JPH0372195A - Underground excavator - Google Patents

Underground excavator

Info

Publication number
JPH0372195A
JPH0372195A JP1206967A JP20696789A JPH0372195A JP H0372195 A JPH0372195 A JP H0372195A JP 1206967 A JP1206967 A JP 1206967A JP 20696789 A JP20696789 A JP 20696789A JP H0372195 A JPH0372195 A JP H0372195A
Authority
JP
Japan
Prior art keywords
underground
excavator
excavators
receivers
devices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1206967A
Other languages
Japanese (ja)
Other versions
JP2804930B2 (en
Inventor
Akira Okamoto
晃 岡本
Shoichi Sakanishi
坂西 昇一
Isamu Nagano
勇 長野
Shinjiro Takeuchi
信次郎 竹内
Fukuo Sakai
酒井 福夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MISHIMA TAIMU IND KK
Komatsu Ltd
Original Assignee
MISHIMA TAIMU IND KK
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MISHIMA TAIMU IND KK, Komatsu Ltd filed Critical MISHIMA TAIMU IND KK
Priority to JP1206967A priority Critical patent/JP2804930B2/en
Publication of JPH0372195A publication Critical patent/JPH0372195A/en
Application granted granted Critical
Publication of JP2804930B2 publication Critical patent/JP2804930B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To measure the positions easily by providing transmission devices, receiving devices, detecting devices to detect either the phase difference or the transmission time, and an operation device, in two underground excavators excavating in the opposite direction each other. CONSTITUTION:While the signal of a signal generator 1 is transmitted to transmitters Ta, Tb, and Tc provided in the first underground excavator A through a transmitter converter 2, the signal is input to phase detectors PDa, PUb, and PDc connected to receivers Ra, Rb, and Rc of the second underground excavator B. And when an electromagnetic wave selected by the transmitter converter 2 is delivered, the phase differences alphatr between the signals received by the receivers Ra, Rb, and Rc, and the signal delivered from the generator 1 are detected by the detectors PDa, PDb, and PDc, the phase differences are input to an operation device 3, and the distances between the receivers are computed. Consequently, the measurement can be carried out easily.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、地中掘削機で、特に、地中にて相対向する地
中掘削機の相対位置を求めることかできるようにした地
中掘削機に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an underground excavator, and more particularly, to an underground excavator capable of determining the relative positions of opposing underground excavators underground. It concerns excavators.

〔従来の技術〕[Conventional technology]

従来から、例えば地中掘削機を用いたシールド工法にお
けるシールド掘削機運転のための測量は、トランシット
などによる坑内7Iplffiのほかに、シールド掘削
機の発進立坑内にレーザー等のコヒーレントな光を発生
させる光学発信装置を設置して、この装置より、トンネ
ル計画線を照射し、シールド掘削機に取り付けたターゲ
・ソト上の光点を読み取ることによってシールド掘削機
の偏位、偏角を求めている。
Conventionally, for example, surveying for the shield excavator operation in the shield construction method using an underground excavator has not only been carried out by means of a transit, etc., but also by generating coherent light such as a laser in the starting shaft of the shield excavator. An optical transmitter is installed, which illuminates the tunnel planning line and reads the light spot on the target soot attached to the shield excavator to determine the deflection and declination of the shield excavator.

あるいは、方位ジャイロと、圧力式沈下計、傾斜計及び
セグメント長さを基準とする走行距離計を組み合わせて
、基準位置からの相対的な位置を求める方法も知られて
いる。
Alternatively, a method is known in which a relative position from a reference position is determined by combining an azimuth gyro with a pressure-type subsidence gauge, an inclinometer, and an odometer based on segment length.

一方海底下にトンネルを構築する場合は立坑を多く設置
できないので、地中掘削機の掘削距離を短くするため地
中掘削機を相対向して発進し、地中内でトンネルを接合
する必要があるが、その際2台の地中掘削機の相対的な
位置を計測することはこれまでなかった。
On the other hand, when constructing a tunnel under the seabed, it is not possible to install many vertical shafts, so in order to shorten the excavation distance of the underground excavator, it is necessary to launch the underground excavator facing each other and connect the tunnels underground. However, it has never been possible to measure the relative positions of two underground excavators.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の位置計測手段を用いた地中掘削機にあっては以下
のような問題があった。
Underground excavators using conventional position measuring means have the following problems.

(1)トランシット等による坑内11111ffiは、
トンネルが屈曲して掘削される場合、測定点を多く持つ
必要があってリアルタイムに計測できず実際的でない。
(1) Underground 11111ffi by transit etc.
When a tunnel is excavated in a curved manner, it is necessary to have many measurement points, which makes real-time measurement impossible and impractical.

(2〉 レーザー光を用いる方法は、トンネル計画線が
屈曲していると、立坑からのレーザー光が、ターゲット
に照射できない場合が生じ、光学発信装置を適切な位置
に移動しなければならない。
(2) In the method using laser light, if the tunnel planning line is curved, the laser light from the shaft may not be able to irradiate the target, and the optical transmitter must be moved to an appropriate position.

しかも、レーザー光を直接計画路線の全長に照射できな
いので、ターゲットと光学測量装置とトンネル計画線と
の位置関係をそれぞれ互い角度や距離を測定し、その結
果から計算により計画路線を求めた後に、シールド掘削
機の偏位、偏角が算出されることになる。このため、光
学発信装置の移設や、測定及び計算に人手がかかり、掘
進作業の能率が低下するという問題があった。
Moreover, since it is not possible to directly irradiate the entire length of the planned route with laser light, the positional relationship between the target, the optical surveying device, and the tunnel planned line is measured by measuring the angle and distance, and the planned route is calculated from the results. The deflection and yaw angle of the shield excavator will be calculated. For this reason, there was a problem in that the relocation of the optical transmitter, measurement and calculation required manpower, and the efficiency of the excavation work was reduced.

(3)ジャ・イロを用いた方法は、累積誤差の問題があ
り、長距離掘削には向かず、また急曲線、連続曲線に対
しても同様に不向きである。そして地中接合のように2
台の地中掘削機の位置を計測する場合はこの誤差はさら
に増大する。
(3) The method using a gyro has the problem of cumulative errors and is not suitable for long-distance excavation, and is similarly unsuitable for sharp curves and continuous curves. And like underground joint 2
This error increases further when measuring the position of the underground excavator on the platform.

本発明は上記従来の地中接合の持つ問題点に着目してな
されたものであり、トンネル計画線が長く及び曲線であ
っても、リアルタイムに2台の地中掘削機の相対位置を
自動的、かつ効率的に計測することができる地中掘削機
を提供することを目的とするものである。
The present invention was made by focusing on the above-mentioned problems with conventional underground joints, and it is possible to automatically determine the relative positions of two underground excavators in real time even if the tunnel planning line is long and curved. The object of the present invention is to provide an underground excavator that can perform measurements efficiently.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明に係る地中掘削機は
、対向方向に互いに掘進する2台の地中掘削機において
、この両地中掘制機の少なくとも一方に地中掘削機の前
面に、電磁波または弾性波を前方へ送出する複数の発信
装置を設け、また上記両掘削機の少なくとも他方の地中
掘削機の前面に、上記一方の地中掘削機の発信装置から
発信された電磁波または弾性波を受信する複数の受信装
置を設け、またこの受信装置を有する一方の地中掘削機
に、上記発信装置から発信された電磁波または弾性波と
上記各受信装置が検出する電磁波または弾性波の位相差
あるいは伝播時間の一方を検出する検知手段と、上記複
数の送信装置及び受信装置間のそれぞれの電磁波または
弾性波の位相差あるいは伝播時間の一方から上記両地中
掘削機の相対位置を算出する演算手段とを備えた構成と
なっている。
In order to achieve the above object, an underground excavator according to the present invention has two underground excavators that mutually excavate in opposite directions. is provided with a plurality of transmitting devices that transmit electromagnetic waves or elastic waves forward, and the electromagnetic waves emitted from the transmitting device of one of the underground excavators are installed in front of at least the other of the two underground excavators. Alternatively, a plurality of receiving devices for receiving elastic waves are provided, and one underground excavator equipped with this receiving device is provided with an electromagnetic wave or elastic wave transmitted from the above-mentioned transmitting device and an electromagnetic wave or elastic wave detected by each of the above-mentioned receiving devices. detecting means for detecting either the phase difference or the propagation time of the plurality of transmitting devices and the plurality of receiving devices; The configuration includes calculation means for calculating.

〔作  用〕[For production]

検知手段にて、相対向する送信装置と受信装置間の電磁
波または弾性波のα相差あるいは伝播時間を検知するこ
とで送受信装置間の距離を検知し、この各送受装置間で
の位相差あるいは伝播時間から演算手段にて両地中掘削
機の相対位置が算出される。
The distance between the transmitting and receiving devices is detected by detecting the alpha phase difference or propagation time of the electromagnetic waves or elastic waves between the opposing transmitting device and the receiving device using the detection means, and the phase difference or propagation between the transmitting and receiving devices is detected. The relative positions of both underground excavators are calculated from the time by the calculation means.

〔実 施 例〕〔Example〕

本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described based on the drawings.

図中A、Bはそれぞれ第1.第2の地中掘削機であり、
この両地中掘削機A、Bは地中において対向する方向に
掘進し、かつ接合するように配置されている。そして第
1の地中掘削機Aの前面に複数個の電磁波を送出する送
信器Ta。
In the figure, A and B are respectively 1st. It is the second underground excavator,
Both underground excavators A and B are arranged so as to dig underground in opposite directions and join together. A transmitter Ta transmits a plurality of electromagnetic waves to the front of the first underground excavator A.

Te、Tcが前方へ向けて設けてあり、また第2の地中
掘削機Bの前面に、上記送信器と対向する数の電磁波を
受信する受信器Ra、Rb。
Te and Tc are provided facing forward, and receivers Ra and Rb are provided on the front side of the second underground excavator B and receive electromagnetic waves of the same number as the transmitter.

Rcが前方へ向けて設けである。Rc is provided facing forward.

上記送信器Ta、Tb、Tc及び受信器Ra。The transmitters Ta, Tb, Tc and the receiver Ra.

Rb、Reは、−例としてそれぞれ地中掘削機A、Bの
軸心に対してZ軸(垂直方向)上側のrの位置と、Y軸
(水平方向の左右のrの位置にそれぞれ3個ずつ設けら
れている。また上記受信器Ra、Rb、Rcを設けた方
の第2の地中掘削機Bに位相検知器と演算装置(いずれ
も図示せず)が設置されている。
Rb and Re are, for example, 3 pieces each at the r position above the Z-axis (vertical direction) with respect to the axis of the underground excavators A and B, and at the r position on the left and right sides of the Y-axis (horizontal direction). A phase detector and a calculation device (none of which are shown) are installed in the second underground excavator B, which is the one in which the receivers Ra, Rb, and Rc are installed.

そして上記各送信器Ta、Tb、Tcから送出された電
磁波は地中を伝播して各受信器Ra。
The electromagnetic waves sent out from each of the transmitters Ta, Tb, and Tc propagate underground to each receiver Ra.

Rb、Rcにて受信されるが、このとき、地中を伝播し
てきた各電磁波には、途中の障害物により、送信器に入
力される電磁波との間に位相差のα丁。が生じ、これが
位相検知器にて検出される。この各送受信器間における
電磁波の位相差αTRと各送受信器間の距離f) TR
との間係は、ただし、λ:電磁波の波長 f二重磁波の周波数 V:電磁波の伝播速度 であられされる。従って各送信受器相互間を伝播する電
磁波の位相差αTRを検出することにより、各送受信器
相互間の送信受信間距離II Tl+が得られる。
At this time, each electromagnetic wave that has propagated underground has a phase difference of α between it and the electromagnetic wave that is input to the transmitter due to obstacles on the way. occurs, which is detected by the phase detector. This phase difference αTR of electromagnetic waves between each transmitter and receiver and the distance between each transmitter and receiver f) TR
The relationship between λ and λ is expressed by: where λ is the wavelength of the electromagnetic wave, f is the frequency of the double magnetic wave, and V is the propagation speed of the electromagnetic wave. Therefore, by detecting the phase difference αTR of the electromagnetic waves propagating between the respective transmitters and receivers, the transmitting/receiving distance II Tl+ between the respective transmitters and receivers can be obtained.

次に、第1の地中掘削機Aの前面の中心をX。Next, mark the center of the front of the first underground excavator A with an X.

Y、Z座標の原点にとると、第1の地中掘削機A側に設
けられた送信器Ta、Tb、Tcの座標は、 Ta (o、o、r) Tb (o、r、o) Tc (o、−r、o) であられされ、これに対して、第2の地中掘削機Bに設
けられた受信器Ra、Rb、Rcの座標は、 Ra (XRa、YRa、ZRa) Rb (XRb、YRb、ZRb) Re (XRc、YRc、ZRc) とすると、以下の式が成りたつ。なお式paa。
Taking the origin of the Y and Z coordinates, the coordinates of the transmitters Ta, Tb, and Tc provided on the first underground excavator A side are Ta (o, o, r) Tb (o, r, o) Tc (o, -r, o), whereas the coordinates of the receivers Ra, Rb, Rc provided on the second underground excavator B are Ra (XRa, YRa, ZRa) Rb (XRb, YRb, ZRb) Re (XRc, YRc, ZRc) The following formula holds true. The expression paa.

ρba、・・・(lccは第1図に示すように、各送受
信器間の距離を示す。
ρba, ... (lcc indicates the distance between each transmitter and receiver, as shown in FIG. 1).

XRa 2+YRa 2+  (ZRa−r)2−ρa
a2−(2)XRa 2+(YRa−r) 2+ZRa
 2−(l ba2− (3)XRa  2 +  (
YRa十 r)2 + ZRa  2−ρ ca2 ・
−(4)XRb ’ +YRb 2+  (ZRb−r
)2−D ab2− (5)XRb 2+(YRb−r
) 2+ZRb 2−D bb2− (8)XRb  
2+ (YRb+  r)2+ZRb  2−1 cb
2− (7)XRc 2+YRc 2+ (ZRc−r
) 2−1 ac2−・(3)XRc 2+(YRc−
r)   +ZRc 2−(l bc2−(9)XRc
 2+(YRc+ r)2+ZRc 2−p cc2−
(10)この連立方程式を解くことにより各受信器Ra
XRa 2+YRa 2+ (ZRa-r)2-ρa
a2-(2)XRa 2+(YRa-r) 2+ZRa
2-(l ba2- (3)XRa 2 + (
YRa 10 r)2 + ZRa 2-ρ ca2 ・
−(4)XRb′ +YRb 2+ (ZRb−r
)2-D ab2- (5)XRb2+(YRb-r
) 2+ZRb 2-D bb2- (8)XRb
2+ (YRb+ r)2+ZRb 2-1 cb
2- (7)XRc 2+YRc 2+ (ZRc-r
) 2-1 ac2-・(3)XRc 2+(YRc-
r) +ZRc 2-(l bc2-(9)XRc
2+(YRc+ r)2+ZRc 2-p cc2-
(10) By solving this simultaneous equation, each receiver Ra
.

Rb、Rcの第1の地中掘削機Aの中心に対する位置が
決定される。
The positions of Rb and Rc relative to the center of the first underground excavator A are determined.

一方第2の地中掘削機Bの中心座標XBo。On the other hand, the center coordinates XBo of the second underground excavator B.

YBo、ZBoは、 XBo= (XRb十XRc)/2−(11)YBo=
 (YRb十YRc)/2−(12)ZBo= (ZR
b+ZRc)/2−(13)であるから、上記各受信器
Ra、Rb、Rcの位置及びこの(11)〜(i3)式
から、第1の地中掘削機Aに対する第2の地中掘削機B
の相対位置が求められる。
YBo and ZBo are XBo= (XRb×XRc)/2-(11)YBo=
(YRb + YRc)/2-(12)ZBo= (ZR
b+ZRc)/2-(13), so from the positions of the receivers Ra, Rb, and Rc and the equations (11) to (i3), the second underground excavation for the first underground excavator A is Machine B
The relative position of is found.

またこのときのY軸の対する第2の地中掘削機Bの傾き
をθとすると第2図により、XRb−XRc YRb−YRc にて算出され、 同様に、地中掘削機Bの2軸に対する傾きをΦとすると
、第3図に YRa−X 8 。
Also, if the inclination of the second underground excavator B with respect to the Y axis at this time is θ, it is calculated as XRb - XRc YRb - YRc according to Fig. If the slope is Φ, then YRa-X 8 is shown in FIG.

にて算出される。これにより 第4図は本発明に係る構成を示すもので、信号発生器1
にて生成される一定周波数の信号は送信器切換器2を経
由して第1の地中掘削機Aに設けた送信器Ta、Tb、
Tcに選択的に送ると共に、第2の地中掘削機B側の各
受信S Ra +Rb、Reに接続した位相検出器PD
a、PDbPDcに人力される。
Calculated by. Accordingly, FIG. 4 shows the configuration according to the present invention, in which the signal generator 1
The constant frequency signal generated by the transmitter is transmitted to the transmitter Ta, Tb,
A phase detector PD connected to each reception S Ra +Rb, Re on the second underground excavator B side while selectively transmitting to Tc.
a. Manually powered by PDbPDc.

送信器切換器2にて選択された送信器から電磁波が送出
されると、この電磁波は地中に伝播されて第2の地中掘
削機Bの前面に取り付けられた受信器Ra、Rb、Rc
にて受信される。
When an electromagnetic wave is transmitted from the transmitter selected by the transmitter switch 2, this electromagnetic wave is propagated underground and sent to the receivers Ra, Rb, and Rc attached to the front of the second underground excavator B.
Received at.

そしてこのときの各受信器Ra、Rb、Rcにて受信し
た信号と、信号発生器1から送出した信号との位相差α
TRが各位相検出器PDa。
At this time, there is a phase difference α between the signals received by each receiver Ra, Rb, and Rc and the signal sent out from the signal generator 1.
TR is each phase detector PDa.

PDb、PDcにて検出され、この各位相差は演算装置
3に人力される。演算装置3ではこの各位相差から各送
受信器間の距離を演算し、それにより、第1の地中掘削
機Aに対する第2の地中掘削機Bの相対的な位置が算出
され、表示装置4にてその結果が表示される。
The phase differences are detected at PDb and PDc, and each phase difference is manually input to the arithmetic unit 3. The calculation device 3 calculates the distance between each transmitter and receiver from each phase difference, thereby calculating the relative position of the second underground excavator B with respect to the first underground excavator A. The results will be displayed.

なお上記実施例では、受信器にて受信した信号と、信号
発生器から送出した信号との位相差を位相差検出器にて
検出するようにした例を示したが、上記位相差検出器を
、送信器から受信機へ地中を伝播する電磁波の伝播時間
を検出す伝播時間検知器に置きかえ、両地中掘削機の相
対位置を算出するのに、この電磁波の伝播時間を用いて
もよい。また、電磁波と超音波(弾性波)におきかえて
もよい。
In the above embodiment, the phase difference between the signal received by the receiver and the signal sent from the signal generator is detected by the phase difference detector. , it may be replaced with a propagation time detector that detects the propagation time of electromagnetic waves propagating underground from the transmitter to the receiver, and the propagation time of this electromagnetic wave may be used to calculate the relative position of both underground excavators. . Further, electromagnetic waves and ultrasonic waves (elastic waves) may be used instead.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、シールド掘削機の高底下での地中接合
などに必要とされる2台の地中掘進機A、Bの3次元的
な相対位置を自動的、連続的、かつリアルタイムに計測
できると共に、計allによる掘削休止の必要がなく、
また計測による人手がいらないので、作業能率を向上す
ることができる。さらに、トンネル計画路線が急曲線、
連続曲線掘削であっても、屈曲に伴う計測の必要もない
。そしてさらに、シールド径が小さくても計測が可能と
なる。さらに積算計測ではないので、長路MtJA削を
行っても誤差が生じないという効果が得られる。
According to the present invention, the three-dimensional relative positions of two underground excavators A and B required for underground connection under a high bottom of a shield excavator can be automatically, continuously, and in real time. In addition to being able to measure, there is no need to stop drilling due to all measurements.
Furthermore, since no manual labor is required for measurement, work efficiency can be improved. Furthermore, the tunnel planned route has a sharp curve,
Even with continuous curved excavation, there is no need to measure bends. Furthermore, measurement is possible even if the shield diameter is small. Furthermore, since it is not an integrated measurement, it is possible to obtain the effect that no error occurs even if long-path MtJA cutting is performed.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示すもので、第1図は相対的す
る2台の地中掘削機相互の送受信機による計測状態を示
す斜視図、第2図、第3図はそれぞれ第1の地中掘削機
に対する第2の地中掘削機のY軸、Z軸に対する傾きを
算出するための説明図、第4図は本発明の実施例を示す
ブロック図である。 A、Bは地中掘削機、Ta、Tb、Tcは送信器、Ra
、Rb、Rcは受信器、PDa  PDb、PDcは位
相検出器、1は信号発生器、2は送信器切換器、3は演
算装置。 第4図
The drawings show an embodiment of the present invention, and FIG. 1 is a perspective view showing the measurement state by the transmitter/receiver of two opposing underground excavators, and FIGS. FIG. 4 is an explanatory diagram for calculating the inclination of the second underground excavator with respect to the Y axis and the Z axis, and FIG. 4 is a block diagram showing an embodiment of the present invention. A and B are underground excavators, Ta, Tb, and Tc are transmitters, and Ra
, Rb, and Rc are receivers, PDa, PDb, and PDc are phase detectors, 1 is a signal generator, 2 is a transmitter switch, and 3 is an arithmetic unit. Figure 4

Claims (1)

【特許請求の範囲】[Claims] 対向方向に互いに掘進する2台の地中掘削機において、
この両地中掘削機の少なくとも一方の地中掘削機の前面
に、電磁波または弾性波を前方へ送出する複数の発信装
置を設け、また上記両掘削機の少なくとも他方の地中掘
削機の前面に、上記一方の地中掘削機の発信装置から発
信された電磁波または弾性波を受信する複数の受信装置
を設け、またこの受信装置を有する一方の地中掘削機に
上記各発信装置から発信された電磁波または弾性波と上
記各受信装置が検出する電磁波または弾性波の位相差あ
るいは伝播時間の一方を検出する検知手段と、上記複数
の送信装置及び受信装置間のそれぞれの電磁波または弾
性波の位相差あるいは伝播時間の一方から上記両地中掘
削機の相対位置を算出する演算手段とを備えたことを特
徴とする地中掘削機。
In two underground excavators digging into each other in opposite directions,
A plurality of transmitting devices for transmitting electromagnetic waves or elastic waves forward are provided on the front of at least one of the two underground excavators, and a plurality of transmitting devices are provided on the front of at least one of the two underground excavators. , a plurality of receiving devices are provided to receive electromagnetic waves or elastic waves emitted from the transmitting device of one of the underground excavators, and the one underground excavator having the receiving device receives the electromagnetic waves or elastic waves emitted from each of the transmitting devices. a detection means for detecting either the phase difference or propagation time between the electromagnetic wave or elastic wave and the electromagnetic wave or elastic wave detected by each of the above-mentioned receiving devices, and the phase difference of each electromagnetic wave or elastic wave between the plurality of above-mentioned transmitting devices and receiving devices; Alternatively, an underground excavator comprising: calculation means for calculating the relative position of the two underground excavators from one of the propagation times.
JP1206967A 1989-08-11 1989-08-11 Underground excavator Expired - Fee Related JP2804930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1206967A JP2804930B2 (en) 1989-08-11 1989-08-11 Underground excavator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1206967A JP2804930B2 (en) 1989-08-11 1989-08-11 Underground excavator

Publications (2)

Publication Number Publication Date
JPH0372195A true JPH0372195A (en) 1991-03-27
JP2804930B2 JP2804930B2 (en) 1998-09-30

Family

ID=16531970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1206967A Expired - Fee Related JP2804930B2 (en) 1989-08-11 1989-08-11 Underground excavator

Country Status (1)

Country Link
JP (1) JP2804930B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03197792A (en) * 1989-12-26 1991-08-29 Hazama Gumi Ltd Method for detecting underground matching position of shield machines and device thereof
JP2010059678A (en) * 2008-09-03 2010-03-18 Taisei Corp Subterranean joining method for excavators and excavator position detection method
JP2010071037A (en) * 2008-09-22 2010-04-02 Taisei Corp In-soil position guiding method and in-soil position guiding system
JP2017160777A (en) * 2016-03-03 2017-09-14 トラクト−テヒニーク ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトTRACTO−TECHNIK GmbH & Co. KG Method for introducing borehole into soil, and soil drilling device and use

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03197792A (en) * 1989-12-26 1991-08-29 Hazama Gumi Ltd Method for detecting underground matching position of shield machines and device thereof
JP2010059678A (en) * 2008-09-03 2010-03-18 Taisei Corp Subterranean joining method for excavators and excavator position detection method
JP2010071037A (en) * 2008-09-22 2010-04-02 Taisei Corp In-soil position guiding method and in-soil position guiding system
JP2017160777A (en) * 2016-03-03 2017-09-14 トラクト−テヒニーク ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトTRACTO−TECHNIK GmbH & Co. KG Method for introducing borehole into soil, and soil drilling device and use
US10400576B2 (en) 2016-03-03 2019-09-03 Tracto-Technik Gmbh & Co. Kg Method for introducing a borehole into the soil and soil drilling device and use thereof
EP3214260B1 (en) * 2016-03-03 2023-04-26 TRACTO-TECHNIK GmbH & Co. KG Method for making a borehole in the soil and soil boring device and use

Also Published As

Publication number Publication date
JP2804930B2 (en) 1998-09-30

Similar Documents

Publication Publication Date Title
JPH03260281A (en) Position detector of underground excavator
US6886644B2 (en) Apparatus and method for horizontal drilling
JPS58710A (en) Method for determining position of cavity section continuous body excavated and device for executing said method
JPH0372195A (en) Underground excavator
JP2001099945A (en) Survey instrument for surveying front side of working face, and recording medium
US5107938A (en) Apparatus for detecting position of underground excavator
JPS59206709A (en) Measuring method of position having moving measuring point at intermediate
JPS6247565A (en) Tunnel excavating technique by anterior guidance control
JP2002116026A (en) Measuring system for excavation position of shield machine
JP3989624B2 (en) Position measuring device for submarine or submarine civil engineering machinery or cable burying machine
JPH0566130A (en) Automatic searching device for excavator
JP2757058B2 (en) Underground excavator relative position detector
JP2819043B2 (en) Underground excavator position detector
JPS60201207A (en) Detecting method of underground position of tip of propulsion tube using acoustic wave
JP2520754B2 (en) Position detection device for shield machine
JP2913041B2 (en) Underground excavator displacement detection device
JPH0335184A (en) Position measuring instrument of underground drilling machine
JP3553831B2 (en) Method and apparatus for detecting relative orientation of underground pipeline
JPS5912964B2 (en) Surveying method
JPH02145910A (en) Detection of position for shielding machine
JPH0525994B2 (en)
JPH0345769B2 (en)
JPH03251788A (en) Apparatus for measuring position of shield excavator
JPS5855467B2 (en) Shield excavator position measuring device
JPH0335185A (en) Position measuring instrument of underground drilling machine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees