10-15 1982-10-15 Production of hydrogenation catalyst Granted JPS5969147A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP18086482A JPS5969147A (en) 1982-10-15 1982-10-15 Production of hydrogenation catalyst
US06/540,781 US4483942A (en) 1982-10-15 1983-10-11 Process of preparing hydrogenation catalysts
NLAANVRAGE8303538,A NL190289C (en) 1982-10-15 1983-10-14 PROCESS FOR PREPARING A HYDROGENATION CATALYST
GB08327752A GB2131714B (en) 1982-10-15 1983-10-17 Process for the production of hydrogenation catalysts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18086482A JPS5969147A (en) 1982-10-15 1982-10-15 Production of hydrogenation catalyst

Publications (2)

Publication Number Publication Date
JPS5969147A JPS5969147A (en) 1984-04-19
JPH0372344B2 true JPH0372344B2 (en) 1991-11-18

Family

ID=16090686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18086482A Granted JPS5969147A (en) 1982-10-15 1982-10-15 Production of hydrogenation catalyst

Country Status (1)

Country Link
JP (1) JPS5969147A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2084246B1 (en) * 2006-10-11 2018-01-10 ExxonMobil Research and Engineering Company Hydroprocessing methods for bulk group viii/vib metal catalysts

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4964587A (en) * 1972-10-25 1974-06-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4964587A (en) * 1972-10-25 1974-06-22

Also Published As

Publication number Publication date
JPS5969147A (en) 1984-04-19

Similar Documents

Publication Publication Date Title
US3840472A (en) Method for preparing a hydrotreating catalyst
US6090745A (en) Process for preparing water-treatment catalysts
US3969273A (en) Process for preparing phosphated alumina extrudates
US3755196A (en) Hydrotreating catalyst
US4483942A (en) Process of preparing hydrogenation catalysts
EP2470300B1 (en) Solutions and catalysts comprising group vi metal, group viii metal, phosphorous and an additive
US4409131A (en) Preparation of CoMo and NiMo catalyst using cobalt or nickel complexes that are stable in basic solution
CN111068698A (en) Catalyst for preparing acrolein by propylene oxidation and application thereof
CN111468142A (en) Co-Mo-S catalyst and preparation method thereof
CN108620081B (en) Hydrogenation catalyst impregnation liquid and preparation method thereof
CN111068699A (en) Catalyst suitable for producing acrolein and use thereof
NO138750B (en) PROCEDURE FOR THE PREPARATION OF A SELF-SULFIDED METAL CATALYST ON A CARRIER
CN111036276A (en) Tungsten-based pre-vulcanized-free hydrotalcite hydrodesulfurization catalyst and preparation method thereof
JPH0372344B2 (en)
JPH0312935B2 (en)
CN110038584A (en) The method for preparing Hydrobon catalyst
CN101260317B (en) Hydrorefining catalyst and its preparation method
CN1952078A (en) Refining catalyst for paraffin-hydrogenating and its preparing process and uses
US4659689A (en) Method of preparation of high active phase (AMM)oxidation catalysts with improved performance and attrition resistance
CN110935460B (en) High-selectivity hydrodesulfurization catalyst and preparation method thereof
JPH04166231A (en) Production of catalyst for hydrogenation treatment
CN104994945A (en) Catalyst for acrylonitrile production and method for producing acrylonitrile
CN101260318B (en) Lithium-containing hydrorefining catalyst and its preparation method
JPS58151327A (en) Manufacture of solid acid composition
CN111068696A (en) Supported acrolein catalyst and application thereof