JPH0372098A - Production of aluminum material for vacuum - Google Patents

Production of aluminum material for vacuum

Info

Publication number
JPH0372098A
JPH0372098A JP20922789A JP20922789A JPH0372098A JP H0372098 A JPH0372098 A JP H0372098A JP 20922789 A JP20922789 A JP 20922789A JP 20922789 A JP20922789 A JP 20922789A JP H0372098 A JPH0372098 A JP H0372098A
Authority
JP
Japan
Prior art keywords
vacuum
aluminum material
aluminum
weight
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20922789A
Other languages
Japanese (ja)
Inventor
Yutaka Kato
豊 加藤
Koichi Okita
広一 置田
Eizo Isoyama
礒山 永三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP20922789A priority Critical patent/JPH0372098A/en
Publication of JPH0372098A publication Critical patent/JPH0372098A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To improve corrosion resistance as well as to make an anodically oxidized film flexible, to prevent cracking and to reduce the rate of discharge of gas by forming the film on an Al material contg. a specified amt. of Cu and by carrying out electrolysis under prescribed conditions. CONSTITUTION:An Al alloy consisting of 0.05-4wt.% Cu and the balance Al is refined and worked to obtain an Al material for vacuum having a prescribed shape. This Al material is anodically oxidized in an electrolytic soln. contg. oxalic acid to form an anodically oxidized film on the surface. The voltage is then suddenly dropped and electrolysis is carried out at 5-50V constant voltage in the electrolytic soln.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、MBE装置、ドライエツチング装置および
CVD装置等の半導体製造装置や、イオンブレーティン
グ装置、プラズマCVD装置、スパッタリング装置等の
薄膜製造装置に使用されるアルミニウム製真空チャンバ
、シュラウド、電極等として使用される真空用アルミニ
ウム材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention is used in semiconductor manufacturing equipment such as MBE equipment, dry etching equipment, and CVD equipment, and thin film manufacturing equipment such as ion blating equipment, plasma CVD equipment, and sputtering equipment. The present invention relates to a method for manufacturing vacuum aluminum materials used as aluminum vacuum chambers, shrouds, electrodes, etc.

この明細書において、「アルミニウム」という語には、
特に「アルミニウム合金」という以外は、純アルミニウ
ムの他にアルミニウム合金を含むものとする。
In this specification, the term "aluminum" refers to
In particular, anything other than "aluminum alloy" includes aluminum alloys in addition to pure aluminum.

従来の技術と発明の課題 従来、上記の各種装置に用いられる真空用材としでは、
ステンレス鋼製のものが広く用いられていた。ところが
、ステンレス鋼材は重量が大きい、熱伝導性が悪い、表
面のガス放出係数が大きいなどという問題があったので
、アルミニウム材を用いることが考えられた。
Prior Art and Problems of the Invention Conventionally, vacuum materials used in the various devices mentioned above were
Stainless steel ones were widely used. However, stainless steel materials had problems such as being heavy, having poor thermal conductivity, and having a large surface gas release coefficient, so it was considered to use aluminum materials.

しかしながら、アルミニウム材は、MBE装置でたとえ
ばガリウムのような腐食成分を含むGaAsなどの半導
体膜を形成する場合や、ドライエツチングのエツチング
ガスおよびCVD法の反応ガスとして塩素などの腐食成
分を含むものを用いる場合には、腐食するという問題が
あった。
However, aluminum materials are used when forming semiconductor films such as GaAs containing corrosive components such as gallium using MBE equipment, or when using materials containing corrosive components such as chlorine as etching gases for dry etching and reactive gases for CVD methods. When used, there was a problem of corrosion.

そこで、上記腐食の問題を解決するために、真空用アル
ミニウム材の表面に、硫酸電解液中で陽極酸化処理を施
して陽極酸化皮膜を形成していた。しかしながら、上述
したような真空用装置内の真空度を高める目的で、真空
用アルミニウム材には予め加熱脱ガス処理が施されるが
、この加熱脱ガス処理のさいに陽極酸化皮膜にクラック
が発生し、耐食性が低下するという問題がある。また、
上記陽極酸化皮膜に吸着している水分によって、真空用
アルミニウム材が真空に晒された場合にガス放出量が多
くなり、真空装置内の真空度を目標とする圧力まで下げ
ることができないという問題がある。
Therefore, in order to solve the above-mentioned corrosion problem, the surface of the vacuum aluminum material has been subjected to anodization treatment in a sulfuric acid electrolyte to form an anodized film. However, in order to increase the degree of vacuum inside the vacuum equipment as mentioned above, vacuum aluminum materials are heated and degassed in advance, but cracks occur in the anodic oxide film during this heating and degassing process. However, there is a problem that corrosion resistance decreases. Also,
Due to the moisture adsorbed on the anodic oxide film, a large amount of gas is released when the vacuum aluminum material is exposed to vacuum, causing the problem that the degree of vacuum in the vacuum equipment cannot be lowered to the target pressure. be.

この発明の目的は、上記問題を解決しうる真空用亜アル
ミニウム材の製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a subaluminium material for vacuum use that can solve the above-mentioned problems.

課題を解決するための手段 この発明による真空用アルミニウム材の製造方法は、銅
を0.05〜4.0重量%含有し、残部アルミニウムお
よび不可避不純物よりなるアルミニウム合金から所定形
状の真空用アルミニウム材を成形加工し、加工済アルミ
ニウム材に、シュウ酸電解液中で陽極酸化処理して表面
に陽極酸化皮膜を形成した後、引続き同一電解液中で電
圧を前の電圧値から急激に降下させて5〜50Vで定電
圧電解処理することを成形加工するものである。
Means for Solving the Problems A method for producing an aluminum material for vacuum use according to the present invention is to produce an aluminum material for vacuum use in a predetermined shape from an aluminum alloy containing 0.05 to 4.0% by weight of copper, with the remainder being aluminum and unavoidable impurities. The processed aluminum material is anodized in an oxalic acid electrolyte to form an anodized film on the surface, and then the voltage is rapidly lowered from the previous voltage value in the same electrolyte. The molding process involves constant voltage electrolytic treatment at 5 to 50V.

上記において、所定形状の真空用アルミニウム材は、マ
グネシウムを0.5〜5.6ff1%含有し、残部アル
ミニウムおよび不可避不純物よりなるアルミニウム合金
から成形加工してもよい。
In the above, the vacuum aluminum material having a predetermined shape may be formed from an aluminum alloy containing 0.5 to 5.6 ff1% of magnesium, and the balance being aluminum and unavoidable impurities.

また、上記において、所定形状の真空用アルミニウム材
は、銅を0.05〜4.0!rf量%、マグネシウムを
0.5〜5.6重量%含有し、残部アルミニウムおよび
不可避不純物よりなるアルミニウム合金から成形加工し
てもよい。
In addition, in the above, the aluminum material for vacuum having a predetermined shape contains copper at 0.05 to 4.0! It may be formed from an aluminum alloy containing 0.5 to 5.6% by weight of magnesium and the balance being aluminum and unavoidable impurities.

上記において、所定形状の真空用アルミニウム材を成形
加工するためのアルミニウム合金中の銅含有量を0.0
5〜4.0重量%に限定したのは、0.05重量%未満
では後述する電流の回復現象が短時間で起らず、4.0
重量%を越えると成形加工が困、難になるからである。
In the above, the copper content in the aluminum alloy for forming a vacuum aluminum material of a predetermined shape is 0.0.
The reason why it is limited to 5 to 4.0% by weight is that if it is less than 0.05% by weight, the current recovery phenomenon described below will not occur in a short time.
This is because if the amount exceeds % by weight, molding becomes difficult.

また、上記において1、マグネシウム含有量を0.5〜
5.6重量%に限定したのは、0.5TrX量%未満で
は強度が不足し、5.6ffiQ%を越えると成形加工
が困難になるからである。
In addition, in the above, 1, magnesium content is 0.5 ~
The reason why the content is limited to 5.6% by weight is that if the content is less than 0.5% by weight, the strength is insufficient, and if it exceeds 5.6% by weight, molding becomes difficult.

シュウ酸電解液中での第1段階の陽極酸化処理は、通常
の方法で行われる。すなわち、シュウ酸電解液中のシュ
ウ酸濃度は1〜5重量%、液温15〜30℃、電流密度
1.5A/dm2前後で行われる。電解電流は、直流、
交流および交直重畳流のいずれでもよい。また、定電圧
電解および定電流電解のいずれでもよい。
The first stage anodizing treatment in an oxalic acid electrolyte is carried out in a conventional manner. That is, the oxalic acid concentration in the oxalic acid electrolyte is 1 to 5% by weight, the liquid temperature is 15 to 30°C, and the current density is about 1.5 A/dm2. Electrolytic current is direct current,
Either AC or AC/DC superimposed flow may be used. Further, either constant voltage electrolysis or constant current electrolysis may be used.

上記第1段階の陽極酸化処理から電圧を急激に降下させ
た後、定電圧電解処理すると、電流はすぐに流れず、数
秒〜数分経過後徐々に流れ始め、しばらくして定常状態
に達する。この現象は回復現象と呼ばれている。この回
復現象によって、陽極酸化皮膜が形成される。回復現象
によって形成された陽極酸化皮膜は耐熱性に優れている
ため、皮膜を破壊することなく高温での加熱脱ガス処理
を施すことが可能になる。電圧の降下の度合いは、第1
段階での電圧の60%以下の電圧となるまで降下させる
のがよい。
When constant voltage electrolysis is performed after the voltage is rapidly lowered from the first stage of anodizing treatment, the current does not flow immediately, but gradually begins to flow after several seconds to several minutes, and reaches a steady state after a while. This phenomenon is called a recovery phenomenon. This recovery phenomenon forms an anodic oxide film. Since the anodic oxide film formed by the recovery phenomenon has excellent heat resistance, it is possible to perform heat degassing treatment at high temperatures without destroying the film. The degree of voltage drop is the first
It is preferable to lower the voltage to 60% or less of the voltage at the step.

たとえば第1段階での通電を一旦停止し、再度通電を開
始することにより行われてもよい。
For example, it may be carried out by temporarily stopping the energization in the first stage and then starting the energization again.

電圧を急激に降下させた後の定電圧電解処理を5〜50
Vで行うのは、5重未満では電流回復現象が起らず、5
0Vを越えると耐熱性の優れた陽極酸化皮膜を得ること
ができないからである。
Constant voltage electrolysis treatment after rapidly lowering the voltage was performed for 5 to 50 minutes.
The reason for doing this with V is that the current recovery phenomenon does not occur below 5 layers.
This is because if the voltage exceeds 0V, an anodic oxide film with excellent heat resistance cannot be obtained.

また、第2段階の定電圧電解処理の時間は、10〜30
分が好ましい。
Moreover, the time of the second stage constant voltage electrolytic treatment is 10 to 30
Minutes are preferred.

さらに、第2段階の定電圧電解処理が終了した後、皮膜
への水分の吸着量を減少させる目的で、100〜400
℃で加熱脱ガス処理を施すのがよい。この処理は、真空
雰囲気中、またはアルミニウムに対して不活性なガスの
雰囲気中で行うのが望ましい。
Furthermore, after the second stage of constant voltage electrolytic treatment is completed, 100 to 400
It is preferable to perform a heating degassing treatment at ℃. This treatment is preferably carried out in a vacuum atmosphere or in an atmosphere of a gas inert to aluminum.

作   用 この発明の方法で製造された真空用アルミニウム材表面
の陽極酸化皮膜は、上述したように柔軟であるから、こ
れに加熱脱ガス処理を施しても皮膜にクラックが発生す
るのを防止できる。
Function: Since the anodic oxide film on the surface of the vacuum aluminum material produced by the method of the present invention is flexible as described above, it is possible to prevent the film from cracking even if it is subjected to heat degassing treatment. .

また、この発明の方法で製造された真空用アルミニウム
材表面の陽極酸化皮膜は耐熱性に優れているので、高温
での加熱脱ガス処理が可能になり、ガス放出率が少なく
なる。
Furthermore, since the anodic oxide film on the surface of the vacuum aluminum material produced by the method of the present invention has excellent heat resistance, it is possible to perform heat degassing treatment at high temperatures, and the rate of gas release is reduced.

実  施  例 以下、この発明の実施例を比較例とともに説明する。Example Examples of the present invention will be described below along with comparative examples.

実施例I Aρ−0,1重ffi%Cu合金から真空アルミニウム
材を成形加工した。ついで、液温20℃の1.5重量%
シュウ酸電解液中で、電流密度1.5A/dn+2の直
A電流を通じて40分間陽極酸化処理を行った。そして
、−長通電を停止した後、同一電解液中で、37Vで2
0分間定電圧電解処理を行い、真空用アルミニウム材の
表面に膜厚15μmの皮膜を形成した。
Example I A vacuum aluminum material was formed from an Aρ-0,1 heavy ffi% Cu alloy. Then, 1.5% by weight at a liquid temperature of 20°C.
Anodization was performed in an oxalic acid electrolyte for 40 minutes through a direct A current with a current density of 1.5 A/dn+2. Then, after stopping the -long energization, in the same electrolytic solution, 2
Constant voltage electrolysis treatment was performed for 0 minutes to form a film with a thickness of 15 μm on the surface of the vacuum aluminum material.

実施例2 上記実施例1と同じ条件で皮膜を形成した後、真空用ア
ルミニウム材を、真空雰囲気中で150℃で20時間加
熱し、加熱乾燥処理を施した。
Example 2 After forming a film under the same conditions as in Example 1 above, the vacuum aluminum material was heated at 150° C. for 20 hours in a vacuum atmosphere to perform a heat drying treatment.

実施例3 1−4重量%Mgから真空用アルミニウム材を成形加工
し、この真空用アールミニラム材の表面に、上記実施例
1と同様の条件で膜厚15μmの陽極酸化皮膜を形成し
た。
Example 3 A vacuum aluminum material was molded from 1-4% by weight Mg, and an anodic oxide film with a thickness of 15 μm was formed on the surface of the vacuum aluminum material under the same conditions as in Example 1 above.

実施例4 Al1−4重量%Mg−0,1重量%Cu合金から真空
用アルミニウム材を成形加工し、この真空用アルミニウ
ム材の表面に、上記実施例1と同様の条件で膜厚15μ
mの陽極酸化皮膜を形成した。
Example 4 A vacuum aluminum material was formed from an Al1-4 wt% Mg-0.1 wt% Cu alloy, and a film thickness of 15 μm was formed on the surface of the vacuum aluminum material under the same conditions as in Example 1 above.
An anodized film of m was formed.

比較例1 実施例1で使用したのと同じアルミニウム合金を用いて
真空用アルミニウム材を形成した。
Comparative Example 1 The same aluminum alloy used in Example 1 was used to form a vacuum aluminum material.

ついで、液温20℃の1.5重量%シュウ酸型M液中で
、電流密度1.5A/d112の直流電流を通じて40
分間陽極酸化処理を行い、真空用アルミニウム材の表面
に膜厚15μmの皮膜を形成した。
Then, in a 1.5% by weight oxalic acid type M solution at a liquid temperature of 20°C, a direct current with a current density of 1.5A/d112 was applied to
Anodic oxidation treatment was performed for a minute to form a film with a thickness of 15 μm on the surface of the vacuum aluminum material.

比較例2 実施例1で使用したのと同じアルミニウム合金を用いて
真空用アルミニウム材を形成した。
Comparative Example 2 The same aluminum alloy used in Example 1 was used to form a vacuum aluminum material.

ついで、液温20℃の15重量%硫酸電解液中で、電圧
15v1電流密度1 、 3 A/dI112(1)直
流電流を通じて40分間陽極酸化処理を行い、真空用ア
ルミニウム材の表面に膜厚15μmの皮膜を形成した。
Then, anodic oxidation treatment was performed for 40 minutes in a 15 wt % sulfuric acid electrolyte with a liquid temperature of 20° C. and a DC current of 15 v 1 and a current density of 1,3 A/dI 112 (1) to form a film thickness of 15 μm on the surface of the vacuum aluminum material. A film was formed.

評(illill 上記実施例1〜4および比較例1〜2で製造された真空
用アルミニウム材の性能を評価するために、各真空用ア
ルミニウム材を材料温度が150℃となるようなS t
 CN 4雰囲気中に1000時間放置し、耐食性を調
べた。
In order to evaluate the performance of the vacuum aluminum materials manufactured in Examples 1 to 4 and Comparative Examples 1 to 2, each vacuum aluminum material was heated to a temperature of 150°C.
It was left in a CN4 atmosphere for 1000 hours and its corrosion resistance was examined.

また、各真空用アルミニウム材を150℃で24時間加
熱してベーキング処理を施した後のガス放出率を測定し
た。これらの評価試験の結果を下表に示す。
In addition, the gas release rate was measured after baking each vacuum aluminum material by heating it at 150° C. for 24 hours. The results of these evaluation tests are shown in the table below.

(以下余白) 上表から明らかなように、この発明の方法で製造された
真空用アルミニウム材の耐食性は、従来の方法で製造さ
れたものよりも優れている。
(The following is a blank space) As is clear from the above table, the corrosion resistance of the vacuum aluminum material produced by the method of the present invention is superior to that produced by the conventional method.

また、この発明の方法で製造された真空用アルミニウム
材のガス放出率は、従来の方法で製造されたものよりも
小さくなっている。
Further, the gas release rate of the vacuum aluminum material manufactured by the method of the present invention is lower than that of the vacuum aluminum material manufactured by the conventional method.

発明の効果 この発明の方法で製造された真空用アルミニウム材は、
上述したように、耐食性に優れているとともに、ガス放
出率が小さくなっている。
Effects of the invention The vacuum aluminum material manufactured by the method of this invention is
As mentioned above, it has excellent corrosion resistance and a low gas release rate.

したがって、ガリウムのような腐食成分を含むGaAs
なとの半導体膜を形成する場合や、ドライエツチングの
エツチングガスおよびCVD法の反応ガスとして塩素な
どの腐食成分と接触するような真空装置に使用した場合
にも、長期間にわたって腐食を防止できる。しかも、上
述したような真空用装置内の真空度を高めることができ
る。
Therefore, GaAs containing corrosive components such as gallium
Corrosion can be prevented for a long period of time even when forming a semiconductor film, or when used in a vacuum apparatus that comes into contact with corrosive components such as chlorine as an etching gas for dry etching or a reactive gas for CVD. Moreover, the degree of vacuum within the vacuum apparatus as described above can be increased.

以  上that's all

Claims (3)

【特許請求の範囲】[Claims] 1.銅を0.05〜4.0重量%含有し、残部アルミニ
ウムおよび不可避不純物よりなるアルミニウム合金から
所定形状の真空用アルミニウム材を成形加工し、加工済
アルミニウム材に、シュウ酸電解液中で陽極酸化処理し
て表面に陽極酸化皮膜を形成した後、引続き同一電解液
中で電圧を前の電圧値から急激に降下させて5〜50V
で定電圧電解処理することを特徴とする真空用アルミニ
ウム材の製造方法。
1. An aluminum material for vacuum use in a predetermined shape is formed from an aluminum alloy containing 0.05 to 4.0% by weight of copper and the remainder is aluminum and unavoidable impurities, and the processed aluminum material is anodized in an oxalic acid electrolyte. After processing to form an anodic oxide film on the surface, the voltage is then rapidly lowered from the previous voltage value to 5 to 50 V in the same electrolyte.
A method for manufacturing aluminum material for vacuum use, characterized by subjecting it to constant voltage electrolytic treatment.
2.マグネシウムを0.5〜5.6重量%含有し、残部
アルミニウムおよび不可避不純物よりなるアルミニウム
合金から所定形状の真空用アルミニウム材を成形加工す
る請求項1記載の真空用アルミニウム材の製造方法。
2. 2. The method for producing an aluminum material for vacuum use according to claim 1, wherein the aluminum material for vacuum use in a predetermined shape is formed from an aluminum alloy containing 0.5 to 5.6% by weight of magnesium and the balance consisting of aluminum and unavoidable impurities.
3.銅を0.05〜4.0重量%、マグネシウムを0.
5〜5.6重量%含有し、残部アルミニウムおよび不可
避不純物よりなるアルミニウム合金から所定形状の真空
用アルミニウム材を成形加工する請求項1記載の真空用
アルミニウム材の製造方法。
3. 0.05-4.0% by weight of copper and 0.0% by weight of magnesium.
2. The method for producing an aluminum material for vacuum use according to claim 1, wherein an aluminum material for vacuum use in a predetermined shape is formed from an aluminum alloy containing 5 to 5.6% by weight, the remainder consisting of aluminum and unavoidable impurities.
JP20922789A 1989-08-10 1989-08-10 Production of aluminum material for vacuum Pending JPH0372098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20922789A JPH0372098A (en) 1989-08-10 1989-08-10 Production of aluminum material for vacuum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20922789A JPH0372098A (en) 1989-08-10 1989-08-10 Production of aluminum material for vacuum

Publications (1)

Publication Number Publication Date
JPH0372098A true JPH0372098A (en) 1991-03-27

Family

ID=16569455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20922789A Pending JPH0372098A (en) 1989-08-10 1989-08-10 Production of aluminum material for vacuum

Country Status (1)

Country Link
JP (1) JPH0372098A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996015295A1 (en) * 1994-11-16 1996-05-23 Kabushiki Kaisha Kobe Seiko Sho Vacuum chamber made of aluminum or its alloy, and surface treatment and material for the vacuum chamber
US6521046B2 (en) 2000-02-04 2003-02-18 Kabushiki Kaisha Kobe Seiko Sho Chamber material made of Al alloy and heater block
US6686053B2 (en) 2001-07-25 2004-02-03 Kabushiki Kaisha Kobe Seiko Sho AL alloy member having excellent corrosion resistance
US7005194B2 (en) 2003-01-23 2006-02-28 Kobe Steel, Ltd. Aluminum alloy member superior in corrosion resistance and plasma resistance
DE112006002987T5 (en) 2005-11-17 2008-10-02 Kabushiki Kaisha Kobe Seiko Sho Aluminum alloy element with excellent corrosion resistance
JP2010126738A (en) * 2008-11-25 2010-06-10 Mitsubishi Alum Co Ltd Method for manufacturing surface-treated aluminum material for vacuum equipment
JP2012522135A (en) * 2009-03-30 2012-09-20 アクセンタス メディカル ピーエルシー Metal processing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996015295A1 (en) * 1994-11-16 1996-05-23 Kabushiki Kaisha Kobe Seiko Sho Vacuum chamber made of aluminum or its alloy, and surface treatment and material for the vacuum chamber
US6521046B2 (en) 2000-02-04 2003-02-18 Kabushiki Kaisha Kobe Seiko Sho Chamber material made of Al alloy and heater block
US6686053B2 (en) 2001-07-25 2004-02-03 Kabushiki Kaisha Kobe Seiko Sho AL alloy member having excellent corrosion resistance
US7005194B2 (en) 2003-01-23 2006-02-28 Kobe Steel, Ltd. Aluminum alloy member superior in corrosion resistance and plasma resistance
DE112006002987T5 (en) 2005-11-17 2008-10-02 Kabushiki Kaisha Kobe Seiko Sho Aluminum alloy element with excellent corrosion resistance
JP2010126738A (en) * 2008-11-25 2010-06-10 Mitsubishi Alum Co Ltd Method for manufacturing surface-treated aluminum material for vacuum equipment
JP2012522135A (en) * 2009-03-30 2012-09-20 アクセンタス メディカル ピーエルシー Metal processing

Similar Documents

Publication Publication Date Title
JP5833987B2 (en) Aluminum alloy excellent in anodizing property and anodized aluminum alloy member
TWI794488B (en) Aluminum alloy member for forming fluoride film and aluminum alloy member with fluoride film
JP3919996B2 (en) Aluminum alloy for plasma processing apparatus, aluminum alloy member for plasma processing apparatus and plasma processing apparatus
JPH0372098A (en) Production of aluminum material for vacuum
JP3152960B2 (en) Manufacturing method of aluminum or aluminum alloy material for vacuum equipment
JPH08144088A (en) Surface treatment of vacuum chamber member made of aluminium or aluminum alloy
JP3506827B2 (en) Surface-treated aluminum material and method for producing the same
US6242111B1 (en) Anodized aluminum susceptor for forming integrated circuit structures and method of making anodized aluminum susceptor
US3351442A (en) Treatment of aluminum foil and product produced thereby
Green et al. Observations on the stress corrosion cracking of an Al-5% Zn-2.5% Mg ternary and various quaternary alloys
JP3428035B2 (en) Aluminum foil for anode of ultra-high voltage Al electrolytic capacitor
JPH08260196A (en) Surface treating method of vacuum chamber member made of al or al alloy
US3578570A (en) Aluminum capacitor foil
CN112159944B (en) Preparation method of 7000 series aluminum material
JPH10306336A (en) Aluminum alloy extruded material excellent in surface gloss after anodic oxidation treatment and its production
JP2960117B2 (en) Aluminum foil for electrolytic capacitor electrodes
JPS636639B2 (en)
US2995479A (en) Degassing aluminum articles
JPH07224338A (en) Formation of hard anodically oxidized film and aluminum alloy for forming hard anodically oxidized film
JP4835399B2 (en) High purity aluminum alloy material
US2855350A (en) Process for electrolytically producing oxide coating on aluminum and aluminum alloys
JPH0116907B2 (en)
JPH06330386A (en) Formation of hard anodic oxide film and aluminum alloy for forming the film
JPH01205091A (en) Surface treatment of al alloy frame member of bicycle for welded structure
JP2572479B2 (en) Aluminum foil for electrolytic capacitor electrodes